
DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF MATHEMATICS, PHYSICS AND
INFORMATICS
COMENIUS UNIVERSITY

MODELING BIDIRECTIONAL SCATTERING

DISTRIBUTION FUNCTION

Bachelor Thesis

JANA HLINKOVÁ

Advisor:

Dr. Tomáš Plachetka

Bratislava, 2007

I hereby declare I wrote this thesis by myself, only with the help of referenced literature,
under the careful supervision of my thesis advisor.

…………………………………….

ACKNOWLEDGEMENTS

Most of all, I would like to thank my advisor Dr. Tomáš Plachetka for his guidance, devoted

time and many helpful suggestions during my work on this thesis.

A special thanks goes to my family and friends for their support and encouragement, and for

keeping an eye on me, while I was writing the thesis.

Abstract

Realistic simulation of scene illumination is mathematically supported by rendering equation.

One of the parameters of this equation is the bidirectional scattering distribution function

(BSDF). BSDF is a function, which de�nes optical properties of surfaces. Computer graphics

uses several not compatible material models that approximate BSDF. Di�erent representations

of BSDF cannot be automatically converted into one another. Moreover, the choice of mate-

rial model in�uences the choice of rendering algorithm and vice-versa. Furthermore, if BSDF

representation is updated, renderer has to be changed as well.

The main goal of this thesis is to present an abstract representation of BSDF, which would

tackle the problem of incompatibility by providing a simple interface � an interface that would

cover all representations of BSDF and allow the evolution of BSDF models independently of the

renderers.

Keywords: BSDF, bidirectional scattering distribution funcion, Monte Carlo path tracing

Contents

1 Introduction 2

2 Global illumination 4

2.1 Rendering equation . 4

2.1.1 Solid angle . 4

2.1.2 Radiance . 5

2.1.3 Transfer probability density . 5

2.1.4 Rendering equation . 5

2.2 3D model . 7

2.2.1 Geometry of surfaces . 7

2.2.2 Material properties . 8

2.2.3 Light sources . 8

2.3 Bidirectional scattering distribution function (BSDF) 9

2.4 Monte Carlo path tracing algorithm . 9

3 Re�ection models 12

3.1 Di�use re�ection model . 12

3.2 Ideal re�ection model . 12

3.3 Phong specular re�ection model . 13

3.4 Combined Phong re�ection model . 13

3.5 Physical microfacet model . 14

3.6 Data interpolation . 14

4 Importance sampling 15

4.1 Modi�ed Phong model . 15

5 Uniform material interface 17

5.1 Object serialization . 17

5.2 Implementation . 18

6 Conclusion 20

1

Chapter 1

Introduction

Photorealistic scene synthesis is unmistakably one of the major goals of computer graphics. Not

only �lm and computer game production sets higher demands on the quality of created images.

Computer simulators for pilots, students of medicine or soldiers present an excellent supplement

in the process of training, and thus, the better the simulation follows reality, the better the

training is.

To create realistic images, accurate graphical representation of objects and good physical

description of lighting e�ects are needed. Modeling colors and lighting e�ects, which can be

seen on objects of the real world, is a complex process that involves principles of both physics

and psychology. In order for an image on computer screen to appear realistic, it has to evoke

approximately the same color sensation in human eye and brain, as a real world image would.

Human color perception depends on the electromagnetic radiance reaching the eye and on the

operation of the eye. The amount of electromagnetic radiance that is radiated from a scene

towards the viewer is de�ned by objects the scene contains � their shapes and optical properties,

and by lighting properties of light sources. Thus it is necessary to understand the physics of light

propagation and the function of the eye, and to build a mathematical model of lighting on top

of this knowledge.

Virtual scenes are represented by a 3D model, which contains the description of geometry

of the virtual world, description of optical material properties and lighting. In order to ob-

tain an image from a 3D model, distribution of light in the scene has to be calculated. This

is done by simulating real-world optical phenomena based on laws of physics. Calculation of

light distribution independent of the viewing direction is called the global pass of rendering.

After this stage, the amount of light energy re�ected by surface points into di�erent directions

is determined. Since light is an electromagnetic wave, its distribution can be represented by

wavelength-dependent functions. Rendering algorithms usually evaluate this functions at several

representative wavelengths. The intensity of monochromatic light is described by radiance. The

radiance leaving a surface point in a particular direction is a�ected by the emission of this point,

the illumination provided by other surface points and the optical material properties of this point.

This dependence is formally characterized by rendering equation, which is a Fredholm type in-

tegral equation of the second kind. Thus from mathematical point of view, the result of view

independent rendering stage is the solution of rendering equation for representative wavelengths.

When a camera or other measuring device is placed into the scene, light distribution is

2

measured from a given location and orientation. This view dependent step is the local pass of

rendering. Some rendering algorithms �rst calculate global light distribution and then measure

it by a measuring device, other do this simultaneously.

The result of rendering is a color pixel map or equivalent discrete sampling of radiance

function. The �nal step of image synthesis is tone mapping - the conversion of computed radiance

to R, G, B intensities, that can be produced by color monitor.

∗ ∗ ∗

Bidirectional scattering distribution function (BSDF) plays a signi�cant role in the rendering

equation. BSDF describes optical material properties and so gives a description of light-surface

interaction. Mathematically, it is a probability density function, which determines the probability

of light scatter into a particular direction. Unfortunately, precise analytic form of this function

is not known for natural surfaces, thus models, which only approximate it, are used instead.

Several di�erent models have been proposed so far, e.g. the Phong model and its modi�cations,

physical microfacet model or data interpolation model. Di�erent representations bring up a

problem of compatibility, when material descriptions want to be shared. Material described by a

table of representative functional values may not be compatible with rendering program designed

for Phong material description. Uniform interface and object serialization could be a possible

way of solving this problem.

3

Chapter 2

Global illumination

Global illumination models are physical models, which do not consider light emitters as the only

source of light in the scene, but take into account realistic re�ection of light as well. These

models, of course, produce more realistic pictures than direct illumination models (models that

consider only direct illumination by a light source), but they make the problem of calculating

light distribution harder. Mathematical model for this problem is the rendering equation, which

de�nes how the amount of light radiated from a particular surface point in particular direction

is calculated. There are several di�erent algorithms for solving the rendering equation, one of

these � the Monte Carlo path tracing will be described in this chapter.

2.1 Rendering equation

2.1.1 Solid angle

The direction of light energy emission from a surface point can be described in an illumination

sphere Ω or illumination hemisphere ΩH , which contain those solid angles, to where the surface

point can emit energy. A surface point of an opaque material can emit or re�ect light only to

the hemisphere that is above the surface, whereas surfaces of transparent materials emit light to

the entire sphere.

Direction of light propagation ω is de�ned by two angles θ, φ, where θ is the angle between

ω and z-axis, and φ is the angle between the projection of ω into x-y plane and the x-axis.

Figure 2.1: Solid angle ω de�ned by angles θ and φ

Sets of directions can be represented by solid angles. Di�erential (or in�nitesimal) solid angle

dω is given by a vector d~ω, where the vector equals to the direction of the di�erential set. It

4

is possible to de�ne di�erential solid angle by angles θ and φ. If θ is modi�ed by dθ and φ by

dφ, the directional vector scans a di�erential rectangle with vertical size dθ and horizontal size

sin θ.dφ. Thus the size of the di�erential solid angle is:

dω = sin θ.dφdθ. (2.1)

Solid angle, in which a di�erential surface dA can be seen from point ~p, is equal to the ratio of

the area dA and the square of the distance r2 between point ~p and the surface, if surface normal

of dA is parallel to the directional vector from ~p to dA. If the angle between surface normal and

the directional vector is θ, then the solid angle is:

dω =
dA. cos θ

r2
. (2.2)

2.1.2 Radiance

The most common metric used in computer graphics to characterize energy transfer is radiance

(or intensity). Radiance L (~x, ω) is de�ned as the di�erential light �ux dΦ(~x,dA, ω, dω) leaving
a surface element dA around point ~x in a di�erential solid angle dω around ω, per the projected

area of the surface element dA. cos θ and the di�erential solid angle dω:

L (~x, ω) =
dΦ(~x,dA, ω, dω)

dA.dω. cos θ
. (2.3)

Light �ux Φ (power) is a radiometric measure describing the amount of energy radiated

through a boundary per unit time over a given range of spectrum. As light �ux requires a

de�nition of a boundary, it is more convenient to use radiance measure, which considers boundary

in a di�erential way as a single surface point. Furthermore, as it is a standard to represent light

as a combination of representative wavelengths of red, green and blue color in computer graphics,

radiance is a suitable measure, as it characterizes monochromatic light.

2.1.3 Transfer probability density

The transfer probability density function describes the probability of re�ection or refraction of

light (photon) coming in from direction ωin at point ~x into solid angle dωout around outgoing

direction ωout:

w (~x,ωin, ωout) .dωout = Pr{photon is re�ected to dωout around ωout| coming from ωin} (2.4)

This density function does not refer to a pure continuous probability distribution, because

the probability of light being re�ected to the ideal re�ection direction may be non-zero. (For

continuous random variables, the probability, that the value of random variable is equal to some

particular value, is zero.)

2.1.4 Rendering equation

The rendering equation determines the amount of light that is radiated from a surface point

~x into direction ωout. This radiation consists of two components � the emitted radiation and

5

re�ected (or refracted) radiation, which can be dealt with separately.

Let Φin (~x,dA, ωin, dωin) be the incoming light �ux coming to area dA around point ~x from

solid angle dωin around direction ωin and let w (~x,ωin,ωout) .dωout be the probability of re�ection

into dωout, if light arrives at ~x from direction ωin. Then the re�ected or refracted light �ux

leaving ~x in direction ωout is:

Φout (~x, dA, ωout, dωout) = w (~x, ωin, ωout) .dωout.Φin (~x, dA, ωin, dωin) (2.5)

The total amount of light re�ected/refracted in ~x in direction ωout is e�ected by all the

incoming light power from every direction:

Φout (~x, dA, ωout, dωout) =
∫

Ω
w (~x, ωin, ωout) .dωout.Φin (~x, dA, ωin, dωin) . (2.6)

Finally, the total light power leaving surface point ~x in direction ωout is the sum of the

emission and the re�ected/refracted power:

Φout (~x, dA, ωout, dωout) = Φe (~x, dA, ωout, dωout)+
∫

Ω
w (~x, ωin, ωout) .dωout.Φin (~x, dA, ωin, dωin) .

(2.7)

The incoming light �ux at point ~x from direction ωin is equal to the light �ux that is going

out of a surface point ~x′, if ~x′ is a point visible from ~x in direction opposite to ωin. This follows

from the fundamental law of photometry:

dΦ
(

~x′, dA′, ωin, dωin

)
= L

(
~x′, ωin

)
.
dA′. cos θ′.dA. cos θ

r2
, (2.8)

where dA is di�erential surface around ~x, dA′ di�erential surface around ~x′, θ the angle

between ωin and dA surface normal, θ′ the angle between ωinand surface normal of dA′. Using

equation (2.2) the light �ux leaving di�erential surface dA′ and reaching di�erential surface dA

is:

dΦout

(
~x′, dA′, ωin, dωin

)
= Lout

(
~x′, ωin

)
.dA′. cos θ′.dωin = L

(
~x′, ωin

)
.
dA′. cos θ′.dA. cos θ

r2
=

= Lin (~x, ωin) .dA. cos θ.dωin = dΦin (~x, dA, ωin,dωin) (2.9)

Expressing emitted, incoming and outgoing light power as:

Φe (~x, dA, ωout, dωout) = Le (~x, ωout) .dA. cos θout.dωout, (2.10)

Φin (~x, dA, ωin, dωin) = Lin (~x, ωin) .dA. cos θin.dωin, (2.11)

Φout (~x, dA, ωout, dωout) = Lout (~x, ωout) .dA. cos θout.dωout, (2.12)

substituting into equation (2.7) and dividing both sides by dA. cos θout.dωout we get:

Lout (~x, ωout) = Le (~x, ωout) +
∫

Ω
Lin (~x, ωin) . cos θin.

w (~x, ωin, ωout)
cos θout

.dωin. (2.13)

6

As radiance Lin (~x, ωin) is equal to the radiance Lout

(
~x′, ωin

)
if ~x′ is a surface point visible

from point ~x in direction −ωin, the equation can be rewritten in form:

Lout (~x, ωout) = Le (~x, ωout) +
∫

Ω
Lout (h (~x,−ωin) , ωin) . cos θin.

w (~x, ωin, ωout)
cos θout

.dωin, (2.14)

where h (~x,−ωin) is visibility function returning a point visible from point ~x in direction −ωin

(h (~x,−ωin) = ~x′).

De�ning bidirectional scattering distribution function (BSDF)

f (~x, ωin, ωout) =
w (~x, ωin, ωout)

cos θout
(2.15)

and substituting into (2.14), we obtain the rendering equation:

Lout (~x, ωout) = Le (~x, ωout) +
∫

Ω
Lout (h (~x,−ωin) , ωin) .f (~x, ωin, ωout) . cos θin.dωin (2.16)

2.2 3D model

Having established the mathematical model for light transfer description, it is essential to choose

a compatible representation of 3D scene elements. For instance, the representation of surface

geometry should be able to provide a surface normal for any point of the surface and the optical

material properties should be characterized by bidirectional scattering distribution function.

2.2.1 Geometry of surfaces

The most common representation of object surfaces is the polygon representation. Objects are

approximated by polygon meshes (e.g. triangle mesh). The triangle mesh approximation of

smoothly curved surfaces is called tessellation. Triangle meshes are very popular, as they reduce

many problems that emerge when surfaces are approximated by polygons, which have more than

three vertices. For instance, if a polygon has more than three vertices, than due to numerical

errors, vertices may end up not lying in one plane, even if in reality they do belong to the same

plane. This problem does not apply to triangles, as three vertices de�ne a unique plane.

Polygon surfaces are speci�ed with a set of vertex coordinates and associated attribute pa-

rameters. Usually, besides a vertex and a polygon-surface table for each object, additional infor-

mation such as surface normal orientation is stored (normals that are usually stored are normals

at triangle vertices, to avoid the discontinuity of normals at edges of neighboring triangles; the

normals at inside points are then linearly interpolated). The polygonal surface representation

allows conveniet texture mapping and conveniet de�nition of local material properties such as

transparency or re�ectivity.

A serious drawback of polygon representation is the �xed degree of approximation. The

number of triangles that represent a surface is �xed. When resolution is increased, the smoothness

of surface disappears.

Another possible way of representing three-dimensional objects presents constructive solid

geometry (CSG). Complex objects are created from primitive 3D objects using boolean set op-

7

erations (union, intersection, di�erence). Unary operations such as rotation, translation and

scaling may be applied to any surface. CSG objects may be represented by a tree structure,

where leaves represent object primitives and inner nodes store unary or binary operations. As

algorithms that compute surface normals for object primitives exist, it is also possible to deter-

mine the normals form composite objects. The same applies to computation of object and line

intersection.

2.2.2 Material properties

The ultimate objective of photorealistic virtual scene rendering is to capture the optical surface

material properties, such as color, mirror like re�ection or transparency. Optical properties of a

material depend on the microstructure of the surface. Usually microstructure is not included in

the object's geometry description, as it would be both memory consuming and computationally

expensive. Instead, optical properties (characterizing re�ection, refraction, etc.) are described

by material functions.

Two basic types of surfaces are di�use and specular surfaces. Surfaces that are rough or grainy

tend to scatter (re�ect or refract) light in all directions. The scattering of light equally into all

directions is the di�use scattering. As equal amount of light is radiated into each direction, these

surfaces appear equally bright from every viewing direction. Specular re�ection is typical for

shiny surfaces, such as metals. Most of the incident light is re�ected to a solid angle around the

angle of perfect re�ection. Di�erent kinds of surfaces are often represented as some combination

of these two extreme types (e.g. in Phong model).

Mathematically, surface optical properties are described as a probability of light scatter (e.g.

the transfer probability density function, BSDF). Di�erent approaches to the representation of

bidirectional scattering distribution function will be discussed in chapter 3.

2.2.3 Light sources

As light sources may be considered either objects that emit light energy (light bulb, sun) or

objects that re�ect light (walls). Later on, only self-emitting objects will be referred to as light

sources.

The simplest model of a light emitter is a point source. Point source has a zero size and emits

light radially to every direction. This type of source is used to model light sources that are small

in comparison to the objects of the scene (light bulb), or that are located far from the scene (sun).

Nearby sources of non-negligible sizes (long �uorescent light) are modeled by distributed light

sources. This model considers accumulated illumination e�ects of point-sources approximating

the surface of the source. Sky-light illumination model provides constant illumination at any

point and in any direction.

Light sources in a virtual scene are characterized by their location, size and direction and

intensity of emission (radiance Le).

8

2.3 Bidirectional scattering distribution function (BSDF)

BSDF function characterizes optical material properties. It provides mathematical description

of light-surface interaction. For every surface point ~x and every incomming direction ωin, BSDF

returns a value determining the portion of light energy dLout (~x, ωout), that is scattered into

outgoing direction ωout:

f (~x, ωin, ωout) =
dLout (~x, ωout)

Lin (~x, ωin) . cos θin.dωin
(2.17)

(Lin (~x, ωin)is the total incomming radiance in direction ωin, dωin is the solid angle around

ωin, θin is the angle between ωin and the surface normal at ~x.)

Again, BSDF is also dependent on the wavelength, but for simplicity, the wavelength argu-

ment is left out. In practice, BSDF functions are de�ned for the three representative wavelengths

of R, G, B.

BSDF must satisfy laws of physics in order to be of any use in photorealistic rendering.

Physically plausible BSDF's must satisfy the law of reciprocity and the energy conservation law.

Helmholtz reciprocity describes the symmetry property of BSDF:

f (~x, ωin, ωout) = f (~x, ωout, ωin) .BSDF ′s (2.18)

This symmetry property allows backward tracing of light in visibility ray-tracing algorithms

(e.g. Monte Carlo path tracing algorithm). From the reversed point of view, BSDF determines

the probability that the light, which is re�ected in direction ωout came from direction ωin.

Energy conservation law states, that the amount of re�ected energy cannot be higher than

the amount of incoming energy. More precisely, the ratio of the total re�ected energy and

the incoming energy cannot be greater than 1. Equivalently, the probability of re�ection to any

direction cannot be greater than 1. These properties are de�ned as albedo (or total hemisphirical

re�ectivity) :

a (~x, ωin) = Pr{ photon is re�ected | coming form ωin} =
∫

ΩH

f (~x, ωin, ωout) . cos θout.dωout ≤ 1.

(2.19)

2.4 Monte Carlo path tracing algorithm

The aim of Monte Carlo path tracing algorithm is to solve the rendering equation:

Lout (~x, ωout) = Le (~x, ωout) +
∫

Ω
Lout (h (~x,−ωin) , ωin) .f (~x, ωin, ωout) . cos θin.dωin (2.20)

A more compact way of representing the rendering equation is the operator form:

Lout = Le + K ◦ Lout. (2.21)

9

This operator equation, just like the rendering equation may be solved by iteration:

L0
out = Le

L1
out = Le + K ◦ L0

out = Le + K ◦ Le

L2
out = Le + K ◦ L1

out = Le + K ◦ (Le + K ◦ Le) = Le + K ◦ Le + K2 ◦ Le

.......

Ln
out =

n∑
j=0

Kj ◦ Le, (2.22)

where K0 = I, there I is the identity operator. In case of in�nite sum, the closed form is:

Lout =
∞∑

j=0

K ◦ Le = (I − K)−1 ◦ Le, (2.23)

presenting the solution to the rendering equation.

Figure 2.2: Light path

Relating the mathematical notation to the real world, the above formula describes journey

of light from a light source to a measuring device. Kn ◦Le describes the intensity of light on the

(n + 1)st segment of the light path:

Lout (~xn, ~xn+1) = Kn ◦ Le = (2.24)

=
∫

Ω
...

∫
Ω

Le (~x0, ~x1) .f (~x1, ~x0, ~x2) ...f (~xn, ~xn−1, ~xn+1) . cos θ0... cos θn−1.dω0...dωn−1.

Thus the overall radiance leaving ~x in direction ωout can be calculated as the sum of integrals:

Lout (~x, ωout) = Le +
∫

Ω
Le (h (~x,−ωin) , ωin) .f (~x, ωin, ωout) . cos θin.dωin+

+
∫

Ω

∫
Ω

Le () .f () .f () . cos () . cos () .dω.dω +

.... +
∫

Ω
...

∫
Ω

Le () .f ()f () . cos () cos () .dω....dω + (2.25)

10

It is not possible to give an exact result of the rendering equation, due to the integration

over entire illumination sphere and the in�nite recurrence. Therefore, di�erent kinds of simpli�-

cation were presented and algorithms solving the simpli�ed versions of rendering equation were

developed. The Monte Carlo path tracing algorithm is based on the Monte Carlo integration �

approximation of integral.

Path tracing is a Markov chain random walk technique for solving the rendering equation. For

each pixel, the incoming radiance is estimated by backward tracking of rays. First, visible surface

point is found as the intersection of a line de�ned by the position of the eye and the position of

the pixel, and an object from 3D scene. To estimate the radiance Lout (~x, ωout) radiated from

the visible surface point in the direction of the intersecting line ωout, the radiance contribution

of the most in�uential incoming directions is summed. More precisely, instead of summing up

the amount of light power re�ected in direction ωout from every incoming direction ωin, only the

most important incoming directions are chosen. For each chosen important incoming direction

ωin the incoming radiance is calculated as the outgoing radiance of a surface point ~x′ in direction

ωin, such that ~x′ = h (~x,−ωin). Again, the outgoing radiance Lout

(
~x′, ωin

)
is the sum of the

most in�uential incoming radiances for point ~x′ and direction ωin. This is recursively repeated

until a light source is hit, or until the maximum number of steps is reached.

The determination of important incoming directions is done according to the bidirectional

scattering distribution function (BSDF), which determines the probability, that radiance re�ected

at a surface point ~x into direction ωout, came from direction ωin (the reciprocal property of

BSDF).

11

Chapter 3

Re�ection models

Optical material properties are physically precisely described by bidirectional scattering distri-

bution function. As it is not possible to use the exact de�nition of BSDF for rendering, computer

graphics uses practical re�ection models, which model some approximation of BSDF. Each model

of BSDF should be physically plausible, i.e. it should satisfy the reciprocity property and the

law of energy conservation.

3.1 Di�use re�ection model

Rough surfaces such as walls scatter incident light equally into all directions. This view and

position independent type of re�ection is called di�use re�ection. If the re�ection is independent

of viewing (outgoing) direction, then thanks to reciprocal property of BSDF, it is also independent

of the incoming direction of light. The fractional amount of light di�usely re�ected can be for

each surface represented by di�use-re�ection coe�cient, or di�use re�ectivity:

f (~x, ωin, ωout) = kdi�use. (3.1)

In order to be physically plausible, the law of energy conservation must be obeyed. Thus the

albedo has to be less than 1:

a (~x,ωin) =
∫

ΩH

kdi�use. cos θout.dωout = (3.2)

=
∫ 2π

φ=0

∫ π
2

θ=0
kdi�use. cos θout. sin θout.dθout.dφout = kd.π ≤ 1

and so:

kdi�use ≤ 1
π

. (3.3)

3.2 Ideal re�ection model

Ideal mirror-like re�ection satis�es the re�ection law of geometric optics � the angle of re�ection

θout is equal to the incoming angle θin, and the re�ected beam stays in the same plane. Light

is re�ected only in the direction of ideal re�ection. Thus BSDF can be de�ned as a Dirac-delta

12

function:

f (~x, ωin, ωout) = kideal (θin)
δ (ωideal − ωout)

cos θin
. (3.4)

The albedo ideal mirror-like re�ection is:

a (~x, ωin) =
∫

ΩH

kideal (θin)
δ (ωideal − ωout)

cos θin
. cos θout.dωout = kideal (θin) ≤ 1,

thus the value kideal (θin) cannot be greater than 1.

3.3 Phong specular re�ection model

Shiny objects, which are not ideal re�ectors, re�ect most of the light into a solid angle around

the direction of ideal re�ection. Bidirectional scattering distribution function in Phong modeled

is de�ned as:

f (~x, ωin, ωout) = kspecular
cosn Φ
cos θin

, (3.5)

where kspecular is the specular-re�ection coe�cient and Φ is the angle between the angle

of viewing direction ωout and the angle of ideal re�ection. However, this model violates the

reciprocal property of BSDF, therefore following reciprocal model is preferred by photorealistic

algorithms:

f (~x, ωin, ωout) = kspecular. cosn Φ. (3.6)

To satisfy the energy conservation law, the following restriction for the specular-re�ection

coe�cient kspecular must not be violated:

kspecular ≤
n + 2
2π

. (3.7)

Figure 3.1: Di�use re�ection, ideal re�ection, specular re�ection

3.4 Combined Phong re�ection model

Phong model was the �rst re�ection model developed in computer graphics and is still most

commonly used. It divides re�ectivity into a di�use and a specular component. Bidirectional

scattering distribution function is de�ned as:

f (~x, ωin, ωout) = fd (~x, ωin, ωout) + fs (~x, ωin, ωout) = kdi�use + kspecular cosn Φ,

13

where kdi�use is the fraction of energy re�ected di�usely, kspecular the fraction re�ected

specularly, and Φ is the angle between direction of ideal re�ection and viewing direction ωout.

3.5 Physical microfacet model

In the physical model, surface roughness is modeled by randomly scattered and oriented micro-

facets. Each microfacet is a perfect mirror re�ector. The scattered light can be again divided

into di�use and specular component. The di�use component is simulated by multiple re�ections

on the microfacets (as it is thought to be in reality), the specular re�ection is produced by direct

re�ection from a microfacet. This model gives very good results � high quality of rendered

pictures, but computationally it is very expensive.

3.6 Data interpolation

Data interpolation model is a general model that can be used for any type of light scatter.

Exact values of BSDF are measured for representative incoming and outgoing directions, and

representative wavelengths, using a spectrometer. Values for desired incoming and outgoing

direction are calculated by interpolation. As interpolation is not a time-consuming operation,

desired values of BSDF can be calculated quickly. The disadvantage of this solution is the high

memory demand.

14

Chapter 4

Importance sampling

Importance sampling of directions plays a signi�cant role in the Monte Carlo path tracing algo-

rithm. In the estimation of outgoing radiance Lout (~x, ωout) form point ~x in direction ωout, only

the contribution of radiance from most in�uential incoming directions is taken into account. The

most important incoming directions are generated according to bidirectional scattering distribu-

tion function (e.g. in case of specular re�ection, most of the generated directions should belong

to a close neighborhood of the ideal re�ection direction).

Ideal sampling should follow probability distribution function de�ned as:

pdf (ωout) =
f (~x, ωout, ωin) . cos θout∫

ΩH
f (~x,ωout,ωin) . cos θout.dωout

,

in practice though, approximations of pdf function are used instead.

4.1 Modi�ed Phong model

In this section, a method of sampling based on [LW94] is described.

The modi�ed Phong model de�nes BSDF as:

f (~x,ωin,ωout) = kd
1
π

+ ks
n + 2
2π

cosn α, (4.1)

where kd is di�use re�ectivity coe�cient, ks specular re�ectivity coe�cient, n is specular

exponent and α is the angle between ideal re�ection direction and outgoing direction.

This model is physically plausible. Reciprocity property is obviously satis�ed, as α remains

the same (α = |ωin − ωout|), and kd, ks and n are constants.

Energy conservation law is satis�ed if kd + ks ≤ 1:

a (~x, ωin) =
∫

ΩH

(
kd

1
π

+ ks
n + 2
2π

cosn α

)
cos θout.dωout = (4.2)

= kd + ks
n + 2
2π

∫
ΩH

cosn α. cos θout.dωout = ad (~x, ωin) + as (~x, ωin) ≤ 1,

the maximum of
∫
ΩH

cosn α. cos θout.dωout is
2π

n+2 , and so kd + ks ≤ 1.

15

As the model is given in closed form, we are able to evaluate BSDF for every point, incoming

and outgoing direction, what is important for sampling.

Sampling of incoming directions ωin for outgoing direction ωout is done as follows: �rst is

decided, whether a di�use direction or specular direction is sampled. A stochastic variable ξ is

uniformly sampled over the interval [0, 1]. Then if:

• 0 ≤ ξ < ad (~x, ωout): di�use sample is sampled according to di�use distribution,

• ad (~x, ωout) ≤ ξ < ad (~x, ωout) + as (~x, ωout): specular sample is sampled according to

specular distribution,

• else: another ξis sampled.

The value of ad (~x, ωout) is kd. The value of as (~x, ωout) is approximated as ks
n+2
n+1 . cos θout.

Di�use samples are sampled according to cosine distribution:

pdf (ωout) =
1
π

. cos θout. (4.3)

Specular samples are sampled according to distribution:

pdf (ωout) =
n + 1
2π

cosn α. (4.4)

Two stochastic variables ξ1 and ξ2 are sampled uniformly over the interval [0, 1]. Angles θin

and φin of the sampled incoming direction are determined as:

For di�use distribution pdf (ωout) = 1
π . cos θout:

(θin, φin) =
(
arccos

√
ξ1, 2πξ2

)
. (4.5)

If direction is described with vector coordinates (x, y, z), then:

(x, y, z) = (sin θin. cos φin, sin θin. sinφin, cos θin) =

=
(√

1 − ξ1cos (2πξ2) ,
√

1 − ξ1sin (2πξ2) ,
√

ξ1

)
. (4.6)

Sampling the specular distribution pdf (ωout) = n+1
2π cosn α, at �rst (α, αφ) is determined:

(α, αφ) =
(

arccos ξ
1

n+1

1 , arccos ξ
1

n+1

2

)
, (4.7)

then (θin, φin) = (θout ± α, φout + π ± αφ).
In terms of direction vector coordinates (x, y, z):

(x, y, z) = (sin θin. cos φin, sin θin. sinφin, cos θin) . (4.8)

16

Chapter 5

Uniform material interface

The variety of material descriptions brings up the problem of compatibility. A material, which is

described by constants kd, ks and n, as it is in Phong model, does not have to �t with a rendering

program designed for microfacet model. Often it would be appreciated, if compatibility was

possible. One would be able to render scenes, where materials are described by di�erent BSDF

models, with a single program. Also, the quality of rendering could be easily regulated with the

choice of material description, while using the same rendering program.

Let's consider the Monte Carlo path tracing algorithm. In the determination of outgoing

radiance Lout (~x, ωout), directions of incoming radiance are sampled according to BSDF. Since

the only role of a material is to provide BSDF value f (~x, ωin, ωout) and to specify optimal

directions for path tracing, it would be enough, if the direction generation was implemented by

material itself, the generator would be presented as an interface, and the re�ectance model would

be hidden for the rest of the program.

5.1 Object serialization

Objects that are created during an application exist only when the application is running. Object

serialization allows objects created during the runtime of a program to be stored and reused again.

Serialized objects, �attened to a stream of bites, can be sent via networks and used by di�erent

computers, even running a di�erent operating system. There is no problem in reusing serialized

objects even if the code of the class has been changed in the meantime.

Serialization proposes bene�ts for class hierarchies as well. Let's say there is an abstract

class animal, which has abstract methods draw() and sound(). Then, classes sheep, gold�sh

and marmot extend this class, and implement methods draw() and sound() each in it's own

way, and maybe de�ne new methods. During an application, object instances of sheep, gold�sh

and marmot are created and serialized. In another application, these objects may instance the

abstract class animal, and still, each of the objects will be drawn in a correct way. Furthermore,

let's say a buddy in Africa creates new extension of animal class, e.g. gira�e, implements draw()

and sound(), creates an object instance of gira�e, serializes it, and sends it to his friend from

Slovakia. Then the Slovak friend may listen to the sound of gira�e, even though he does not

have the source code of gira�e class.

17

5.2 Implementation

Based on principles that were mentioned earlier in this thesis, uniform material interface was

proposed and partially implemented. The interface was designed as follows.

Abstract class Material presents the uniform interface for every BSDF representation. This

class contains three abstract methods: a method that returns BSDF value for a given point,

incoming direction and outgoing direction, a method that generates directions according to BSDF

and returns direction de�ned by two angles θ and φ, and a method that generates vectors

according to BSDF. For every BSDF representation, class that extends the abstract class Material

can be implemented. Every extension of abstract class Material implements methods BSDF,

Generate_direction and Generate_vector according to the chosen BSDF representation. The

speci�c design of methods is:

• public double BSDF(Point x, Direction in, Direction out) � takes vector coordinates of a

point, incoming direction and outgoing direction as arguments, returns value f (~x, ωin, ωout)

• public Direction Generate_direction(Point x, Direction out) � takes vector coordinates of

a point, outgoing direction as arguments, returns incoming direction generated according

to BSDF de�ned by angles θand φ

• public Vector Generate_vector(Point x, Vector out) � takes vector coordinates of a point,

vector coordinates of outgoing direction as arguments, returns vector coordinates of incom-

ing direction generated according to BSDF

Figure 5.1: Class hierarchy

Now it will be discussed, how the uniform material interface solves the problem of compat-

ibility. Let's consider the Monte Carlo path tracing algorithm. As was already stated above,

material properties play a role only in the determination of the direction of light path for back-

ward tracing, and in the calculation of contribution of incident radiance. Thus, the interface

provided by abstract class Material is fully su�cient. If Monte Carlo algorithm is implemented

using this simple interface, compatibility of material models is guaranteed.

Say one person implements class Phong_material that extends abstract class Material. This

implementation is bound with Phong re�ection model, material optical properties are described

by constants kd , ks and n. He creates an instance of Phong_material class and serializes it.

18

An instance of Phong_material is a concrete material type, let's say silver. Another person uses

data interpolation material model and implements DI_material also extending abstract class

Material. As an object instance of DI_material class, cotton cloth material is de�ned and again

serialized. Now both of them can render a scene containing silver coins on cotton table cloth,

even though they do not know, how the other material was implemented.

Based on the Modi�ed Phong model and the work of [LW94], class Phong_material, extend-

ing abstract class Material, was implemented in Java. The key ideas essential for the imple-

mentation are described in chapter 4. The abstract class Material was implemented in Java as

well.

19

Chapter 6

Conclusion

In this thesis, one of the important parameters of rendering equation � the bidirectional scatter-

ing distribution function (BSDF) has been studied. Di�erent possible ways of BSDF representa-

tion have been described and a method of unifying them, based on abstract BSDF representation,

designed for Monte Carlo path tracing algorithm, was proposed. The abstraction was based on

the reduction of the concept of material to a simple interface. This interface was implemented as

an abstract class which could be later on used as a plugin for rendering programs. Basic ideas of

implementing a subclass extension of the abstract material class, using Modi�ed Phong model,

were described, and this subclass was implemented.

One possible direction of future work could de�nitely be the implementation of the numerous

BSDF representations, and so �nally the essence of the presented ideas would be fully demon-

strated. Another possibility could be to adjust the abstraction to other rendering algorithms.

20

List of Figures

2.1 Solid angle ω de�ned by angles θ and φ . 4

2.2 Light path . 10

3.1 Di�use re�ection, ideal re�ection, specular re�ection 13

5.1 Class hierarchy . 18

21

Bibliography

[LW94] Lafortune, E. P., Willems, Y. D., Using the Modi�ed Phong Re�ectance Model for

Physically Based Rendering, Report CW 197, Department of Computing Science, K.

U. Leuven, 1994.

[HD97] Hearn, D., Baker, M. P., Computer Graphics - C Version, 2nd ed., Prentice Hall, Inc.,

New Jersey, 1997.

[WW92] Watt, A., Watt, M., Advanced Animation and Rendering Techniques - Theory and

Practice, ACM Press, 1992.

[P03] Plachetka, T., Event-Driven Message Passing and Parallel Simulation of Global Illu-

mination, University of Paderborn, 2003.

[L00] László, S. K., Monte-Carlo Methods in Global Illumination, Institute of Computer

Graphics, Vienna University of Technology, 2000.

[JAVA] http://java.sun.com/developer/technicalArticles/Programming/serialization

22

Abstrakt

Tvorba realisticky vyzerajúcich scén je nepochybne jedným z hlavných cieľov počítačovej

grafiky. Nielen vo filmovej produkcii či počítačových hrách sa kladú vyššie a vyššie nároky

na kvalitu vytvorených obrázkov. Počítačové simulátory sa využívajú na tréning pilotov,

študentov medicíny, či pri vojenskom výcviku. Prirodzene, čím lepšie dokáže simulátor

navodiť dojem reality, tým kvalitnejší je tréning. Kľúčovým aspektom pri syntéze

realistických scén je simulácia distribúcie svetla – simulácia interakcie svetla a objektov

v scéne.

 Realistická simulácia osvetlenia virtuálnej scény je matematicky popísaná renderovacou

rovnicou. Jedným z parametrov tejto rovnice je rozptylová funkcia – bidirectional scattering

distribution function (BSDF). Táto funkcia popisuje optické povrchové vlastnosti a tak

definuje rôzne typy materiálov.

 V počítačovej grafike sa používa niekoľko rôznych reprezentácií funkcie BSDF – rôzne

reflekčné modely (Phongov reflekčný model a jeho modifikácie, fyzikálny mikroplôškový

model, interpolačný model, a.i.). Tieto modely však nie sú navzájom kompatibilné. Nie je

možné automaticky konvertovať jednu reprezentáciu na druhú. Problémom je taktiež úzka

väzba medzi reflekčným modelom a renderovacím programom. Program navrhnutý pre

jednu reprezentáciu BSDF nemusí akceptovať materiál popísaný inou reprezentáciou. Tak

isto, zmeny v reprezentácii BSDF si vyžiadajú zmeny v renderovacom programe a naopak.

 Hlavným cieľom tejto práce je navrhnúť abstraktnú reprezentáciu funkcie BSDF, ktorá

by obišla problém nekompatibility pomocou jednoduchého jednotného rozhrania. Vďaka

tomuto rozhraniu by sa reprezentácia BSDF stala pre zvyšok renderovacieho programu

neviditeľná. Renderer by sa tým pádom stal nezávislý od materiálového popisu, čo by

umožnilo robiť zmeny v programe, či popise materiálu nezávisle (pri rýchlosti napredovania

počítačovej grafiky je táto nezávislosť vítaná).

