
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Modelling of genomic annotations using
discrete phase-type distributions

Bachelor Thesis

2024
Hana Derková





Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Modelling of genomic annotations using
discrete phase-type distributions

Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: Mgr. Askar Gafurov, PhD.

Bratislava, 2024
Hana Derková





Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Hana Derková
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Modelling of genomic annotations using discrete phase-type distributions
Modelovanie genomických anotácií pomocou diskrétnych distribúcií fázového
typu

Anotácia: Genomické anotácie predstavujú jednotný spôsob kódovania informácií
o častiach genómu. Príklady zahŕňajú umiestnenie génov, exónov, úsekov
s nízkou zložitosťou, väzobne miesta proteínov, regulačné regióny, atď.
Anotácia je zakódovaná ako sada intervalov pozdĺž genómu. Dostupnosť
takýchto dát sa rýchlo zvýšila v posledných rokoch. Množstvo týchto dát
vyvoláva potrebu efektívneho, ale zároveň verného modelovania.

Diskrétne distribúcie fázového typu vznikajú ako distribúcia absorpčného času
Markovovho reťazca. Poskytujú tým prirodzený spôsob modelovania dĺžok
intervalov a medzier v anotácii. Diskrétne distribúcie fázového typu sú schopné
aproximovať ľubovoľné diskrétne distribúcie a taktiež umožňujú výpočtovo
efektívne spracovanie vďaka vlastnostiam Markovových reťazcov.

Cieľ: Hlavným cieľom tejto práce je vytvoriť softvérový nástroj umožňujúci
modelovanie dĺžok skutočných genomických anotácii pomocou diskrétnych
distribúcií fázového typu. Vedľajším cieľom je aplikovať tento nástroj na rôzne
genomické anotácie vo verejných databázach..

Vedúci: Mgr. Askar Gafurov, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 30.10.2023

Dátum schválenia: 30.10.2023 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce



Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Hana Derková
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Modelling of genomic annotations using discrete phase-type distributions

Annotation: Genomic annotations are a unified way to encode information about parts of
a genome. Examples include the location of genes, exons, low-complexity
regions, protein binding sites, promoter regions, etc. An annotation is encoded
as a set of intervals alongside the genome. The availability of such data has
increased rapidly over the recent years. The amount of the data brings the
necessity of an efficient yet faithful way of modelling of them.

Discrete phase-type distributions arise as a distribution of absorbing time of
a Markov chain. This provides a natural way to model the interval and gap
lengths in an annotation. The discrete phase-type distributions are able to
approximate arbitrary discrete distributions, and also admit computationally
efficient processing of them, thanks to the properties of Markov chains.

Aim: The primary goal of this thesis is to create a software tool allowing to fit discrete
phase-type distributions to real genomic annotations. The secondary goal is to
apply that tool to various genomic annotations in public databases.

Supervisor: Mgr. Askar Gafurov, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 30.10.2023

Approved: 30.10.2023 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor



Acknowledgments: Firstly, I would like to thank my supervisor Askar
Gafurov for endless patience, guidance, advice, and help. Then I thank my
whole family and friends for helping me get through. My special thanks
belongs to my mom for technical and emotional support, my sister Katka for
the food catering and, although sometimes questionable, mental support.
And I can’t forget my grandma, to whom I have promised to dedicate at
least 3 pages as a gift. Then my running buddy Jitka for suffering through
both running and my GitHub incompetence. And lastly, to Natali for firmly
believing that I can do this, for regularly checking up on me, and for the
emotional support.

v



Abstrakt

Genomická anotácia kóduje významné časti genómu ako súbory intervalov. Signifikantný
prekryv týchto intervalov môže naznačovať biologické súvislosti. Táto práca stavia na
predchádzajúcej metóde, ktorá používa dvojstavové Markovove reťazce na výpočet p-
hodnôt pre tieto prekrytia. Dvojstavové Markovove reťazce, však generujú geometrické
rozdelenie dĺžok intervalov aj medzier. Využitím diskrétnych distribúcií fázového typu,
ktoré môžu aproximovať ľubovoľné diskrétne distribúcie, odstránime toto obmedze-
nie. V práci hodnotíme rôzne architektúry Markovových reťazcov z hľadiska výkonu
a teoretickej sily. Súčasne vyvíjame softvérový nástroj na modelovanie reálnych ge-
nomických anotácií. Nakoniec začleníme absorpčné Markovove reťazce do pôvodného
softvéru na výpočet p-hodnôt pre prekrývajúce sa genomické anotácie.

Kľúčové slová: Markovovský reťazec, absorbčný Markovovský reťazec, diskrétna
distribúcia fázového typu, genomická anotácia

vi



Abstract

Genomic annotation encodes significant parts of the genome as sets of intervals. Signif-
icant overlap of these intervals, can suggest biological connections. This thesis builds
upon a previous method that uses two-state Markov chains to compute p-values for
these overlaps. However, two-state Markov chain generates geometric a distribution of
interval and gap lengths. By employing discrete phase-type distributions, which can
approximate arbitrary discrete distributions, we mitigate these limitations. We eval-
uate various Markov chain architectures for performance and expressive power. We
develop a software tool to fit these distributions to real genomic data. Finally, we
incorporate absorbing Markov chains into the original tool for computing the p-values
for overlapping genome annotations.

Keywords: Markov chain, absorbing Markov chain, discrete phase-type dis-
tribution, genomic annotation

vii



viii



Contents

Introduction 1

1 Preliminaries 3
1.1 Biological context and motivation . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Genomic annotations . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Statistical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Null hypotheses for the colocalization analysis . . . . . . . . . . 5

1.3 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Absorbing Markov chain. Mean and variance of the absorption

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Absorption time as a data distribution in MCDP model . . . . . . . . . 9

1.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Goal - minimizing cross entropy . . . . . . . . . . . . . . . . . . 11
1.4.3 Softmax function . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.4 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.5 L-BFGS-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Basic Markov chains architectures 15
2.1 Architecture selection criteria . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Synthetic data challenges: Architecture testing . . . . . . . . . . . . . . 16
2.3 Self-loop architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Performance of the self-loop architecture . . . . . . . . . . . . . 18
2.4 Early-escape architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Performance of the early-escape architecture . . . . . . . . . . . 21
2.5 Combined architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Performance of the combined architecture . . . . . . . . . . . . 24
2.5.2 Improvement of the optimisation by fitting the mean first . . . . 27

3 Advanced Markov chains architectures 31
3.1 Fully connected architecture . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.1.1 Performance evaluation of fully connected architecture . . . . . 32
3.2 Pruned architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Performance evaluation of the pruned architecture . . . . . . . . 35
3.3 k-jumps architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Performance evaluation of the k-jumps architecture . . . . . . . 39

4 Real data modeling 43
4.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Intervals modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Extending MCDP algorithm 51
5.1 Description of the algorithm and its extension . . . . . . . . . . . . . . 51

5.1.1 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Implementation details 57
6.1 General used tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 General setup of the fitting and evaluation . . . . . . . . . . . . . . . . 57

6.2.1 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.2 Optimisation algorithm . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.4 Sub-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Conclusion 61

Appendix A 67

x



List of Figures

1.1 Example of a genome annotations . . . . . . . . . . . . . . . . . . . . . 4
1.2 Two state Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Three state Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Visualization of the concatenation of two AMCs . . . . . . . . . . . . . 10

2.1 Synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The self-loop architecture . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Performance curve for the self-loop architecture. . . . . . . . . . . . . . 19
2.4 Best training for self-loop architecture . . . . . . . . . . . . . . . . . . 20
2.5 The early-escape architecture . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Performance curve for early-escape architecture . . . . . . . . . . . . . 22
2.7 Best training for Early-escape architecture . . . . . . . . . . . . . . . . 23
2.8 Comparison of best training between 30 and 50 states . . . . . . . . . . 23
2.9 The combined architecture . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Performance curve for the combined architecture . . . . . . . . . . . . . 25
2.11 Best training for combined architecture . . . . . . . . . . . . . . . . . . 26
2.12 Comparative Impact of a Single Parameter on Cross-Entropy and Mean

Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.13 Comparison of target distribution and initial phase-type distributions . 28
2.14 Performance curve for combined architecture with mean shifting . . . . 28
2.15 Best training for combined architecture with mean shifting . . . . . . . 29

3.1 The fully connected architecture of 4 states . . . . . . . . . . . . . . . . 32
3.2 Performance curve for the fully connected architecture . . . . . . . . . 33
3.3 Best training for fully connected architecture . . . . . . . . . . . . . . . 34
3.4 Time comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Visualization of learned transition probabilities . . . . . . . . . . . . . . 36
3.6 Density reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Effect of pruning on cross-entropy . . . . . . . . . . . . . . . . . . . . . 37
3.8 Effect of pruning on phase-type distribution . . . . . . . . . . . . . . . 38
3.9 K-jumps architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



3.10 Performance curve for k-jumps architecture . . . . . . . . . . . . . . . . 40
3.11 Best training for k-jumps architecture . . . . . . . . . . . . . . . . . . . 41

4.1 Histograms of interval lengths . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Performance curve for each dataset . . . . . . . . . . . . . . . . . . . . 46
4.3 Best training for each dataset of interval lengths . . . . . . . . . . . . . 47
4.4 Histograms of annotation gaps . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Performance curve for each dataset of annotation gaps . . . . . . . . . 49
4.6 Best training for each dataset of annotations gaps . . . . . . . . . . . . 50

5.1 Visualization of the concatenation of two AMCs . . . . . . . . . . . . . 52
5.2 No hit for j-th interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 P-values for Gains and hirt queries . . . . . . . . . . . . . . . . . . . . 55

xii



List of Tables

2.1 The summary of the impacts of parameter selection. . . . . . . . . . . . 16

4.1 Characteristics of Datasets of interval lengths . . . . . . . . . . . . . . 44
4.2 Characteristic of Datasets of interval gaps . . . . . . . . . . . . . . . . 48

xiii



xiv



Introduction

Genomic annotation provides a unified way to encode significant parts of a genome
alongside the genome sequence. Mathematically, annotation is represented as a set
of intervals. If two annotations resemble each other, it may indicate an underlying
biological connection and suggest further research focus.

We need a statistical measure to determine whether observed annotation overlaps
occurred by pure chance or truly indicate a biological connection. Such a measure is
the p-value under a suitable null hypothesis.

This thesis builds upon the article Markov chains improve the significance compu-
tation of overlapping genome annotations, where the authors propose a null hypothesis
that one of the annotations is generated by a two-state Markov chain. The proper-
ties of Markov chains then allow for the analytical computation of the corresponding
p-value. However, a two-state Markov chain generates a geometric distribution of in-
terval and gap lengths, which does not accurately model some annotations, thereby
oversimplifying them.

The discrete phase-type distribution represents the distribution of absorption times
of an absorbing Markov chain. Discrete phase-type distributions can approximate
arbitrary discrete distributions, providing a natural way to model the interval and gap
lengths in an annotation.

The goal of this thesis is to develop a software tool to fit discrete phase-type dis-
tributions to real genomic annotations.

Firstly, in chapter 1 we introduce terminology and mathematical background. In
chapters 2 and 3 we examine different Markov chain architectures to determine which
is most suitable for this task. We evaluate their performance and expressive power
and present techniques we developed to make the training process more effective. We
then show the results of fitting real genomic data in chapter 4. Lastly, in chapter 5 we
incorporate our phase-type distribution into the original tool called MCDP from the
Markov chains improve the significance computation of overlapping genome annotations
article. Chapter 6 contains implementation details.

1



2 Introduction



Chapter 1

Preliminaries

In this chapter we define the concept of genomic annotation and explain the need for
software tool that can model them accurately. Given the central importance role of
Markov chains in our project, we will properly define terms, Markov chain, absorbing
Markov chain, discrete phase-type distributions, and discuss its properties. Addition-
ally, we will offer an overview of existing research concerning the modeling of genomic
annotations and statistical testing in this domain.

1.1 Biological context and motivation

1.1.1 Basic Terminology

Firstly, we establish the basic concepts and terminology essential for understanding
genomic annotation problem. All the following definitions are from [28, 3].

Deoxyribonucleic acid, or DNA, is an organic molecule responsible for encoding
genetic information. The molecule consists of two strands that form a double helix.
Each strand consists of sugar (deoxyribose) and phosphate groups together forming
a backbone. Attached along the backbone are nucleobases, nucleic acids: adenine (A),
guanine (G), cytosine (C), and thymine (T). The sequence of nucleobases encodes
genetic information, i.e. protein or RNA sequences.

Chromosomes are thread-like structures made of single molecule of DNA and asso-
ciated proteins. The chromosomes reside in the nucleus of the cell and act as carriers
of the genetic information encoded in DNA.

A gene is a distinct sequence of nucleobases within a DNA molecule that serves
as the basic unit of inheritance, since they specify physical or biological traits. Genes
contain the instructions for synthesizing specific proteins or protein segments. Approx-
imately 20, 000 protein-coding genes are present in the human genome.

A genome is the complete set of genetic material present in an organism. It includes
all of the organism’s genes, as well as non-coding sequences of DNA. The exact sequence

3



4 CHAPTER 1. PRELIMINARIES

Figure 1.1: Example of a genome annotations (source: UCSC Genome Browser, http:
//genome.ucsc.edu)

of bases, genetic code, is unique for each organism. Determining this exact order of
bases is called sequencing.

1.1.2 Genomic annotations

A genomic annotation is a unified way to represent parts of a genome, sharing particular
property or function. As examples we can use low-complexity regions, protein binding
sites, gene locations or coding regions.

Annotations are encoded as intervals along genome sequence (see Figure 1.1). From
the mathematical point of view, an annotation can be represented either by a set of non-
overlapping intervals or a sequence of 0 and 1 indicating on which genomic positions
the annotation occurs.

The degree of overlap between two annotations could indicate underlying biological
connection and therefore could suggest further biological research focus. The deter-
mination of the significance of such overlaps is sometimes referred to as colocalization
analysis. For example, if one annotation contains nucleosomes with H3K4Me3 histone
modifications, another contains known promoter regions, we can count the overlap be-
tween these regions. A significant number of overlapping regions implies a potential
role for H3K4Me3 modifications in the gene transcription regulation, which has been
indeed proven in [11].

However, on a scale of the human genome, some overlaps are due to appear simply
by random chance. Therefore a statistical model that determines the significance of
observed overlap is needed.

http://genome.ucsc.edu
http://genome.ucsc.edu


1.2. STATISTICAL TESTING 5

1.2 Statistical testing

There are many ways to create a probabilistic model in order to assign statistical
significance of the observed overlaps. Given two annotations reference and query, we
can either measure the overlap statistics, which is counting the number of intervals
in reference that overlap with intervals in query, the other approach is the the shared
bases statistics, counting the number of bases both reference and the query cover [8].

Since certain overlaps or shared bases are bound to occur purely by random chance,
we need a metric to determine if the observed overlap is of any statistical significance.
Such metric is a P-value under a suitable null hypothesis.

The null hypothesis H0 proposes that there’s no underlying relationship between
query and reference annotations. If the null hypothesis holds true, any observed over-
laps did occur by random chance and do not pose a statistical significance [14]. The
P-value is the probability of observing the number of overlaps, at least as extreme as
the observed value under the null hypothesis.

There are two general ways to compute a P-value. The first is an analytical ap-
proach, where the P-value is computed using a formula. The second is a sampling
approach, where we randomly sample annotations from the distribution prescribed by
the chosen null hypothesis and estimate the P-value by counting the number of samples
with a test statistic more extreme than the observed one.

1.2.1 Null hypotheses for the colocalization analysis

The choice of the null hypothesis is not inherently clear, and different options lead
to different computational challenges, impacting both time and memory consumption.
Essentially, we need to define what constitutes a “random” annotation. This requires
creating a random generator for query annotations where the generated annotations
are similar to the original input query annotation but still randomized.

Permutation test

One popular way to define a null hypothesis is to assume that the query annotation is
chosen uniformly at random from the set of all possible rearrangements of the intervals
in the input query annotation. This approach is referred to as permutation test and it
has been implemented in [9] and [13]. It has been shown in [7] that the computation
of P-value for common test statistics under this null hypothesis is NP-hard.

In [9] authors implement R/Bioconductor package a permutation test framework
designed to work with genome regions.

In [13] authors randomly place intervals alongside a given sequence accessible for
the simulation. The overlap of each simulation is recorded and the average from each



6 CHAPTER 1. PRELIMINARIES

0 1p

1− p

q

1− q

Figure 1.2: Two state Markov chain

simulation serves as an empirical P-value.
Defining a null hypothesis against randomly permuted intervals yields accurate

outcomes only within a restricted space of all potential random samples. In human-
sized genomes, naive sampling methods are computationally inefficient [25].

Null hypothesis based on Markov chains - MCDP

In articles [8] and [7], the authors proposed a novel null hypothesis based on Markov
chains (see section 1.3 for detailed definitions). This new formulation admits an efficient
algorithm to compute the P-value and also approximates the P-values obtained from
the often used permutation null hypothesis.

Consider a Markov chain with two states, labeled zero and one respectively (see
Figure 1.2). State 0 represents “outside” of the interval, state 1 represents “inside” of
the interval. Such a Markov chain would generate a sequence of zeros and ones, which
represents an annotation query (see subsection 1.1.2).

The transition weights of the Markov chain are chosen in such a manner that the
expected interval and gap lengths in a generated annotation match the corresponding
average lengths in the input annotation. This formulation allowed the authors to
propose an exact quadratic time algorithm for the computation of the P-value, which
was exploiting the properties of the Markov chains and the matrix representations. For
details of this algorithm see [7].

The Markov chain used in this null hypothesis forces the intervals and gaps in
a generated annotation to have the geometric distribution of lengths. However, some
real-life annotations don’t follow that distribution (see the datasets in Chapter 4 for
examples). Thus, the Markov chain null hypothesis does not always model the input
annotations faithfully.

In this thesis, our goal is to extend the Markov chain null hypothesis in a way which
will model the distribution of interval and gap lengths more closely to the input data.

1.3 Markov chains

In this section, we provide a concise summary of general properties of Markov chains
and absorbing Markov chains, which we will use in our work. This section can be



1.3. MARKOV CHAINS 7

skipped if the reader already has experience in that area. The material in this section
is based on [5, 29, 23].

Stochastic process is a sequence of random variables, where the sequence can be
interpreted as time steps [24].

Let I be a finite or countable set, where each i ∈ I is called a state, and I is called
the state-space. We consider a stochastic process:

{X(n), n = 0, 1, 2, . . .}

Suppose there is a fixed probability Pij independent of time such that

P (X(n+1) = i |X(n) = j,X(n−1) = i(n−1), . . . , X
(0) = i0) = Pij, n ≥ 0

where i, j, i0, i1, . . . , in−1 ∈ I. Then this is called a Markov chain process.
One can interpret the above probability as follows: the conditional distribution of

any future state X(n+1) given the past states X(0), X(1), . . . , X(n−1) and present state
X(n), is independent of the past states and depends on the present state only.

The probability Pij represents the probability that the process will make a transition
to state i given that currently the process is in state j. Clearly one has:

∞∑
i=0

Pij = 1

We call the matrix P containing the transition probabilities Pij the transition probability
matrix. There is one-to-one correspondence between transition matrices P and state
automata with states I and probability of transition between states on corresponding
edges. The steps of a corresponding automaton are often thought of as moments in
time. The initial state distribution π is the probability distribution of the Markov chain
at time 0. In this text we consider only the initial state distribution π = (1, 0, . . . , 0),
hence at time 0 our Markov chain “starts” in the first state.

We can model the probability of being in a particular state in a particular moment of
time simply by simulating our automaton, and transitioning from states with assigned
probability [5].

For a given Markov chain with n states I = {0, 1, . . . n − 1}, transition matrix P

and initial distribution π = (π0, . . . , πn−1), the distribution of X(k) is given by:

(P (X(k) = 0), P (X(k) = 1), . . . , P (X(k) = n− 1)) = πP k.

This definition was inspired by and the full proof by induction can be found in [29].
In other words we can compute the distribution of X(n) by matrix multiplication,
multiplying the initial vector π and matrix P n to the power of n.

P n can be computed using O(log n) matrix multiplications, using the multiplication
by square algorithm. In this method, we decompose n into the sum of powers of two,



8 CHAPTER 1. PRELIMINARIES

0 1

2

P00 P11

P22

P01

P02

P10

P12P20

P21

Figure 1.3: Three state Markov chain for transition matrix P

such that n = x1·21+x2·22+· · ·+xk·2k. Sub-products of P to the power of 21, 22, . . . , 2k,
are stored in memory and can be computed using a dynamic programming table.
Subsequently, the result matrix P n is computed by multiplying these sub-products.
Example of a state automaton in Figure 1.3 for state space I = {0, 1, 2} and transition
matrix:

P =

P00 P01 P02

P10 P11 P12

P20 P21 P22



1.3.1 Absorbing Markov chain. Mean and variance of the ab-

sorption time.

An absorbing state is a state from where the Markov chain cannot escape. State i ∈ I

is absorbing if : ∑
i ̸=j

pij = 0

States that are not absorbing are called transient states. Absorbing Markov chain
(AMC) is a Markov chain in which every state can reach an absorbing state. A dis-
crete random variable denoting the number of steps taken before reaching one of the
absorbing states is called the absorption time.

We are now interested in the mean value and the variance of the absorption time
for a given absorbing Markov chain. Those values can be computed efficiently using
the notion of a fundamental matrix of an absorbing Markov chain.

Consider an absorbing Markov chain with r absorbing and t transient states, tran-
sition matrix P and initial state distribution π.

We say that an absorbing Markov chain is in normal form, if the rows of transition
matrix P corresponding to the transient states appear sooner that the absorbing states.



1.4. ABSORPTION TIME AS A DATA DISTRIBUTION IN MCDP MODEL 9

Note that any absorbing Markov chain can be normalized by permuting the rows and
columns of the transition matrix and the initial state distribution vector. Transition
matrix P of an AMC in normal form can be written as the following block matrix:

P =

[
Q R

0r×t Ir

]
,

where Q ∈ Rt×t is the matrix of transition probabilities between transient states,
R ∈ Rt×r is the matrix representing transitions from the transient states to the ab-
sorbing states, 0r×t is a zero matrix of size r × t, and Ir is an identity matrix of size
r × t. Using the matrix Q, the fundamental matrix N of an absorbing Markov chain
in normal form is defined as the following geometric series:

N :=
∞∑
k=0

Qk ∗
= (I −Q)−1,

where I is an identity matrix of corresponding size. It can be shown that the equality
marked with an asterisk (∗) is always true, i.e. that geometric series always has a limit.
Element Ni,j of fundamental matrix N corresponds to the expected number of times
the process started at state i visits state j before the absorption.

Let’s denote the absorption time when starting in state i as Yi. Using the funda-
mental matrix, we can compute E[Yi] as a sum of the i-th row of the fundamental
matrix (since each step is a visit of a transient state). Let’s denote the column vector

of mean absorption times as e :=
(
E[Y1] E[Y2] . . . E[Yt]

)T
. We can then compute

it in matrix form as follows:

e = N · 1t,

where 1t is a column vector of size t with values 1 in each position.

The similarly defined vector v :=
(
V ar[Y1] V ar[Y2] . . . V ar[Yt]

)T
of the vari-

ance of the absorption time starting in state i can be computed as follows:

v = (2N − I) · e− e ◦ e,

where e◦e =
(
e21 e22 . . . e2n

)T
is the Hadamard product of vector e with itself [10, 19].

1.4 Absorption time as a data distribution

in MCDP model

The class of distributions arising from the absorption times in finite discrete absorbing
Markov chains are called discrete phase-type distributions (or DPT for short). The
simplest examples of distributions belonging to that class are geometric and negative



10 CHAPTER 1. PRELIMINARIES

0A

1

2

XA

AMC A

0B

4

5

XB

6

AMC B

Figure 1.4: Visualization of the concatenation of two AMCs. States 0A and 0B, being
initial states, and XA and XB being absorbing states, in AMC A and AMC B, re-
spectively. The absorbing transitions from states 1 and 2 have been redirected to 0B,
similarly for states 4, 5 and 6 in AMC B.

binomial distributions. However, with enough states in the underlying Markov chain,
a discrete phase-type distribution can approximate any discrete distribution with arbi-
trary precision [1]. This allows us to essentially “encode” any probability distribution
as a Markov chain with an absorbing state.

Recall that in the Markov chain null hypothesis, the authors have modelled the
genomic annotations using a two-state Markov chain (see subsection 1.2.1), where state
0 produces “gap” positions, and state 1 produces “interval” positions. One can view the
state 0 as a two-state absorbing Markov chain with state 1 being the absorbing state,
and vice versa. Essentially, the gap lengths and the interval lengths in an annotation
are generated using two discrete phase-type distributions, each operating with just one
transient state, thus limiting the respective DPT distributions to be geometric. Our
goal is to use DPT distribution with more states, thus fitting the input annotation
more closely.

The scheme works as follows. We replace the two states with two absorbing Markov
chains (AMCs): one representing the “inside” of the interval and the other representing
the “outside”. We connect the AMCs by redirecting the transition probabilities of one
AMC to the initial state of the other, and vice versa (see Figure 1.4). We generate the
annotation similarly to the previous case: states from the “inside” AMC generate 1,
and states from the “outside” AMC generate 0.

For example sequence of states (0A, 1, 2, 2, 0B, 5, 0A, 2) form Figure 1.4, would gen-
erate annotation (0, 0, 0, 0, 1, 1, 0, 0).



1.4. ABSORPTION TIME AS A DATA DISTRIBUTION IN MCDP MODEL 11

The main challenge of this approach comes from the necessity to fit two discrete
phase-type distributions to the input interval and gap lengths distribution, respectively.
Whereas in the original model, the fitting procedure consists of simply computing the
average length, now we have to choose all transition weights in the corresponding
absorbing Markov chains. There is no unified analytical algorithm for that, thus we
have to rely on general optimisation algorithms.

We have found one existing tool called PhFit [15] design to fit DPT distributions
to arbitrary input data. However, we were not able to find any implementation of that
software available for downloading. In [17], the authors conducted a series of training
on different standard distributions. They chose to optimize also the initial state distri-
bution, whereas in our case, it is fixed. Both methods [17, 15] use a similar approach to
fit the DPT distribution by defining a loss function and optimizing parameters based
on that function. The main differences lie in the choice of loss function, the optimiza-
tion method, and the parameters selected for optimization —some approaches restrict
to a specific AMC structure, while others also optimize the initial state vector.

Given these constraints and the lack of available tools, we concluded that we need
to implement the fitting of DPT distributions ourselves.

1.4.1 Model

Architecture of Markov chain refers to the structure of its finite state automata, specif-
ically the transitions that are allowed to be non-zero. To absorbing Markov chain with
fixed architecture and number of states we will refer to as model. We will refer to the
transition probabilities as model parameters and we will denote them θ. Our model
is represented as a transition matrix P , it is clear that the character of the transition
matrix P also implies specific architecture. We are provided a dataset of annotation
lengths, we will refer to this dataset simply as data. It is useful to note that data
probability distribution is discrete, since data are integer lengths.

We aim to create a model and calculate parameters, such that the absorption time
distribution of our model provides the best approximation to the data probability dis-
tribution.

1.4.2 Goal - minimizing cross entropy

Our goal is to maximize the probability that our model will generate specific data given
parameters vector θ.

P (data|θ)

We are searching for optimal parameter values θ∗, that maximizes this probability.

θ∗ = argmax
θ

P (data|θ)



12 CHAPTER 1. PRELIMINARIES

Using the product rule we can rewrite this as :

θ∗ = argmax
θ

∏
d∈data

P (d|θ)

We will shift this to logarithmic space, a commonly used technique to simplify the com-
putations. This approach offers faster addition compared to multiplication and helps
maintain numerical precision, particularly when dealing with very small probabilities.
Since logarithmic function in monotonous this will not affect values of θ∗.

θ∗ = argmax
θ

∑
d∈data

lnP (d|θ)

We will refer to the probability
∑

d∈data lnP (d|θ) as log-likelihood. Now for computation
sake, we reformulate the problem form maximizing the log-likelihood to minimizing the
negative log-likelihood : −

∑
d∈data lnP (d|θ). We can clearly see that these formulations

are interchangeable.
Minimizing the negative log-likelihood is equivalent to minimizing the cross-entropy

between phase-type distribution of our model and data distribution. The cross-entropy
H(p, q) of two discrete distributions p, q is defined as :

H(p, q) = −
∑
x∈X

p(x) log q(x)

So in the end our goal is to find optimal parameter values θ∗, such that they minimize
the cross-entropy of phase-type distribution of our model and data distribution.

Shannon entropy

In [6] Shannon entropy of finite probability distribution p is defined as:

H(p) = −
∑
i

pi log pi

In our case p is the data distribution. If our modelled phase-type distribution would
model data 100% accurately, the resulting cross-entropy would be exactly Shannon
entropy. Therefore we will use Shannon entropy as a comparison to our achieved cross-
entropy to determine how accurate our fit is, as Shannon entropy is a lower bound of
possible achieved cross-entropy.

1.4.3 Softmax function

To ensure that model parameters “going out” from the transient state, sum up to 1,
we use Softmax function. This is a common approach used also in Neural networks



1.4. ABSORPTION TIME AS A DATA DISTRIBUTION IN MCDP MODEL 13

training. Given a k dimensional vector parameter γ = (γ1, γ
2, . . . , γk), Softmax func-

tion returns k dimensional vector γ normalized to a probability distribution, in other
words such that vector elements sum up to 1.

γi =
exp(γi)∑k
j exp(γj)

1.4.4 Model training

In code transition matrix P and initial probabilities vector γ are represented as objects
from the numpy library [12]. We define a function Markov chain to likelihood, that for
given parameters, number of states, data and architecture returns two vectors. likeli-
hoods and data likelihoods. These likelihoods are simply commuted by multiplying the
initial vector and transition matrix up to the power maximal data; we use multipli-
cation by square to speed up the matrix multiplication. We define objective function
which computes negative logarithmic likelihood for given parameters, data and number
of states, normalized by the number of data, this is done by calling the Markov chain
to likelihood function for given input and then summing the data likelihood vector in
logarithmic space and then dividing it by length of data vector.

Then we use minimize function from scipy.optimize to find the optimal parameters
θ∗ that minimizes the objective function. We will refer to this process as model training
and to transition probabilities we want to optimize as parameters for optimization.
Later we compare the phase-type distribution of our model and the data distribution
our model was trained on.

1.4.5 L-BFGS-B

For optimization we used the L-BFGS-B algorithm. L-BFGS-B is a limited mem-
ory, quasi-Newton algorithm, used for large nonlinear optimization with simple bound
constraints on variables. This algorithm does not require knowledge of the objective
function, or its Hessian.

At the beginning of each iteration, an approximation of inverse Hessian is updated,
function values from previous iterations are used for this. Hessian is then used as an
approximate quadratic model of the objective function. This model is then minimized
and the vector direction, from current iterate to the approximate minimum, is used
to determine the step direction. Then linear search alongside the step direction is
performed, to determine the step size [33, 4].

The Optimizer Parameters and Stopping Conditions

One of the user-defined parameters in the L-BFGS-B optimization algorithm is maxcor.
This parameter sets the maximum number of variable metric corrections, for construct-



14 CHAPTER 1. PRELIMINARIES

ing the inverse Hessian matrix. In all of our experimental setups, the value of maxcor
was set to 10.

Other user defined parameters, occur in optimization stopping conditions:

fk − fk+1

max {|fk|, |fk+1|, 1}
≤ factr × eps

Where eps is the machine precision, and factr is a parameter controlled by the
user. This is designed to terminate the optimization when change of the function value
between iteration is sufficiently small.

fk − fk+1

max {|fk|, |fk+1|, 1}
≤ ftol

This is designed to terminate the optimization when change of the function value
between iteration is smaller than ftol, where ftol is parameter controlled by user [33, 4].

max {|proj gi| i = 1, . . . , n} ≤ gtol

Projected gradient is the projection of the gradient vector onto the space defined
by the variable bounds. It must be equal to 0 at the local minimizer. This test is
designed to terminate the optimization run, where the norm of projected gradient is
smaller than gtol, where gtol is a parameter controlled by the user.

Additionally, optimization stops after reaching a specified number of iterations –
maxiter, also a parameter controlled by a user.

In all our experiments, we set these constants as follows: ftol : 1 × 10−6, gtol :

1× 10−6 and maxiter : 15000.



Chapter 2

Basic Markov chains architectures

In this chapter we will describe the early stages of the development of the Markov chain
architectures. We will introduce three architecture models: self-loop architecture, early-
escape architecture and combined architecture. We will evaluate each architecture on a
set of synthetic datasets, and discuss advantages and disadvantages of them.

We aim to present the development process in chronological order, thus we start
from the most simple architecture and continue to the more complex ones. Along the
way, we address their weak spots and training problems as they arise, and we introduce
solutions and developed tools in respect to the order we developed them.

We begin by outlining the architecture criteria and subsequently introduce synthetic
challenges. Following, we define the self-loop architecture, discussing its properties
and demonstrating its performance on challenges. Then, we introduce the early-escape
architecture, discussing its properties and showcasing its performance on challenges.
Afterwards, we define the combined architecture and illustrate its performance on
synthetic challenges. Finally, we introduce a technique called mean shifting aimed at
improving the architecture performance.

2.1 Architecture selection criteria

There are two general choices to make when fitting a Markov chain to a given dis-
tribution: the number of states and the selection of (non-zero probability) transitions
between them. We will refer to that selection of transitions as the architecture of
a Markov chain, regardless of a specific number of states. We will refer to the propor-
tion of non-zero transitions in a Markov chain as its density.

Those choices affect several key factors. The most fundamental of them is the
theoretical expressive power of the resulting Markov chain, i.e. its ability to match
different input distributions with a right set of transition probabilities. The denser the
Markov chain, the higher expressive power it has. An increase in the number of states

15



16 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES

Choice Expressive power Training speed Ability to train Usage speed
Number of states ↑ ↑ ↓ ? ↓

Architecture density ↑ ↑ ↓ ↓ -

Table 2.1: The summary of the impacts of parameter selection. An up arrow (↑) (down
arrow (↓)) means that this factor improves (worsens) with an increase in the according
criterion. A dash (-) means there is no effect. A question mark (?) means that the
effect is unclear.

also generally leads to the higher expressive power and therefore lower cross-entropy
(we will show some exceptions later in this chapter).

The second key factor is the running time of the training process, i.e. the numerical
minimisation of the cross-entropy between the input data and the absorption time
distribution. The running time increases with both the number of states and the
architecture density. The computational time or phase-type distribution grows cubic
from the number of states.

Another factor to consider is the ability to train, i.e. optimizes capability to find
the optimal solution. Complex architectures — with high architecture density, would
overparametrize the model and therefore the optimizer might not be able to find optimal
weights.

Consequently, the practical quality of the resulting fit is influenced by the number
of states and architecture density, as well as numerical precision, including the range
of parameters in optimisation. The effects are summarized in Table 2.1.

In conclusion we aim to find the simplest architecture with the least possible number
of states that is still capable of modelling given a challenge, and only when it fails, we
should search for a more complicated model.

2.2 Synthetic data challenges: Architecture testing

In order to assess the strengths and weaknesses of the proposed architectures, we
selected four synthetic datasets. We will refer to them as challenges. These challenges
are visualized in Figure 2.1.

The simplest challenge is to fit a single “peak” of small data with no gaps. We use
a Gaussian distribution (rounded up) with a mean of 20 and a standard deviation of
5, comprising 500 samples.

Next, we increase the data magnitude while maintaining the simplicity of fitting a
single “peak”. We utilize a Gaussian distribution with a mean of 350 and a standard
deviation of 7, also with 500 samples.

Subsequently, we examine the model’s capability of modeling bimodal data, which



2.3. SELF-LOOP ARCHITECTURE 17

Figure 2.1: Synthetic datasets (challenges): Gaussian small values (top left), Gaussian
large values (top right), bimodal (bottom left) and uniform (bottom right).

involves data with a “gap”, not departing from the simplicity of small values. We
employ two Gaussian distributions with means of 15 and 40 respectively, and standard
deviations of 3 and 5 respectively, each consisting of 500 samples.

Lastly, we explore the accuracy of the model in fitting specific probabilities. For
this purpose, we employ a uniform distribution, comprising 20 samples ranging from 1

to 20.

2.3 Self-loop architecture

Consider a Markov chain where each state has two (non-zero probability) outgoing
arrows: one to itself (creating a self-loop) and another to the next state (see Figure 2.2).
We will call such configuration a self-loop architecture. This model also appears in [17].

0 1 2 . . . n− 1 X

p0,0

1− p0,0

p1,1

1− p1,1

p2,2

1− p2,2 1− pn−2,n−2

pn−1,n−1

1− pn−1,X

Figure 2.2: The self-loop architecture. State 0 is the initial state, and state X is the
absorption state.



18 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES

This idea is formalized as follows. Consider an absorbing Markov chain with finite
state space I, one absorbing state X ∈ I and transition matrix P where pi,i+pi,i+1 = 1

for all i ̸= X. As a convention, the last row of P will contain probabilities for absorbing
state X.

P =



p1,1 1− p1,1 0 . . . 0

0 p2,2 1− p2,2 . . . 0
...

...
... . . . ...

0 . . . 0 pn−1,n−1 1− pn−1,n−1

0 . . . . . . 0 0


An interesting property of the self-loop architecture is that we can change the

order of the states, i.e. swap any1 two pairs of cells (pi,i, pi,i+1) and (pj,j, pj,j+1) in
the transition matrix, without changing the resulting absorption time distribution.
Intuitively, it follows from the fact that we need to go through all of the states on
our route from the starting state to the absorbing state. Formally, it is possible to
transform the probability of getting into the absorbing state after exactly K steps into
a clearly symmetric function w.r.t. transition weights pi,i:

Pr[absorbing after K steps] =
∑

k0+...+kn−1=K
ki≥1

n−1∏
i=0

pki−1
i,i (1− pi,i) =

=

(
n−1∏
i=0

(1− pi,i)

)
·

∑
k0+...+kn−1=K−n

ki≥0

n−1∏
i=0

pkii,i =

=

(
n−1∏
i=0

(1− pi,i)

)
·

(
n−1∑
i=0

pi,i

)K−n

Another property of this architecture is that the minimum absorption time is equal
to the number of states of the Markov chain.

2.3.1 Performance of the self-loop architecture

We have fitted the self-loop architecture to the individual challenge datasets and plotted
the resulting cross-entropy against the number of states (see Figure 2.3). We will refer
to this curve as Performance curve, as it depicts the model success in fitting. We
ran each experiment 10 times and selected the best cross-entropy out of them for
each number of states. Additionally, we displayed the best overall distribution for
each challenge in Figure 2.4. The technical details of the experiments are located in
Chapter 6.

We observe an unintuitive increase in the cross-entropy in three out of four chal-
lenges. The problem is that the minimal absorption time is n for a self-loop Markov

1except the last row, of course



2.3. SELF-LOOP ARCHITECTURE 19

Figure 2.3: Comparison of cross-entropy versus the number of states for each challenge
for the self-loop architecture. Cross-entropy in blue, Shannon entropy red.

chain with n states. Therefore, a large Markov chain with such architecture is unable
to fit a distribution with small values, thus increasing the cross-entropy. This effect
can be clearly observed with the Uniform challenge, where the smallest Markov chain
with two states provides the best fit.

Additionally, we can see that in Gaussian large values challenge adding states till
38 does not affect cross-entropy at all. After 38 states we observe a dramatic drop
in cross-entropy. This tells us that 38 states for self-loop architecture are sufficient to
model a data with mean around 350. However, adding states is not a practical long-
term strategy, therefore we will be searching for other techniques to model data with
larger values.

Now let’s inspect the best overall fits for each synthetic challenge (see Figure 2.4).
As we can see, the self-loop model of 8 states is perfectly capable of modeling the Gaus-
sian distribution with small values, achieving almost optimal cross-entropy. However,
we need up to 50 states to model the large values Gaussian, still not getting close to
the optimal cross-entropy and failing to mimic the data shape. In the Bimodal chal-
lenge we achieved reasonably good cross-entropy, however we can observe that it fails
to model the “gap” in data and instead interpolates data together. In a similar fashion,
the self-loop architecture achieves a reasonably good cross-entropy, but fails to learn
the shape of the uniform distribution in the last challenge.



20 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES

Figure 2.4: Best training for self-loop architecture, each figure shows density histogram
of the challenge, in blue and learned phase-type distribution in orange.

2.4 Early-escape architecture

Consider a Markov chain where each state has two (non-zero probability) outgoing
arrows: one to the next state, and another straight to the absorbing state (creating
an “early escape” from the chain). We will call such configuration an early-escape
architecture (see Figure 2.5). This model is again inspired by [17].

This idea is formalized as follows. Consider an absorbing Markov chain with finite
state space I, one absorbing state X ∈ I and transition matrix P , where pi,i+1+pi,X = 1

for all i ̸= X. As a convention, the last row of P will contain the probabilities for
absorbing state X.

P =



0 1− p1,X 0 . . . p1,X

0 0 1− p2,X . . . p2,X
...

...
... . . . ...

0 . . . 0 0 pn−1,X

0 . . . . . . 0 0


Note that in this architecture, as opposed to the previous self-loop architecture, the

order of the transition probabilities does affect the resulting absorption time distribu-
tion. It is easy to see that swapping a small escape weight at the beginning of the chain
with a large escape weight further in the chain will decrease the mean absorption time.



2.4. EARLY-ESCAPE ARCHITECTURE 21

0 1 2 . . . n− 1

X
p0,X

1− p0,X

p1,X

1− p1,X

p2,X

1− p2,X 1− pn−2,X

pn−1,X

Figure 2.5: The early-escape architecture. State 0 is the initial state, and state X is
the absorption state.

It is important to note that this architecture is acyclic. Therefore it has no means
of prolonging the absorption process, therefore its maximal time to absorption is n for
architecture of n states.

2.4.1 Performance of the early-escape architecture

We have performed the same experiments as for the previous architecture (see subsec-
tion 2.3.1). The performance curves are shown in Figure 2.6 and the overall best fits
are shown in Figure 2.7.

The performance curve of the early-escape architecture is non-increasing in gen-
eral. Additionally, given enough states, the early-escape architecture can fit any input
dataset perfectly reaching the minimum cross-entropy. This was reached in Gaussian
small values, Bimodal and Uniform challenge.

The early-escape architecture is unsuited for modeling larger values, as shown in
Gaussian large values (see Figure 2.6). Since this architecture is acyclic, its maximal
time to absorption is n for architecture of n states. Therefore, one would require around
400 states in order to adequately fit the Gaussian large values challenge, which is way
outside of the scope of our project.

This model complements the weakness of the self-loop architecture, which was not
able to fit small values and large values at the same time. This is particularly evi-
dent, when comparing early-escape cross-entropy and previous best cross entropy in
Figure 2.6.

In the Bimodal challenge, the cross-entropy has three “plateaux” which correspond
to the ranges with little or no data, while the sharp plunges correspond to the ranges
with the most “mass” of the dataset. Figure 2.8 shows the resulting distributions after
the first and the second plunges. We can see that given 30 states, the model fits
the first peak perfectly (while scaling the individual probabilities to preserve the total



22 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES

Figure 2.6: Performance curve for each challenge for the early-escape architecture.
Cross-entropy in blue, Shannon entropy red, previous best achieved cross-entropy in
orange.

probability mass).
In the Uniform challenge, we observe a steady decrease of the cross-entropy.
Now let’s inspect the best overall fits for each synthetic challenge (see Figure 2.7).

In both Gaussian small values and Bimodal challenge we observe that the early-escape
architecture with enough states can fit data more accurately, mimicking also the shape
of data precisely, thus reaching the optimal cross-entropy. When looking at the problem
from the machine learning point of view, this might seem as an overfitting, since the
model also learns the “noise” in the data. However, we are not trying to learn a trend
in data, but to preserve as much information as possible, therefore this is a desired
model behavior.



2.4. EARLY-ESCAPE ARCHITECTURE 23

Figure 2.7: Best training for Early-escape architecture, each figure shows density his-
togram of the challenge, in blue and learned phase-type distribution in orange.

Figure 2.8: Comparison of two learned phase-type distributions for the Bimodal chal-
lenge with models having 30 and 50 states. Density histogram of Bimodal challenge in
blue, learned phase-type distribution in orange



24 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES

2.5 Combined architecture

Now, we introduce architecture that combines the advantages of both examined ar-
chitectures; the ability of the self-loop architecture to model the datasets with large
values (larger than the number of states) and the ability of the early-escape architec-
ture to model the datasets with small values (smaller than the number of states). This
corresponds to a state automaton, with each state having a self-loop, a transition to
the absorbing state and a transition to a next state. We call this model the combined
architecture (see Figure 2.9).

This idea is formalized as follows. Consider an absorbing Markov chain with finite
state space I, one absorbing state X ∈ I and transition matrix P , where pi,i + pi,i+1 +

pi,X = 1 for all i ̸= X. As a convention, the last row of P will contain probabilities for
absorbing state X.

P =



p1,1 p1,2 0 . . . p1,X

0 p2,2 p2,3 . . . p1,X

0 0 p3,3 . . . p2,X
...

...
... . . . ...

0 . . . 0 pn−1,n−1 pn−1,X

0 . . . . . . 0 0


We expect less overfitting, a trend we have encountered with the early-escape ar-

chitecture, because the self-loops should have some “smoothing” effect on the resulting
phase-type distribution.

Both the early-escape and self-loop architectures are special cases of the combined
architecture. The early-escape architecture sets pi,i to 0, while the self-loop architecture
sets pi,X to 0. Hence, the combined architecture should model data with a comparable
accuracy level by simply learning 0 in the relevant transition probabilities.

2.5.1 Performance of the combined architecture

We have performed the same experiments as for the previous architectures (see sub-
sections 2.3.1 and 2.4.1). The performance curves are shown in Figure 2.10 and the
overall best fits are shown in Figure 2.11.

The combined architecture clearly outperforms the previous ones in the challenges
with small values, achieving a low cross-entropy with considerably less states required.
We can see that combined architecture performance curve copies or outperforms previ-
ously achieved cross-entropy. In Figure 2.11 we can see that for small values Gaussian
challenge combined architecture reaches almost optimal cross-entropy, outperforming
self-loop architecture. In Bimodal challenge outperforms both previous architectures,



2.5. COMBINED ARCHITECTURE 25

0 1 2 . . . n− 1

X

p0,0

p0,X

p0,1

p1,1

p1,X

p1,2

p2,2

p2,X

p2,3

pn−1,n−1

pn−2,n−1

pn−1,X

Figure 2.9: The combined architecture. State 0 is the initial state, and state X is the
absorption state.

Figure 2.10: Performance curve for each challenge for the combined architecture. Cross-
entropy in blue, Shannon entropy red, previous best achieved cross-entropy in orange.



26 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES

Figure 2.11: Best training for combined architecture, each figure shows density his-
togram of the challenge, in blue and learned phase-type distribution in orange.

managing to capture “gap” in data at 46 states. The model also trains itself reasonably
well at Uniform challenge.

The combined architecture does not fit the data distribution perfectly, retaining
some smoothing effect. This can be observed in Figure 2.11 in the Bimodal challenge,
where the model does not learn the precise data shape but results in a smoother distri-
bution. Consequently, although Figure 2.10 shows a desired drop in the performance
curve, it does not entirely reach the optimal Shannon entropy.

The model struggles with the large values as seen in Gaussian large values challenge,
where it fails to train. We will address this issue next.

Optimizer failure

As discussed earlier, both previous architectures are special cases of the combined ar-
chitecture. However, the experiments have shown the inability of the optimizer to find
satisfactory transition probabilities, even when they clearly exist. For instance, in the
small values Gaussian challenge, the combined architecture fails to achieve optimal
cross-entropy, unlike the early-escape architecture. Moreover, while the self-loop ar-
chitecture with 50 states can model the large values Gaussian challenge, the combined
architecture fails to do so (see Figure 2.11).



2.5. COMBINED ARCHITECTURE 27

Figure 2.12: Comparative Impact of a Single Parameter on Cross-Entropy and Mean
Difference for combined architecture of 30 states on on large values Gaussian challenge.

2.5.2 Improvement of the optimisation by fitting the mean first

The experiments have shown the inability of the optimizer to find a satisfactory solution
for the Gaussian big values challenge despite the fact that it clearly exists. The issue
is that the stopping criterion projected gradient norm threshold (see subsection 1.4.5)
is fired on the very first iteration. In other words, a change in the individual weights
right after the random initialization does little to improve the overall cross-entropy. We
assume that this effect arises because the majority of the “mass” of the initial phase-type
distribution is located too far from the target distribution (see Figure 2.13).

We came up with two possible fixes for this problem. The first is to decrease the
stopping threshold PGTOL. However, this solution is not scalable for inputs with larger
data points. Instead, we’ve decided to move the mass of the phase-type distribution
closer to the target distribution first, and only then run the full optimisation of the
weights. We call this simplified pre-training procedure the mean shifting.

Specifically, we change the optimisation target to the difference between the mean
of the input distribution and the mean of the phase-type distribution. We compute
the mean of the phase-type distribution using the matrix formula described in subsec-
tion 1.3.1. This procedure allows the individual weights to have much greater impact
on the optimisation target (see Figure 2.12), thus not firing the stopping criteria too
early. Once the pre-training is completed, we take the resulting weights, apply a small
noise and use them as an initial point of the full optimisation.

Performance evaluation of Combined architecture with mean shifting

We have performed the same experiments as for the previous architectures (see sub-
sections 2.3.1 and 2.4.1 and 2.5.1). The performance curves are shown in Figure 2.14
and the overall best fits are shown in Figure 2.15.



28 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES

Figure 2.13: Comparison of target distribution and initial phase-type distributions for
combined architecture of 30 states on large values Gaussian challenge.

Figure 2.14: Performance curve for each challenge for the combined architecture with
mean shifting. Cross-entropy in blue, Shannon entropy red, previous best achieved
cross-entropy in orange.



2.5. COMBINED ARCHITECTURE 29

Figure 2.15: Best training for combined architecture with mean shifting, each figure
shows density histogram of the challenge, in blue and learned phase-type distribution
in orange.

The mean shifting significantly improves the combined architecture performance
on the Gaussian big values challenge. We can also observe a steady drop in cross-
entropy with adding states (see Figure 2.14). When looking at the best trained model
in Figure 2.15, we can clearly see that the mean of the resulting phase-type distribution
moved to the mean of data distribution, however the resulting phase-type distribution
does not mimic the shape of the data.

We can see that this technique did not compromise the performance elsewhere
much. This can be seen in Figure 2.15, where the small values Gaussian, Bimodal
and Uniform challenges are fit quite well. In both Bimodal and Uniform challenge it
worsened the best achieved cross-entropy slightly, compared to training without mean
shifting (see Figure 2.14).



30 CHAPTER 2. BASIC MARKOV CHAINS ARCHITECTURES



Chapter 3

Advanced Markov chains architectures

In this chapter we will introduce dense architectures fully connected architecture, pruned
architecture and k-jumps architecture. We will again test them against a set of chal-
lenges and describe their weaknesses and properties.

In section 1 we present Fully connected architecture, we proceed to show its per-
formance on synthetic challenges. In section 2 we present a new concept on pruning
and compare the results with previous architecture. In section 3 we present Cyclic ar-
chitecture and again evaluate its performance. Lastly in section 4 we present k-jumps
architecture.

3.1 Fully connected architecture

We will present an architecture with each state having self-loop, transition to absorbing
state and transition all other transient states, to this model we will refer to as fully-
connected architecture an its 4 state version is depicted in Figure 3.1.

This idea is formalized as follows. Consider absorbing Markov chain with finite
state space I, one absorbing state X ∈ I and transition matrix P where

∑i
j=0 pi,j = 1

for all i ̸= X. As a convention, the last row of P will contain probabilities for absorbing
state X.

P =



p1,1 p1,2 p1,3 . . . p1,X

p2,1 p2,2 p2,3 . . . p1,X

p3,1 p3,2 p3,3 . . . p2,X
...

...
... . . . ...

pn− 1, 1 . . . pn−1,n−2 pn−1,n−1 pn−1,X

0 . . . . . . 0 0


The fully connected architecture is the most dense architecture for a given amount

of states, and therefore it has all the effects we have discussed in section 2.1 about
the model selection criteria. To summarize, its theoretical expressive power is the best

31



32 CHAPTER 3. ADVANCED MARKOV CHAINS ARCHITECTURES

0 1

2

X

p0,0 p1,1

p2,2

p0,1

p0,2

p1,0

p1,2p2,0

p2,1

p0,X p1,X

p2,X

Figure 3.1: The fully connected architecture of 4 states. State 0 is the initial state,
and state X is the absorption state.

among all other architectures, while its training speed and the ability to reach a good
fit in practice should be the worst.

3.1.1 Performance evaluation of fully connected architecture

Fully connected architecture is never significantly better than the previous sparse archi-
tectures, i.e., it cannot achieve significantly better cross-entropy with the same amount
of states. In all challenges, the fully connected architecture managed to mimic the data
shape to some extent, but not as effectively as previous architectures. In Gaussian
small values and Bimodal challenge, the fully connected architecture can only partially
mimic the data shape (see Figure 3.3), lacking the precision of either combined or
early-escape architectures. In Uniform challenge, fully connected architecture manages
to jump around the data distribution rather precisely given its complexity, but once
again fails to take on the structure of early-escape architecture that is most suitable
for this task.

Its performance gets progressively worse with more states added (see Figure 3.2).
We can observe this in Gaussian small values challenge, where the performance curve
shows increase after 30 states. Similar trends of increasing cross-entropy after a certain
number of states were observed in Uniform and Bimodal challenges.

It may be partially attributed to the fact that the L-BFGS-B algorithm needs to
approximate the inverse Hessian matrix of all parameters using the constant memory.
The Hessian matrix is the matrix of second partial derivatives, i.e., it has O(n4) cells,
where n is the number of states of the Markov chain. It might be that such a steep
increase in the number of values makes the performance of the inverse Hessian matrix
approximation degrade quickly as well. This could be potentially fixed by changing
the optimisation algorithm from a second-order method to a first-order (e.g., gradient



3.1. FULLY CONNECTED ARCHITECTURE 33

Figure 3.2: Performance curve for each challenge for the Fully connected architecture.

descent) or a derivation-free (e.g., Nelder-Mead [27] or simulated annealing [2]) one.
One of the most significant achievements of this architecture is managing to model

Gaussian large values challenge at 6 states already without the need of mean shifting,
outperforming by far all the previous architectures. This is due to the structure of
fully connected architecture. With each state being connected to each other, there
is a higher likelihood of remaining transient states. This interconnectedness enhances
cyclic properties similarly to self-loop architectures but with significantly improved
outcomes. The process has a tendency to stay in transient states and thus prolong
the absorption time. In the Gaussian large values challenge even though we achieved
acceptable cross-entropy at 16 states, we failed to learn the shape of the data.

The training time for fully connected architecture is growing consistently with the
number of states and is among the highest (see Figure 3.4). The peak memory consump-
tion during the training of the previous architectures stays around 168 MB, whereas
for the fully connected architecture it consistently rises up to 172 MB for 50 states.

In conclusion, our experimental results confirm our suspicions regarding the per-
formance of the fully connected architecture. Despite its ability to partially mimic
the data shape across various challenges, it falls short compared to previous, sparse
architectures. Additionally, its performance worsens with the addition of more states,
suggesting that using this architecture is not recommended.



34 CHAPTER 3. ADVANCED MARKOV CHAINS ARCHITECTURES

Figure 3.3: Best training for fully connected architecture, each figure shows density
histogram of the challenge, in blue and learned phase-type distribution in orange.

Figure 3.4: Time comparison between training of fully connected and previous archi-
tectures across all four challenges.



3.2. PRUNED ARCHITECTURE 35

3.2 Pruned architecture

When examining the learnt transition probabilities for fully connected architecture (see
Figure 3.5), it was observed that certain transitions were, with notably low probabil-
ities. We came up with the concept of pruning, which involves setting probabilities
lower than a certain threshold to 0. After this, we normalize the resulting probabilities
so that the transition probabilities from a state sum up to 1.

The pruning may lead to a reduction in matrix density (by removing the edges) and
a reduction in the number of states (by removing the inaccessible states). The reduction
in the number of states has a direct positive effect on the training and usage time. The
reduction in the matrix density (see Figure 3.6) may also have a positive effect on the
downstream usage by allowing to use algorithms specific for the sparse matrices. The
pruned architectures may also serve as an inspiration for new architecture designs.

3.2.1 Performance evaluation of the pruned architecture

Pruning is less effective for large values datasets. Notably, in the Gaussian large values
challenge, pruning with a threshold of 0.013 resulted in an untrained phase-type distri-
bution (see Figure 3.7). This could be caused by the removal of the majority of escape
probabilities, which were initially low to achieve a far mean. Pruning also affected
the small values Gaussian, where it eliminated short absorption times (see Figure 3.8),
likely by removing small escaping probabilities from the first states.

Pruning can occasionally lead to unexpectedly positive results. For example, in
the Gaussian small svalues (38 and 40 states), pruning resulted in better cross-entropy
than the original architecture (see Figure 3.8). However, this is best understood as
a fortunate accident. Generally, we expect cross-entropy to worsen with pruning and
aim to find the largest pruning threshold that keeps cross-entropy acceptable.

Pruning makes the phase-type sharper. This effect is evident in the Uniform chal-
lenge, where pruning with a threshold of 0.05 resulted in a sharper distribution with
a similar shape (see Figure 3.8). This observation is further supported by an extreme
case seen in the large value Gaussian, where pruning likely removed transitions between
transient states. Consequently, this shortened the possible absorption time and led to
poor cross-entropy (see Figure 3.7).



36 CHAPTER 3. ADVANCED MARKOV CHAINS ARCHITECTURES

Figure 3.5: Visualization of learned transition probabilities. The heatmap shows the
learned transition probabilities for a fully connected architecture with 14 states on the
Gaussian small values challenge. The colors represent the probabilities on a logarithmic
scale.

Figure 3.6: Density reduction in transition matrix of 14 states trained no small values
Gaussian, with threshold 0.2



3.2. PRUNED ARCHITECTURE 37

Figure 3.7: Effect of pruning on cross-entropy for all four challenges for different prun-
ing thresholds.



38 CHAPTER 3. ADVANCED MARKOV CHAINS ARCHITECTURES

Figure 3.8: Effect of pruning on phase-type distribution for best trained fully connected
model on each challenge. Thresholds were chosen based on their ability to show devi-
ations from the original fit while still providing a reasonable fit. For the large values
Gaussian challenge, the threshold of 0.013 is the smallest that results in an untrained
model; smaller thresholds yield the same fit as the original.



3.3. K-JUMPS ARCHITECTURE 39

3.3 k-jumps architecture

We have observed that the sparse architectures struggle with datasets with large values,
since they cannot prolong the absorption time enough. Therefore, we decided to add
a “backlink” to each non-absorbing state in the combined architecture, allowing to go
k states back. We will refer to this architecture to as k-jumps architecture.

This idea is formalized as follows. Consider absorbing Markov chain with finite
state space I and constant k, one absorbing state X ∈ I, and transition matrix P

where pi,i+1 + pi,i + pi,X = 1 if i < k and for all i > k, pi,i−k + pi,i+1 + pi,i + pi,X = 1.
As a convention last row of P will contain probabilities for absorbing state X.

P =



p0,0 p0,1 0 . . . 0 . . . p0,X

0 p1,1 p1,2 . . . 0 . . . p1,X

0 0 p2,2 . . . 0 . . . p2,X
...

...
... . . . ...

...
. . . pi,i−k . . . pi,i pi,i+1 . . . pi,X
...

...
... . . . ...

...
0 . . . . . . 0 0 0 0


K-jumps architecture has a cyclic structure, similar to fully connected architecture,

therefore we expect this architecture to be able to model distributions with large mean
value.

The constant k is a hyperparameter, has to be chosen independently from the
optimisation process, which complicates the model selection.

3.3.1 Performance evaluation of the k-jumps architecture

We have performed the same experiments as for the previous architectures. The perfor-
mance curves are shown in Figure 3.10 and the overall best fits are shown in Figure 3.11.

When comparing the performance of the k-jumps architecture with respect to the
hyperparameter k, it appears that k = 7 performs the best. This observation is sup-
ported by Figure 3.10, where the performance curve for k = 7 outperforms the others.
Additionally, in Figure 3.11, during the bimodal challenge, k = 7 manages to mimic
the shape of the data most accurately.

Contrary to our intuition, the additional back-loops intended to enhance cyclicity
did not improve the performance on the Gaussian large values challenge. We failed to
learn the data distribution for all values of k in this scenario (see Figure 3.10).

This architecture does not outperform the combined architecture. The additional
back-loops only overparametrize the model, complicating the training. Consequently,
we deem this approach a failure because it neither improves performance nor simplifies
training; instead, it adds unnecessary complexity.



40 CHAPTER 3. ADVANCED MARKOV CHAINS ARCHITECTURES

0 1 2 3 4

X

p0,0

p0,X

p0,1

p1,1

p1,X

p1,2

p2,2

p2,X

p2,3

p2,0

p3,3

p3,X

p3,4

p3,1

p4,4

p4,X

p4,2

Figure 3.9: K-jumps architecture of 6 states, with k = 2 is the initial state and X is
absorbing state.

Figure 3.10: Performance curve for k-jumps architecture for different values of k.



3.3. K-JUMPS ARCHITECTURE 41

Figure 3.11: Best training for k-jumps architecture. Data density histogram in blue,
resulting phase-type distributions in red, green, and orange respectively.



42 CHAPTER 3. ADVANCED MARKOV CHAINS ARCHITECTURES



Chapter 4

Real data modeling

In this chapter we will show how our model preformed, when trained on real data from
public genomics databases. We choose combined architecture with mean shifting for
this task.

Firstly, we present a new sampling technique, needed when modeling bigger datasets.
Then, we present genomic annotations we chose to model and give a brief overview of
the used terms as well as some biological background. Then we proceed to intervals
modelling, firstly introducing the datasets, then with cross-entropy analysis and in the
end we show best trained model for each challenge. Then, we do respectively the same
for annotations gaps.

Note that the original MDCP uses 2 states, so any improvement in cross-entropy
we achieve is a significant advancement.

4.1 Sampling

So far all of our challenges were ranging from 500 to 1000 samples. However, real-
world datasets commonly contain multiple thousands of samples. Due to this model
training would be slow, since each evaluation needs to compute cross-entropy, which
is calculated from the whole dataset. This can be avoided by reducing the dataset we
work with. We will employ a sampling technique, that samples at random form the
original dataset, sample of smaller size and the we proceed to train model on this sub-
sample of data. This results in faster training processes; however, there is a trade-off
between speed and model accuracy. We used samples of size 2000.

4.2 Data

We chose the following datasets due to the fact, that they were also used in original,
MCDP article [7].

43



44 CHAPTER 4. REAL DATA MODELING

The hirt dataset annotates sequences enriched in extra-chromosomal DNA [30].
Extra-chromosomal DNA refers to DNA molecules existing outside of the main set of
chromosomes found in a cell’s nucleus. These molecules can be separate circular DNA
pieces or linear fragments not part of the chromosomes.

The Gains inc dataset annotates regions with copy number gains, which are varia-
tions in the number of copies of specific DNA segments [32]. Sometimes, certain regions
of DNA can be duplicated, leading to an increased number of copies, which is referred
to as copy number gains. These variations can affect gene expression and contribute
to genetic diversity.

The H3K4me3 dataset annotates regions of DNA marked by a specific histone
modification called H3K4me3 [11]. Histones are proteins that help package DNA into
chromatin, the complex structure of DNA and proteins in the cell nucleus. Histone
modifications, like H3K4me3, are chemical alterations to these proteins that can affect
how tightly the DNA is packed around them. In this case, H3K4me3 is associated with
regions of active gene expression, indicating that the genes in those regions are more
likely to be turned on and transcribed into RNA.

Additionally, we included the Drosophila melanogaster exons dataset as an
example from a public database [22]. Drosophila melanogaster is a species of fruit fly
commonly used in biological research as a model organism due to its relatively simple
genome. Exons are the coding regions of a gene, they contain the genetic information
necessary for producing functional proteins.

4.3 Intervals modeling

Firstly we present a brief overview of the data in Figure 4.1.

Dataset Mean Range of interval lengths Number of intervals

Drosophila exons 488 1–28074 188467
Gains inc 35581 73–3002725 3132
H3K4me3 1937 124–22590 19358
Hirt 1966196 6–24019400 247

Table 4.1: Characteristics Datasets of interval lengths.

Given this brief overview of the data, the rationale behind choosing a combined
architecture with mean shifting becomes evident. When we look at the sample range
of the data, it is clear why we dismissed early escape architecture, that would need
around 28000 states just to model Drosophila melanogaster dataset. Instead we opted
for more complex combined architecture over basic self-loop architecture.



4.3. INTERVALS MODELING 45

Figure 4.1: Histograms of interval lengths : Drosophila exons (top left), Gains inc (top
right), H3K4me3 (bottom left), Hirt (bottom right). We had to opt for visualizing only
some percentage of the data, so that the shape of data is visible.

In synthetic challenges datasets with a mean around 350 combined architecture
required mean shifting. Here we work with significantly larger dataset means, therefore
mean shifting is necessary.

In Figure 4.1 we show histograms of annotations lengths for each of the selected
datasets.

4.3.1 Performance evaluation

In Figure 4.2 we can observe that we achieved very good cross-entropy in both Drosophila
and H3K4me datasets. However contrary our intuition in Drosophila dataset the cross-
entropy doesn’t show a consistent decrease with the addition of states; instead, it fluc-
tuates. This can be caused by the representative quality of sample chosen for specific
training. This hypothesis is supported by the fact that the H3K4me3 dataset, which
contains 19358 samples, shows a consistent decrease in cross-entropy compared to the
Drosophila dataset of 188467 samples. Nonetheless, we can still observe some decreas-
ing trend when adding states in Drosophila dataset.

In the hirt dataset, we observe difficulties in achieving a cross-entropy improvement



46 CHAPTER 4. REAL DATA MODELING

Figure 4.2: Performance curve for each dataset of annotation lengths trained on com-
bined architecture with mean shifting. Cross-entropy in blue, Shannon entropy red.

below approximately 15, even with an increase in the number of states. This limitation
may come from the dataset’s characteristics: although the hirt dataset contains of a
broad range of samples, it consists of only 247 samples in total. The ratio of samples
to sample range and mean may block our ability to achieve better training outcomes.

Similar characteristic in ratio of samples to sample range can be observed also in
Gains inc, where the cross-entropy does not significantly improve beyond 10.5.

In the H3K4me3 dataset an elbow-shaped pattern is noticeable in the cross-entropy
line. Initially, adding states significantly improves cross-entropy, then it stops. This
trend is especially clear at 6 states. This discovery is significant because the elbow point
on the cross-entropy line indicates the number of states that first achieve acceptable
cross-entropy with the fewest states, thus representing the least complex model with
acceptable cross-entropy. This characteristic of the cross-entropy line can later guide
model complexity selection.

In Figure 4.3, we present the best-trained models for each dataset. We observe that
both the Drosophila and H3K4me3 datasets achieved very good cross-entropy with 28
and 16 states, respectively. This outcome is significant considering the scale of means
in both datasets and the accurate replication of data shape.

In Gains inc dataset, we achieved acceptable cross-entropy, resulting phase-type
distribution also adequately mimics the data shape.

We performed less effectively on the hirt dataset compared to the others, due to



4.3. INTERVALS MODELING 47

Figure 4.3: Best training for each dataset of interval lengths trained with combined
architecture with mean shifting. Each figure shows density histogram of training data,
in blue and learned phase-type distribution in orange.

the reasons mentioned before.



48 CHAPTER 4. REAL DATA MODELING

4.4 Gaps

Firstly we present a brief overview of the gaps datasets in Figure 4.2.

Dataset Mean Gap Size Range of Gap Lengths Total Samples

Drosophila exons 1587 1–710734 63948
Gains inc 952046 4–30821993 3132
H3K4me3 156902 134–30542789 19333
Hirt 16296782 92740–87181600 116

Table 4.2: Characteristic of Datasets of interval gaps.

From the overview it is again clear why we opted for combined architecture with
mean shifting. In Figure 4.4 we present histograms of annotation gaps form each
dataset. We again had to opt for visualizing only some percentage of the data, so that
the shape of data is visible.

4.4.1 Performance evaluation

In Figure 4.5 we see that overall, we were less successful in modeling gaps than interval
lengths.

We were most successful in the Drosophila gaps dataset, where we also identify an
elbow-shaped pattern in the cross-entropy line.

In the hirt gaps dataset, significant jumps from 20 to 45 in cross-entropy occur,
notice that the cross-entropy remains unchanged at 45. This observation again suggests
our failure to train this model. Instances where cross-entropy reaches approximately
20 can be attributed to fortuitous initial guesses rather than robust training. Here, we
are approaching the threshold of what remains within the scope of model-ability, since
the finding any solution (which still may be far from optimal one), depends heavily on
initialization.

In both Gains inc gaps dataset and H3K4me3 gaps dataset, cross-entropy does not
significantly improve when adding states. We can see that we somehow managed to
train on these datasets, however probably reached the model capability.

In Figure 4.6 we present best trained model for each dataset. In Drosophila gaps
dataset we can see that while achieving acceptable cross-entropy at 22 states, the
phase-type distribution does not mimic the shape of data well.

In both Gains inc dataset and H3K4me3 dataset the resulting phase-type distri-
bution mimics the shape of data well, however the achieved cross-entropy is not as
good. In Gains inc dataset we achieved the best cross-entropy an 12 states which is
surprisingly low given the sample range and mean size.



4.4. GAPS 49

Figure 4.4: Histograms of annotation gaps : Drosophila exons (top left), Gains inc (top
right), H3K4me3 (bottom left), Hirt (bottom right)

Figure 4.5: Performance curve for each dataset of annotation gaps trained on combined
architecture with mean shifting. Cross-entropy in blue, Shannon entropy red, previous
best achieved cross-entropy in orange.



50 CHAPTER 4. REAL DATA MODELING

Figure 4.6: Best training for each dataset of annotations gaps trained with combined
architecture with mean shifting. Each figure shows density histogram of training data,
in blue and learned phase-type distribution in orange.

In hirt gaps we achieved the worst cross-entropy 19.99 to 4.75 of Shannon entropy
of the dataset. We can observe that the resulting phase-type distribution only approx-
imates the shape of the data, not fitting it correctly.

4.5 Conclusion

Overall, we were more successful modeling annotation lengths than gaps. We can say,
that the characteristic of the dataset has huge impact on the resulting model accuracy.
First of all the number of samples in dataset influence accuracy, secondly the sample
range and mean of the data are significant. This can be observed especially in the
hirt dataset, that performed worst in both interval lengths and gap lengths, having the
biggest mean and the least amount of samples.

We can also conclude that the sampling technique sometimes decreases the preci-
sion of model fit especially in big datasets where the chosen sample may not be that
representative of whole model, since it is chosen at random.



Chapter 5

Extending MCDP algorithm

In this chapter we will present updated MCDP algorithm, modified to work with our
trained models, and we will show computed results. Firstly we present modified algo-
rithm and then we show our results.

5.1 Description of the algorithm and its extension

In our task, the input consists of two annotations: one called reference R and the
other called query Q. For clarity, let R = {[e1, b1), [e2, b2), . . . , [em, bm)} and |R| = m,
|Q| = n. The original MCDP algorithm, described in [7], aimed to approximate the
Gold standard null hypothesis. According to this hypothesis, R is fixed, and Q is
chosen among all possible rearrangements, taking into account the structure of R and
the length of intervals in Q. However, computing the p-value under this hypothesis is
NP -hard [7]. The p-value can be computed by sampling.

The MCDP proposes a Markov chain null hypothesis that Q is generated by a
two-state Markov chain. The task is to determine the likelihood that an annotation
generated from a Markov chain will intersect with a given reference annotation. A
Markov chain is fitted to the query annotation. Let R = {[e1, b1), [e2, b2), . . . , [em, bm)}
the output is the probability that this Markov chain-generated annotation will hit at
least k intervals in the reference, for each k from 0 to |R|.

Our extension lies in replacing two original states of Markov chain from MCDP
with two Absorbing Markov Chain (AMC) (A,B), one trained on gap the other on
interval distribution. This is achieved by connecting all transitions to absorbing state
of one AMC to initial state of the other and vice versa (see Figure 5.1), forming a new
transition matrix T (see section 1.4).

Transition matrices of both AMC PA and PB are in normal form (see subsec-

51



52 CHAPTER 5. EXTENDING MCDP ALGORITHM

0A

1

2

XA

AMC A

0B

4

5

XB

6

AMC B

Figure 5.1: Visualization of the concatenation of two AMCs. States 0A and 0B, being
initial states, and XA and XB being absorbing states, in AMC A and AMC B, re-
spectively. The absorbing transitions from states 1 and 2 have been redirected to 0B,
similarly for states 4, 5 and 6 in AMC B.

tion 1.3.1 for definition). Then the transition matrix T is defined as:

T =


QA RA 0

RB 0 QB



5.1.1 Dynamic programming

The subsequent subsection explains the extension of the MCDP algorithm as presented
in [7], with the original notation preserved. MCDP computes Pr[#overlaps = k].

The authors proposed an algorithm based on the dynamic programming paradigm.
Let’s define P [j, k, s] as probability of hitting k reference intervals, after generating ej

states of Markov chain, with s being the last generated state. This probability admits
a recursive relationship, based on the following idea: To hit k out of j intervals, we
either hit k out of j − 1 intervals and do not hit the j-th interval, or we hit k − 1 out
of j − 1 intervals and hit the j-th interval. Formally, this recursive relationship looks
as follows:

P [j, k, s] =
∑

state∈IT

P [j, k − 1, state] · Pnohit(j, state, s)+

+
∑

state∈IT

P [j − 1, k − 1, state] · Phit(j, state, s)

Ultimately, we need to compute the probabilities Phit(j, state, s) and Pnohit(j, state, s).



5.1. DESCRIPTION OF THE ALGORITHM AND ITS EXTENSION 53

R :

Q : x????? 0000000000000yr
any zeros

gap g_j j-th interval I_j

Figure 5.2: No hit for the j-th interval. Before the j-th interval a gap of length
gj precedes. At the end of the (j − 1)-th interval, the Markov chain is in state x,
transitioning to state r at the start of the j-th interval, and ultimately reaching state
y.

Let’s define Ψany

(
x

a−→ y
)

as probability of getting form sate x to state y in a steps,

while generating anything, and Ψzeros

(
x

a−→ y
)

as probability of getting form sate x to
state y in a steps, while generating only 0. This specifically allows for transitions that
exclusively visit states in the AMC designated for gaps. We can express the probability
of not hitting interval j as follows.

To avoid hitting the j-th interval, the Markov chain can generate any symbol during
the gap, transitioning from state x to r for gj steps. Then, it must only generate zeros
during the interval, transitioning from state r to state y for Ij steps. Formally the
probabilities are computed as follows.

Pnohit(j, x, y) =
∑

state∈IT

Ψany

(
x

gj−→ state
)
·Ψzeros

(
state

Ij−→ y
)

Phit(j, x, y) = Ψany

(
x

gj+Ij−−−→ y
)
− Pnohit(j, x, y)

We can compute function Ψ by exponentiating the transition matrix as follows (see
section 1.3):

T a =


Ψany

(
0

a−→ 0
)

Ψany

(
0

a−→ 1
)

. . . Ψany

(
0

a−→ n
)

Ψany

(
1

a−→ 0
)

Ψany

(
1

a−→ 1
)

. . . Ψany

(
1

a−→ n
)

...
... . . . ...

Ψany

(
n

a−→ 0
)

Ψany

(
n

a−→ 1
)

. . . Ψany

(
n

a−→ n
)


Now, we aim to model the same scenario while restricting to generating only 0.

This can be effectively achieved by prohibiting all transitions to the Markov chain that
represents intervals, essentially setting those transition probabilities to zero. We define
modified transition matrix

D =

 QA 0

RB 0


Then, from Markov chain property follows that (x, y)-th entry of Da specifies

Ψzeros

(
x

a−→ y
)
.



54 CHAPTER 5. EXTENDING MCDP ALGORITHM

Da =


Ψzeros

(
0

a−→ 0
)

Ψzeros

(
0

a−→ 1
)

. . . Ψzeros

(
0

a−→ n
)

Ψzeros

(
1

a−→ 0
)

Ψzeros

(
1

a−→ 1
)

. . . Ψzeros

(
1

a−→ n
)

...
... . . . ...

Ψzeros

(
n

a−→ 0
)

Ψzeros

(
n

a−→ 1
)

. . . Ψzeros

(
n

a−→ n
)


Computing the dynamic table PDP breaks down to evaluating the Phit(j, x, y) and

Pnohit(j, x, y) . Both can be effectively expressed as matrix multiplication:

Pnohit(j, x, y) = T gjDIj

Phit(j, x, y) = T gj+Ij − T gjDIj = T gj(T Ij −DIj)

The original MCDP operates in O(m2+n) time and requires O(m) memory, where
m = |R| and n = |Q|. This time complexity breakdown consists of O(m2) for the
dynamic table and O(n) for computing the transition matrix. To effectively compute
each row of the PDP table in our modified program, we require evaluation of matrices
T and D raised to the power of a. Using the fast matrix exponentiation algorithm
(see section 1.3), we achieve this in O(log a) matrix multiplications. Our modified then
program operates in O(m2 log a) time, where a = max(gj, Ij|0 < j ≤ m). Since we use
precomputed transition matrices, we can omit the O(n) complexity from the original
MCDP. It runs in O(m+ s2) memory, where s is the size of the transition matrix.

5.1.2 Normalization

During the implementation of our algorithm, we encountered overflow issues due to
raising small transition probabilities to large powers, which resulted in a loss of nu-
merical precision. Therefore, after each exponentiation of the matrix T , we applied a
normalization step to ensure that the elements in each row sum up to 1.

5.2 Results

We run our model on two examples from the original MCDP article with the hirt and
Gains datasets as queries. These datasets are chosen because they are the smallest
ones, hence the simulation will be the fastest. We used our best trained AMC for both
gaps and intervals (see Chapter 4). The results are shown in Figure 5.3.

The computation for hirt dataset ran in approximately a minute, the Gains dataset
took around one hour to complete. This is due to the significant difference in the
dataset sizes.

Surprisingly, despite our anticipation of more accurate results from our extended
model due to its complexity and ability to capture query structure more precisely, we



5.2. RESULTS 55

Figure 5.3: P-values comparison of MCDP, direct sampling and extended MCDP for
hirt and Gains queries.

observed the opposite outcome. The simpler MCDP proved to be more accurate in
modeling direct sampling from the gold null hypothesis, compared to our extended
version.

The implementation of our extended model is available in the digital attachment.



56 CHAPTER 5. EXTENDING MCDP ALGORITHM



Chapter 6

Implementation details

In this chapter, we will discuss implementation details and describe the tools used for
optimisation, data visualization, and result analysis. We will cover the general tools
employed, the setup for fitting and evaluation (including the optimisation algorithm
and initialization), and some techniques used in modeling.

6.1 General used tools

We run our optimisation in Python [31]. For visualization we used matplotlib [16]
library. We used Snakemake [21] for pipelineing the evaluation of the synthetic chal-
lenges. For experimental and early stages of development we used Jupyter note-
books [18]. We used the pandas library [20] for data processing. For the visualization
of the final trained models we used graphonline [26]. The experiments were conducted
on a server with Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz × 48 and 128 GB
DDR RAM.

6.2 General setup of the fitting and evaluation

6.2.1 Objective function

As discussed in Section 1.4.2, our objective function is the cross-entropy, which is
computed as the negative log-likelihood derived from the data likelihoods. In the pro-
cess of calculating the log-likelihood of the data, we add a small constant, denoted as
ϵ = 1 × 10−20, to prevent division by zero in cases where the resulting data probabil-
ities become extremely small. This adjustment ensures numerical stability during the
computation.

57



58 CHAPTER 6. IMPLEMENTATION DETAILS

6.2.2 Optimisation algorithm

We chose the L-BFGS-B optimisation algorithm, for multiple reasons. It is determin-
istic, therefore we can replicate the results with the same initialization, if needed. It is
bounds constrained which is useful since we want to optimize probabilities which are
of range 0 to 1. Also we ran a test on all bound constrained algorithms and L-BFGS-B
performed the best for our specific task.

Bounds setting

Bounds are user defined input for the L-BFGS-B algorithm. All our experiments were
run with bounds (−15, 15) (this value goes into softmax to transform it to probability
(0, 1)).

In our experiment we encountered cases, when changing the bounds for specific
task, had an impact on optimisation. For example self-loop architecture on small value
Gaussian challenge, trained better with bounds (−2, 2). However, since we aimed at
automatizing the optimisation, we decided to set the bound uniformly for all architec-
tures and all challenges. We found that bounds (−15, 15) provide a wide enough range
to fit all our challenges.

Realize that computing the maximal mean of resulting phase-type distribution is
deterministic for given bounds, architecture and number of states. This can be done
through setting the back-loops and self-loops to maximum and transition probabili-
ties to absorption state to minimum. Corresponding transition matrix is then easily
constructed with knowledge of the architecture and number of states. Computing the
mean is then done by matrix operations described in subsection 1.3.1.

6.2.3 Initialization

The L-BFGS-B algorithm requires an initial guess for parameter values. Right at the
beginning of our tests, we found out that the correct initialization of parameters has a
substantial impact on the resulting cross-entropy. We tried multiple approaches, when
setting initial parameter weights.

Random initialization with multiple runs

Firstly, we decided to set each parameter at a random value from interval (−1, 1), as our
initial guess. However, this random initialization has an impact on optimisation results
and the final model cross-entropy. To mitigate the impact of randomization on results,
we run each optimisation 10 times, each time with different random initialization and
then we proceed to pick the one with best cross-entropy.



6.2. GENERAL SETUP OF THE FITTING AND EVALUATION 59

Mean shifting

However, as described in subsection 2.5.2 when training with big samples, e.g. data
mean around 300 or bigger, random initialization was not sufficient.

We developed a technique to pre-process the initial guess so that the optimisation
continues, also on datasets consisting of large values. The technique described in
subsection 2.5.2 is called mean shifting. Where we first shift the mass of the phase-
type distribution closer to the mean of the data distribution, and then we proceed to
train there.

The mean shifting technique consists of two phases. Firstly, we do a pre-processing
optimisation, where we shift the mean of the phase-type distribution close to the data
mean. This is done by optimizing objective function dependent on the difference of
means of these distributions.

The pre-processing optimisation naturally also requires initial parameter values, we
initialize these at random from interval (−1, 1).

The result of this pre-processing is then used as initialization for objective function.
User of our software tool can specify whether to train with mean shifting or without.

Adding noise

However, we would still like to keep the idea of running multiple optimisations with
different initialization, and then proceed to pick the one that gives the best cross-
entropy. We implemented this idea, by running the mean shifting optimisation, and
then applying small noise to the final result.

The noise we applied in our experiments was Gaussian noise with mean 0 and
standard deviation 0.1. We then proceed to optimize 10 times with output from mean
shifting pre-processing and with 9 initialization with added Gaussian noise. Then we
proceed to pick the most optimal one from these results.

However, this process is still heavily dependent on the initial guess, going to mean-
shifting pre-processing. To address this, we run the entire process 10 times and select
the best result. This approach helps mitigate the impact of random initialization on
the final outcome.

Parallelization

Finally, since we run the same optimisation subroutine multiple times, just with differ-
ent random initialization, we decided to parallelize the process to speed up the training.
We used python multiprocessing library [31] to achieve this.

User of our software tool can specify how many threads will be used for training as
well as number of iterations for each training.



60 CHAPTER 6. IMPLEMENTATION DETAILS

6.2.4 Sub-sampling

In chapter 4, where we modeled annotations from real datasets, we described a sampling
technique (see section 4.1). In chapter 4 we run all experiments with sample size 2000.
To generate samples, we utilized the numpy library [12] random.choice function without
replacement. For each optimisation run new random sample is generated. In chapters 3
and 2 were experiments run without sampling.

Sample size is a parameter user can define when running our software tool, to
control the speed and training precision.



Conclusion

In this thesis, we developed a software tool for modeling genomic annotations using
phase-type distributions. Our approach involved examining various architectures of
absorbing Markov chains and evaluating their theoretical power and quality of fit. The
combined architecture with mean shifting was selected as the most suitable model due
to its flexibility and accuracy when tested on synthetic challenges.

We extended the MCDP model to incorporate absorbing Markov chains, which
enabled more precise computation of p-values for observed overlaps in genomic an-
notations. This extension addressed the issue of the original tool modeling gap and
interval lengths being geometric distributions.

Throughout the thesis, we addressed the necessity of accurately modeling gap and
interval length distributions. Phase-type distributions proved to be an effective solu-
tion, and our fitting process, which minimized cross-entropy by optimizing transition
probabilities, ensured high-quality fits for complex genomic data.

We explored various absorbing Markov chain architectures, discussing the trade-
offs between density, theoretical power, and performance. We proposed four synthetic
challenges to evaluate the architecture performance. Additionally, we introduced the
performance curve as a model selection method, depicting the achieved cross-entropy
vs. the number of states for each architecture.

We examined three basic architectures: self-loop, early-escape, and combined ar-
chitectures. Additionally, we introduced the mean shifting technique to enhance the
training of the combined architecture on datasets with large values. Then we intro-
duced three dense architectures: fully connected, pruned, and k-jumps architectures
and tested them against set of the synthetic challenges.

Based on the performance on synthetic challenges, we concluded that the combined
architecture with mean shifting is most suitable for modeling real genomic annota-
tions. We also introduced a sampling technique to speed up the training process on
big datasets. We then trained the combined architecture with mean shifting on four
genomic datasets. Our results indicated that interval lengths were modeled more effec-
tively than gaps, and dataset characteristics such as mean and sample size significantly
impacted the quality of fit.

Finally, we integrated our findings into the MCDP model and compared our results

61



62 Conclusion

with the original MCDP and permutation tests. This comprehensive evaluation un-
derscored the advantages of our approach in genomic data analysis, providing a more
accurate and robust method for modeling genomic annotations.

In conclusion, our work presents an approach to genomic annotation modeling that
utilizes phase-type distribution. Future research could further enhance the fitting by
implementing different loss functions, such as the earth mover’s distance, to improve
performance even further.



Bibliography

[1] Hansjörg Albrecher, Martin Bladt, Mogens Bladt, and Jorge Yslas. Continuous
scaled phase-type distributions. Stochastic Models, 39(2):293–322, 2023.

[2] Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. Statistical science,
8(1):10–15, 1993.

[3] T Britannica. Editors of encyclopaedia. Argon. Encyclopedia Britannica, 2020.

[4] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited mem-
ory algorithm for bound constrained optimization. SIAM Journal on scientific
computing, 16(5):1190–1208, 1995.

[5] Wai-Ki Ching and Michael K Ng. Markov chains. Models, algorithms and appli-
cations, 2006.

[6] David Ellerman. New foundations for information theory: logical entropy and
Shannon entropy. Springer Nature, 2021.

[7] Askar Gafurov, Broňa Brejová, and Paul Medvedev. Markov chains improve
the significance computation of overlapping genome annotations. Bioinformat-
ics, 38(Supplement_1):i203–i211, 2022.

[8] Askar Gafurov, Tomáš Vinař, Paul Medvedev, and Broňa Brejová. Efficient anal-
ysis of annotation colocalization accounting for genomic contexts. In Interna-
tional Conference on Research in Computational Molecular Biology, pages 38–53.
Springer, 2024.

[9] Bernat Gel, Anna Díez-Villanueva, Eduard Serra, Marcus Buschbeck, Miguel A.
Peinado, and Roberto Malinverni. regioneR: an R/Bioconductor package for the
association analysis of genomic regions based on permutation tests. Bioinformat-
ics, 32(2):289–291, 2015.

[10] Charles Miller Grinstead and James Laurie Snell. Introduction to probability.
American Mathematical Soc., 1997.

63



64 BIBLIOGRAPHY

[11] Matthew G Guenther, Stuart S Levine, Laurie A Boyer, Rudolf Jaenisch, and
Richard A Young. A chromatin landmark and transcription initiation at most
promoters in human cells. Cell, 130(1):77–88, 2007.

[12] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, 2020.

[13] Andreas Heger, Caleb Webber, Martin Goodson, Chris P. Ponting, and Gerton
Lunter. GAT: a simulation framework for testing the association of genomic in-
tervals. Bioinformatics, 29(16):2046–2048, 2013.

[14] Anne Marie Helmenstine. What is the null hypothesis? definition and examples,
2019.

[15] András Horváth and Miklós Telek. Phfit: A general phase-type fitting tool. In
International Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, pages 82–91. Springer, 2002.

[16] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(3):90–95, 2007.

[17] C. Isensee and G. Horton. Approximation of discrete phase-type distributions. In
38th Annual Simulation Symposium, pages 99–106, 2005.

[18] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Will-
ing. Jupyter notebooks – a publishing format for reproducible computational
workflows. In Positioning and Power in Academic Publishing: Players, Agents
and Agendas, pages 87 – 90. IOS Press, 2016.

[19] Alexander Koronen. Mean and variance of absorption time in a population ge-
netics model: Comparison between Markov chain and diffusion process methods.
Master’s Theses in Mathematica Sciences, 2019.

[20] Wes McKinney et al. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56.
Austin, TX, 2010.



BIBLIOGRAPHY 65

[21] Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christo-
pher H Tomkins-Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O
Twardziok, Alexander Kanitz, et al. Sustainable data analysis with Snakemake.
F1000Research, 10, 2021.

[22] Luis R Nassar, Galt P Barber, Anna Benet-Pagès, Jonathan Casper, Hiram Claw-
son, Mark Diekhans, Clay Fischer, Jairo Navarro Gonzalez, Angie S Hinrichs,
Brian T Lee, et al. The ucsc genome browser database: 2023 update. Nucleic
acids research, 51(D1):D1188–D1195, 2023.

[23] James R Norris. Markov chains. Cambridge university press, 1998.

[24] Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables, and
stochastic processes. McGraw-Hill Europe: New York, NY, USA, 2002.

[25] Shahab Sarmashghi and Vineet Bafna. Computing the statistical significance of
overlap between genome annotations with istat. Cell systems, 8(6):523–529, 2019.

[26] Oleg Shiakhatarov. graphonline. https://graphonline.ru/en/, 2019.

[27] Saša Singer and John Nelder. Nelder-mead algorithm. Scholarpedia, 4(7):2928,
2009.

[28] Joan Stephenson. Talking genetics glossary. JAMA, 281(7):600–600, 1999.

[29] Anders Tolver. An introduction to markov chains. Department of Mathematical
Sciences, University of Copenhagen, 2016.

[30] Kristen M Turner, Viraj Deshpande, Doruk Beyter, Tomoyuki Koga, Jessica
Rusert, Catherine Lee, Bin Li, Karen Arden, Bing Ren, David A Nathanson,
et al. Extrachromosomal oncogene amplification drives tumour evolution and ge-
netic heterogeneity. Nature, 543(7643):122–125, 2017.

[31] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

[32] Mehdi Zarrei, Jeffrey R MacDonald, Daniele Merico, and Stephen W Scherer.
A copy number variation map of the human genome. Nature reviews genetics,
16(3):172–183, 2015.

[33] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on mathematical software (TOMS), 23(4):550–560, 1997.

https://graphonline.ru/en/


66 BIBLIOGRAPHY



Appendix A: content of the electronic
appendix

In the electronic appendix accompanying the thesis, you will find the source code of
the software tool for fitting genomic annotations, the source code for the extended
MCDP program, and data files for reproducibility of the experiments. The source
code for the genomic annotations tool is publicly available on the GitHub page https:
//github.com/HanaDerkova/bakalarka, and the source code for the extended MCDP
program is publicly available on the GitHub page https://github.com/HanaDerkova/
extended-MCDP. The specific usage of both tools is further described in their respective
README.md files.

67

https://github.com/HanaDerkova/bakalarka
https://github.com/HanaDerkova/bakalarka
https://github.com/HanaDerkova/extended-MCDP
https://github.com/HanaDerkova/extended-MCDP

	Introduction
	Preliminaries
	Biological context and motivation
	Basic Terminology
	Genomic annotations

	Statistical testing
	Null hypotheses for the colocalization analysis

	Markov chains
	Absorbing Markov chain. Mean and variance of the absorption time.

	Absorption time as a data distribution in MCDP model
	Model
	Goal - minimizing cross entropy
	Softmax function
	Model training
	L-BFGS-B


	Basic Markov chains architectures
	Architecture selection criteria
	Synthetic data challenges: Architecture testing
	Self-loop architecture
	Performance of the self-loop architecture

	Early-escape architecture
	Performance of the early-escape architecture

	Combined architecture
	Performance of the combined architecture
	Improvement of the optimisation by fitting the mean first


	Advanced Markov chains architectures
	Fully connected architecture
	Performance evaluation of fully connected architecture

	Pruned architecture
	Performance evaluation of the pruned architecture

	k-jumps architecture
	Performance evaluation of the k-jumps architecture


	Real data modeling
	Sampling
	Data
	Intervals modeling
	Performance evaluation

	Gaps
	Performance evaluation

	Conclusion

	Extending MCDP algorithm
	Description of the algorithm and its extension
	Dynamic programming
	Normalization

	Results

	Implementation details
	General used tools
	General setup of the fitting and evaluation
	Objective function
	Optimisation algorithm
	Initialization
	Sub-sampling


	Conclusion
	Appendix A

