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Abstrakt

V tejto práci implementujeme zjednodušenú verziu indexovej dátovej štruktúry ALCS.
Táto dátová štruktúra nájde približne najdlhší spoločný podreťazec ľubovoľného vzoru
P a textu T . Následne túto dátovú štruktúru vyhodnotíme na dátach sekvencií genó-
mov vírusu covid.

Kľúčové slová: najdlhší spoločný podreťazec, komprimovaný textový index, repetitívne
dáta
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Abstract

In this thesis, we implement a preliminary version of the ALCS index data structure.
This data structure finds an approximately longest common substring of any pattern P

and text T . Then, we evaluate this data structure on data of covid genomes sequences.

Keywords: longest common substring, compressed text index, repetitive data
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Introduction

In the real world, we encounter huge amounts of data, yet much of this data con-
tains low actual information content. Data across various fields, such as bioinformatics
(e.g., DNA sequences) and astronomy (e.g., telescope networks), tend to be highly
repetitive [17]. It is imperative to separate the concept of data size from its actual in-
formation content. Consequently, new data representations are required to ensure that
the space of data is proportional to its information content. While some compressed
data structures exist to reduce the size of large texts, there is also a need for the abil-
ity to access data directly and perform sophisticated queries without decompression.
Compressed text indices offer a promising solution. The indices represent a collection
of strings in a compressed format and enabling fast pattern matching without the need
for decompression.

The primary aim of this thesis is to implement and evaluate a preliminary version
of the ALCS index data structure proposed by Gagie et al. [9]. The ALCS index data
structure efficiently identifies a fraction of the longest common substring of any given
pattern P and text T , while using only space proportional to the compressed size of T .

The first chapter introduces fundamental terminology and definitions that will be
used throughout this thesis. Additionally, we describe related work and provide an
overview of the ALCS data structure, which serves as the theoretical basis for our
implementation.

In the second chapter, we provide a detailed description of our implementation
of data structure along with its algebraic background. We also discuss the issues we
encountered during the implementation process.

In the third chapter, we evaluate the data structure through two experiments on
real-world data, presenting and analyzing the obtained results.
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2 Introduction



Chapter 1

Compressed text indices

Recent years in string collection indexing have marked a significant milestone, allowing
their representation within compressed space. This means that we can efficiently store
large amounts of string data while saving memory. In computational tasks involving
strings, we typically preprocess the text, allowing us to later perform operations more
efficiently. Text preprocessing involves preparing and transforming raw text into a
format that is more suitable for indexing. Text indexing is the process of creating a
structured representation of the text data to enable fast and efficient retrieval. Addi-
tionally, this indexing technique provides indexed search functionalities, enabling rapid
retrieval of specific substrings or patterns within the compressed data. This approach
enables us to handle large volumes of string data with ease and speed.

Many of these rapidly expanding string collections exhibit high repetitiveness, which
means the amount of information in those data is relatively low. However, the statistical
compression methods used for classical collections fail to recognize this repetitiveness
[17]. Hence, the new generation of data structures, which is able to handle the huge
repetitive string collections, has been initiated.

Compressed text indices are purpose-built structures designed to enhance search
effectiveness, enabling expedited search capabilities and rapid access to patterns or
substrings within the data. Commonly utilized methods include compressed versions
of suffix trees [22] and arrays [15], and the FM-Index (with the Burrows-Wheeler Trans-
form as its building block) by Ferragina and Manzini [7].

1.1 Notion of entropy in high repetitiveness scenario

Statistical entropy [Shannon,[20]] provides an optimal and attainable measure of com-
pressibility in statistical compression, where the goal is to exploit frequency skew.
Although statistical entropy is originally defined for infinite sources, it can be adapted
to individual strings. The measure derived for individual strings, known as empiri-

3



4 CHAPTER 1. COMPRESSED TEXT INDICES

cal entropy [Cover and Thomas, [5]], serves as a feasible lower bound on the storage
space required for a semistatic statistical compressor to effectively compress that string.
However, statistical entropy fails to adequately capture other sources of compressibility,
particularly repetitiveness.

In 1948, Shannon [20] proposed a measure of compressibility that exploits the vary-
ing probabilities of symbols emitted by a source. The source is “memoryless” in most
basic form of statistical entropy and emits each symbol a ∈ Σ with a fixed probability
pa. This entropy is then defined as:

H({pa}) =
∑
a∈Σ

pa log
1

pa

Entropy serves as a tool for quantifying information. The amount of information is
most commonly expressed in bits or units derived from them [6]. However, empirical
entropy is blind to long repetitions in text in the sense that H(S) ≤ H(SS) [14].
Consequently, any compressor achieving the empirical entropy will compress S · S to
approximately twice the space it uses to compress S. Considering the repetitiveness, it
would be more beneficial to compress S in any form and then somehow indicate that the
second copy of S follows. Efficient compression and searching through vast repetitive
data are crucial. Hence, there is a pressing need for more efficient data structures.

1.2 Preliminaries

In this section, we introduce the basic definitions and concepts that will be used
throughout this thesis. We define fundamental terms such as strings, indexed pattern
matching, grammar compression, straight-line programs, and more. These definitions
will provide the necessary mathematical background for our implementation.

1.2.1 Strings

A string [17], denoted as S = S[1 . . . n], is a sequence of symbols from a finite set
of characters Σ, referred to as the alphabet. Here, we assume Σ = {1, 2, . . . σ}. We
denote the length of a string S[1 . . . n] as |S| = n. A symbol of S at the i-th position
is denoted as S[i]. The substring of S from position i to position j (i < j) is denoted
as S[i . . . j] = S[i] . . . S[j]. In cases where i > j, then S[i . . . j] = ε, the empty string.
The string S[1 . . . n] read in reverse is denoted as Srev = S[n] . . . S[1]. A prefix of S of
length j is a substring denoted by S[1 . . . j] = S[1] . . . S[j], while a suffix is represented
by S[i . . . n], or equivalently S[i . . .]. Next, we denote the concatenation of strings S1

and S2 as S1S2 = S1[1] . . . S1[|S1|]S2[1] . . . S2[|S2|], i.e., the symbols of S2 are appended
after the symbols of S1. We sometimes denote concatenation as aS or Sa, where a ∈ Σ
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represents a single symbol of length 1. The lexicographic order for strings is defined
same as in a dictionary. Let S1, S2 be the strings. If S1 = ε, then S1 ≤ S2. Otherwise,
let S1 = aX, S2 = bY , where X and Y are the strings and a, b ∈ Σ be the symbols.
Then S1 ≤ S2 if :

• a < b

• a = b and X ≤ Y

1.2.2 Indexed Pattern Matching

The problem of indexed pattern matching [18] involves building a data structure, de-
noted as an index, to increase efficiency in searching for patterns in the string S[1 . . . n].
Let P [1 . . .m] be a string pattern, whose occurrences in S are to be found. The output
is the set of all occurrences Occ, such that Occ = {i, S[i . . . i+m−1] = P}. We aim for
the time complexity to be independent of n entirely and to depend only polynomially
on the length of P . When considering input reading and output writing, the optimal
search time is O(m+Occ). Pattern matching can be performed on a collection of strings
S1, . . . , Sd ($-terminated), by concatenating the strings into a single one S = S1 . . . Sd

and then applying pattern matching on S.

1.2.3 Suffix Trees

The suffix tree [17] is a digital tree that contains all suffixes of string S. In the suffix
tree, every suffix of S labels a single root-to-leaf path. Accordingly, no node has two
distinct children labeled by the same symbol. Moreover, every path of nodes with a
single child is compressed into single edge labeled by the concatenation of labels from
all the edges of the path. Every leaf in the suffix tree corresponds to a suffix, while
each internal node corresponds to a substring of S that appears more than once. The
suffix tree can be represented within O(n) space.

The suffix array [18] of string S[1 . . . n] is the array A[1 . . . n], where the positions
of the suffixes of S are stored in lexicographic order.

The suffix array of the string S = alabaralalabarda$ :
Suffix array

17 16 3 11 1 9 7 5 13 4 12 15 2 10 8 6 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

String

a l a b a r a l a l a b a r d a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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1.2.4 Grammar Compression

One of the frequently used compression techniques is based on context-free grammars
introduced by Kieffer and Yang [13]. For a given string S = [1 . . . n], we construct
a context-free grammar that generates only the string S, which we then use as a
compressed representation. One of the many reasons why grammar compression is
widely used is that grammars allow for direct access to the compressed string in O(log n)

time [17]. We denote the size of a grammar as g, defined as the sum of the lengths of
the right-hand sides of the rules. Furthermore, we denote exp(X) to be the expansion
of the nonterminal X (i.e., the string). It is then obvious that |X| = |exp(X)|.

Straight-line programs (SLPs) [10] are a specific type of context-free grammar
that generate only a single finite string S. When represented in a Chomsky’s normal
form, it consists of rules formatted as X → Y Z, where X is nonterminal, Y can
represent either terminal or nonterminal, and Z can also represent either a terminal or
a nonterminal. When given a repetitive string S of length n, it can be represented with
an SLP consisting of g rules, where g ≪ n. An example of an SLP with non-binary
rules for the string T = alabaralalabarda$ is also illustrated in Fig. 1.1.

It is possible for it to be more compact than alternative methods, such as the run-
length encoded Burrows-Wheeler Transform [17]. However, determining the smallest
context-free grammars for specific texts is an NP-complete problem [21, 2]. Despite this
difficulty, there exists some heuristics that offer assistance, such as BigRePair1 [8],
that produces very small SLPs in real scenarios.

In many cases, such as random access, it is desirable for the grammar to be balanced,
ensuring that the paths from the root to any leaf in the parse tree are not excessively
long. This property can be defined simply as the depth of the parse tree will be
O(log n). However, this does not say anything about the complexity of the subtrees,
which can still be quite unbalanced. Therefore, Charikar et al. [2] strengthened this
condition:

Definition 1.2.1. [2] For a constant 0 < α ≤ 1/2, an SLP is said to be α-balanced if,
for every rule X → Y Z, it holds that

α

1− α
≤ |Y |
|Z|
≤ 1− α

α
.

The definiton 1.2.1 means, that exp(Y ) and exp(Z) have approximately similar
lengths.

The parse tree [17] of the grammar is a tree whose vertices are labeled by non-
terminal symbols and terminal symbols of the grammar. Its root bears the label of the
initial symbol. Each internal node is labeled with a nonterminal X: if X → Y1, . . . , Yk,

1Available online at https://gitlab.com/manzai/bigrepair.

https://gitlab.com/manzai/bigrepair


1.2. PRELIMINARIES 7

then node X has k children labeled from left to right as Y1, . . . , Yk. Thus, the leaves
are labeled corresponding to the terminals that form S. The size of the parse tree is
O(n) according to its definition.

The grammar tree [17] is obtained by pruning the parse tree, which retains only
one internal node labeled X for each nonterminal (in our case, we consider retaining
the leftmost occurrence). All other occurrences of X are converted to leaves by pruning
their subtrees. In a grammar of size g, as the grammar tree has k children for each
unique nonterminal X → Y1, . . . , Yk, in addition to the root, the number of nodes is
g+1 [17]. A grammar tree imposes a partition of the string S into at most g substrings,
each covered by a leaf of the grammar tree. Each leaf represents either a terminal or a
pruned nonterminal. Consequently, we can define a left-to-right parse with at most g

phrases. The size of the grammar tree is O(g) according to its definition.
Fig. 1.1 shows an example of a context-free grammar with its parse tree and a

grammar tree.

Figure 1.1: A context-free grammar that generates the string S = alabaralalabarda$

of size g = 13 is illustrated with its parse tree (left) and a grammar tree (right),
highlighting the parsing of string S with underlined phrases. The grammar rules are
presented at the bottom. Image sourced from Navarro’s article [18].

1.2.5 String attractors

The string attractor [17] of string S is a set Γ ⊆ {1, 2, . . . , |S|}, of positions in S such
that any substring S[i..j] must have an occurrence S[i′..j′] that contains an element of
Γ.

Definition 1.2.2. [12] A string attractor of a string T is a set of γ positions Γ =

j1, . . . , jγ such that every substring T [i . . . j] has an occurrence T [i′ . . . j′] = T [i . . . j]

with jk ∈ [i′, j′], for some jk ∈ Γ.

The interval [i, j] is an interval of positive integers. The size of an attractor Γ of
string S is denoted as γ(S). It is also invariant to string reversals: γ(S) = γ(Srev).
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Repetitive strings have small attractors, and it holds that γ ≤ g∗, where g∗ is the size
of the smallest SLP [12].

Example. An attractor of string S = alabaralalabarda$ is Γ = {4, 6, 7, 8, 15, 17}.
Γ is also the smallest possible attractor, with a size equal to the size σ of the alphabet
Σ, and it is evident that γ ≥ σ. For instance, the substring S[3..9] = bara includes
positions 6 and 7 from Γ. Similarly, S[5..12] = aralalab contains positions 6, 7, 8,
15, and 17 from Γ. Additionally, S[1..5] = alaba includes position 4 from Γ, and
S[10..17] = labard contains positions 8, 15, and 17 from Γ.

Note that it is NP-complete to find the smallest attractor size for string S [12].
However, utilizing a parse of the grammar tree enables us to obtain a sufficiently good
string attractor. We can obtain such a string attractor of size O(g) by considering the
boundaries of parse phrases defined by the grammar tree. Further, when given string
S and its string attractor Γ of size γ for S, we can construct an SLP for S with a size
of O(γ log(n/γ)) [4].

1.2.6 Orthogonal range queries

Orthogonal range queries are used for various purposes, primarily in computational ge-
ometry, and are performed in multi-dimensional data structures. These queries involve
processing a set of objects to determine which objects intersect with a query object de-
fined by a range. The data structure, performing orthogonal range queries, represents

(a) (b)

Figure 1.2: A grammar parsing of the text T =

GATTACAT$AGATACAT$GATACAT$GATTAGAT$GATTAGATA$ into
13 phrases. Let X → Y Z be a rule in a grammar G. The discrete two-dimensional
grid has one row and one column per element of T , exp(Y ) have co-lexicographic
position i in T and exp(Z) have lexicographic position j in Y (figure (a)). Then, we
set a point at position (i, j) in the grid (figure (b)). Image sourced from Travis’s slides
based on [9].
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a set of points and a two-dimensional grid, describing a successive reshuffling process
where the points are initially sorted by one coordinate and end up sorted by another.

An example of a discrete grid is shown in Figure 1.2.
The wavelet tree [16] is a space-efficient data structure used for orthogonal range

queries. Its space adapts to different entropy measures of the encoded data, allowing
for compressed representation. Wavelet trees can represent a grid of points by storing
the coordinates and reordering the points based on the coordinates. They are a slightly
less general data structure of Chazelle [3]. Wavelet trees have been extensively used in
compressed text indexing data structures to represent grids and enable efficient range
counting and reporting of the points within a rectangle. Sophisticated wavelet tree vari-
ants can achieve optimal time complexity for grid range counting (O(log n / log log n))

and reporting (O((1 + occ) logε n)) within O((1 /ε)n log n) bits of space [16].

1.2.7 Karp–Rabin fingerprints

Assume the alphabet Σ = {1, ..., σ}. Let c > σ be randomly chosen positive integer,
S is a string with its maximum length N and 2N c+4 ≤ p ≤ 4N c+4 is a prime number.
The Karp-Rabin fingerprint [1] of string S is then defined as

ϕ(S) =

|S|−1∑
i=0

S[i] · ci
 mod p

Karp-Rabin fingerprints ensure that if two strings S1, S2 are equal, then their finger-
prints ϕ(S1) and ϕ(S2) will also be equal. Moreover, if S1 ̸= S2, then also ϕ(S1) ̸= ϕ(S2)

with probability at least 1− n−c.
When given string S = S1S2, decomposable into a prefix S1 and suffix S2, then

fingerprints can be composed as

ϕ(S) = ϕ(S1)⊕ ϕ(S2) = ϕ(S1) + c|S1| · ϕ(S2) mod p,

where ⊕ denotes addition modulo p.
Karp and Rabin [11] proposed fingerprinting to solve the classic pattern matching

problem. To solve the problem the algorithm computes the fingerprint of P (string
pattern) and compares it to the fingerprint of all substrings of length |P | in S (string).
To efficiently compute all fingerprints of length |P | in S, the key observation is that the
fingerprint for S[i, i+ |P |] can be computed from the fingerprint of S[i−1, i−1+ |P |] in
constant time using simple properties of composition of fingerprints, as we mentioned
above. To find an occurrence of P in S, one simply compares the fingerprint of P with
the fingerprints of length |P | in S. When the fingerprints are equal, there is a high
probability that it is an occurrence of P .
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With the Karp-Rabin fingerprinting method, if a given string S of length n is
compressed into an SLP G of size g, it is possible to construct O(g) space data structures
that compute ϕ(S[i..j]) in time O(log n) [1].

1.2.8 Maximal Exact Matches (MEM)

Exact pattern matching is often used for indexing highly repetitive data, but it may
not fully reflect the needs of the real world due to various reasons, such as errors, noise,
or complex patterns. Therefore, inexact pattern matching methods, such as Maximal
Exact Matches (MEMs), are used to handle more complex and variable patterns. A
maximal exact match is a maximal substring of the pattern that appears in the indexed
text, formally defined as follows:

Definition 1.2.3. [19] A Maximal Exact Match (MEM) of a pattern P [1..m] in a
string T is a substring P [i . . . j] that occurs in T , but in addition

• i = 1 or P [i− 1 . . . j] does not occur in T ,

• j = m or P [i . . . j + 1] does not occur in T .

This concept has various use cases, such as identifying similarities between two
genomes or finding long unchanged segments within a gene. It can be used for read
alignment on a reference genome, where the segment’s (substring) length typically
ranges in the hundreds or thousands, while the length of the genome (text) can extend
into the billions.

We can find MEMs in an indexed text T in O(m) time using a suffix tree [19], by
creating a suffix tree concatenated string T and P , and then traversing the tree to
identify the MEMs.

1.3 Related work

In this section, we provide a fundamental overview of key methodologies for managing
compressed string collections.

1.3.1 Grammar based indices

As mentioned in section 1.2.4, one of the useful compression techniques involves con-
structing a context-free grammar. Then we can directly access the data without the
requirement for decompression. Additionally, sophisticated queries can be performed
on the compressed data. This is called Compressed text indexing [17] or parsing-based
indexing. The key idea is that we obtain parsing by building the grammar tree, which
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divides S[1..n] into p phrases: S = S1..Sp. Based on the parsing, we can classify the
occurrences of any pattern P [1..m] into two types [18]:

• the primary occurrences

• the secondary occurrences

The primary occurrences cross phrase boundaries, while the secondary occurrences
are contained within a single phrase. Every substring S has an occurrence, that is pri-
mary. Consider the grammar tree: every secondary occurrence must have an occurrence
somewhere to the left. The nonterminal, whose expansion contains this occurrence was
pruned, as it has an earlier occurrence. Therefore, when you start from the secondary
occurrence and track to the left to find the original occurrence, you locate the primary
occurrence.

Parsing-based indexing, with using SLPs, is achieved by detecting primary occur-
rences using an O(g) space data structure and obtaining secondary occurrences from
the primary ones, also using O(g) space.

The main idea behind how primary occurrences can be tracked is as follows: every
primary occurrence of pattern P in S can be uniquely described by an interval ⟨i, j⟩,
indicating the leftmost phrase Si it intersects and the position j of P that aligns at
the end of that phrase. We have two sets X (the reversed phrase contents) and Y

(the suffixes) that are lexicographically sorted and used in bidimensional grid of size
p× p. The grid has exactly p points, one per row and per column. If the xth element
of X in lexicographic order is Xi and the yth element of Y in lexicographic order is
Yi for some i, then there is a point labeled i at (x, y) in the grid. To obtain primary
occurrences, we first find the intervals of P in X and Y , and then we retrieve the points
in the two-dimensional range. For each retrieved point (x, y), labeled as i, we report
the primary occurrence ⟨i, j⟩.

Finally, from the primary occurrences, we find the secondary occurrences, which
are all occurrences of P in S.

1.3.2 ALCS

In this subsection, we will elucidate some basic information about the data structure
presented in the article by Gagie, Kashgouli and Navarro [9], upon which our data
structure is based.

The article proposes a method for finding approximately longest common substring
of a pattern P ) in a string (text T ) using a simple grammar-based index. The longest
common substrings are essentially the longest MEMs. They demonstrate how, given
positive constants ϵ and δ, and an α-balanced straight-line program with g rules for
a text T [1..n], it is possible to build an index of O(g) space complexity. This index,
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when given a pattern P [1..m], can find, with high probability, a substring of length
ℓ = (1/(1− ϵ))k of P that occurs in T in O(m logδ g) time. The discovered substring’s
length ℓ is guaranteed to be at least a (1− ϵ) fraction of the longest common substring
of P and T .

Data structure

The data structure, constructed from an α-balanced SLP G, stores sets of prefixes and
suffixes of exp(X) of each nonterminal X ∈ G with exponentially increasing lengths.
These sets are referred to as prefix and suffix blocks, respectively.

Definition 1.3.1. [9] Let X be a symbol in G, and let 0 < ϵ < 1 be a fixed constant.
For each 0 ≤ k ≤ log1/(1−ϵ) |X|, we define exp(X)[1..⌈1/(1− ϵ)k⌉] as a prefix block, and
exp(X)[[X]− ⌈1/(1− ϵ)k⌉+ 1..|X|] as a suffix block.

When given the value ϵ, we denote sets X , Bpref, Bsuff as:

X = {exp(X), X is a symbol in G},

Bpref = {B,B is a prefix block of a symbol X in G},

Bsuff = {B,B is a suffix block of a symbol X in G}.

Then, we compute the Karp-Rabin fingerprint ϕ(B) and the lexicographic range
[sB, eB] of the strings in X that are prefixed by B, for each prefix block B in the set
Bpref. Then, we store each pair (ϕ(B), [sB, eB]) in a hash table Hpref, using ϕ(B) as the
key and [sB, eB] as the associated value.

Similarly, we compute the fingerprint ϕ(B) and the co-lexicographic range [sB, eB]

of the strings in X that are suffixed by B, for each suffix block B in the set Bsuff.
Afterwards, we also store each pair (ϕ(B), [sB, eB]) in a hash table Hsuff, with ϕ(B) as
the key and [sB, eB] as the value.

The sizes of both prefix blocks |Bpref| and suffix blocks |Bsuff| are O(g), implying
that the sizes of the hash tables are also O(g) [9]. Furthermore, their combined size,
|Bpref|+ |Bsuff|, is also O(g) [9].

The last component of the data structure consists of a discrete two-dimensional
grid of g points. Let X → Y Z be a rule in G. Each point is positioned at (i, j) in the
grid, where i represents the co-lexicographic position of exp(Y ) in T , and j represents
the lexicographic position of exp(Z) in T . The grid is represented in O(g) space.

Finally, the entire data structure consists of Hpref, Hsuff, and the two-dimensional
grid, totaling O(g) space.

Queries

As a result of mentioned data structure, when given pattern P of length |P | > 1 in T ,
then exists:
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• an index p, such as 1 ≤ p < |P |

• a point (i, j) in two-dimensional grid, where

– i is the co-lexicographic range of exp(Y ) ∈ X , suffixed by P [1..p]

– j is the lexicographic range of exp(Z) ∈ X , prefixed by P [p+ 1..|P |]

We denote the longest common substring of P and T as L. According to the
properties of the data structure, authors proved that it suffices to find a substring of
length ℓ = (1/(1 − ϵ))k of L. There is such index p that divides L into LY and LZ .
Then, let X → Y Z be a rule in G. Furthermore, we denote exponents kY and kZ ,
which are upper boundaries of lengths LY and LZ . To sum up, authors have shown,
that it suffices to find suffix of length ℓY = ⌈(1/(1 − ϵ))kY ⌉ of exp(Y ) and a prefix of
length ℓZ = ⌈(1/(1− ϵ))kZ⌉ of exp(Z).

To find an approximate longest common substring between T and P [1..m], the
authors presented the following algorithm:

Algorithm 1 The algorithm returning an approximation to the length of the longest
common substring between T [1 . . . n] and P [1 . . .m]. This algorithm is from ALCS
article [9].
1: ℓ← 0

2: for p← 1 to m do
3: for kY ← 0 to ⌊log1/(1−ϵ) p⌋ do
4: ℓY ← ⌈(1/(1− ϵ))kY ⌉
5: [sY , eY ]← search Hsuff for P [p−ℓY+1..p]

6: if [sY , eY ] was found then
7: for kZ ← 0 to ⌊log1/(1−ϵ)(m− p)⌋ do
8: ℓZ ← ⌈(1/(1− ϵ))kZ⌉
9: [sZ , eZ ]← search Hpref for P [p+ 1..p+ ℓZ ]

10: if [sZ , eZ ] was found then
11: if G has a point in [sY , eY ]× [sZ , eZ ] then
12: ℓ← max(ℓ, ℓY + ℓZ)

13: return ℓ
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Chapter 2

Implementation

In this chapter, we describe the implementation of a preliminary version of the ALCS
index data structure by Gagie et al. [2013, [9]]. This data structure is designed to find
all matches of approximately half the desired length that can be extended to matches
of approximately the desired length, although it may also identify some matches of
about half the desired length that cannot be so extended.

As the input of our data structure, we consider an SLP program G constructed by
the BigRePair software1. BigRePair takes a text T = [1 . . . n] as input and outputs a
constructed SLP G. BigRePair software is a version of the popular RePair heuristic
(Larsson and Moffat),which produces small SLPs and works better than methods that
guarantee some approximation ratio. However, the original RePair does not scale to
large data, as it requires linear memory.

The rules of G consist of terminals and nonterminals in Chomsky normal form. The
root’s nonterminal, placed at the end of the file, represents the entire text T .

2.1 Preliminary version of ALCS

In this section, we elucidate the mathematical background for our work. We consider
two major parts: First, we build an index, and then we perform the querying.

2.1.1 Building the Index

In this part, we construct an index of hashes for all extensions of nonterminals. The
index is represented as a hashtable consisting of prefix and suffix blocks. We use
Karp-Rabin fingerprinting to hash terminals, nonterminals, and the blocks.

First, we compute the lengths of the prefix and suffix blocks. To achieve this, we use
the following algorithm: given a positive integer n (the size of text T ) and a positive

1Available online at https://gitlab.com/manzai/bigrepair.
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real ε < 1, we greedily compute a set L of O(log1/(1−ϵ) n) positive integers. This set
ensures that for any positive integer h ≤ n, there exists an element ℓ ∈ L such that
(1− ε)h < ℓ ≤ h. To initialize L, we start with {1} and iterate from 2 to n. If i is at
least 1/(1− ε) times larger than the largest element currently in L, we insert i into L.
For example, if n = 20 and ε = 1/4, then the set L representing the sizes of the blocks
is L = {1, 2, 3, 4, 6, 8, 11, 15, 20}.

Now that we have computed the lengths of the blocks, we proceed to hash them.
Given T [1 . . . n] and a string attractor A for T , we build a hash table of all the distinct
blocks in T , with their Karp-Rabin fingerprints as keys and their statuses as left-blocks
(prefix blocks) or right-blocks (suffix blocks) or both as satellite data. A left-block is a
substring of T whose length is in L and whose first character’s position is in A, while a
right-block is a substring of T whose length is in L and whose first character’s position
is immediately after an element of A.

2.1.2 Querying

In this second part, we describe the algorithm for finding all matches of approximately
half the desired length of text T and pattern P . We utilize the built index from the
previous part as input.

Given a pattern P [1 . . .m] and a positive length L ≤ n, we set ℓ to be ⌈L/2⌉. Then,
we set k to the predecessor in L. For example, if L = {1, 2, 3, 4, 6, 8, 11, 15, 20} and
when given L = 20, then ℓ = 10 and k = 11.

Subsequently, we scan P with a sliding window of length k and find all substrings
of P of length k whose fingerprints match the fingerprints of blocks. If the fingerprint
of the substring in the window matches a left-block’s fingerprint, we output “left” and
the position of its last character. If it matches a right-block’s fingerprint, we output
“right” and the position of its first character.

Finally, we consider a substring P [i . . . i+L− 1] of P with length L that occurs in
T . By the definition of a string attractor, for some occurrence of P [i . . . i+L− 1] in T

and some j with i ≤ j ≤ i+L− 1, P [j] corresponds to an element of A. Consider the
(non-empty) prefix P [i . . . j] and the (possibly empty) suffix P [j+1 . . . i+L−1], one of
which must have a length of at least ⌈L/2⌉. If |P [i . . . j]| ≥ ⌈L/2⌉, then P [j−ℓ+1 . . . j]

will match a left-block, and we output “left” and j. If |P [j+1 . . . i+L]| ≥ ⌈L/2⌉, then
P [j+1 . . . j+ℓ] will match a right-block, and we output “right” and j+1. On the other
hand, if P [j − ℓ + 1 . . . j] is not equal to a left-block, then with high probability, its
fingerprint will not match any of theirs, and we will not output “left” and j. Similarly, if
P [j+1 . . . j+ ℓ] is not equal to a right-block, then with high probability, its fingerprint
will not match any of theirs, and we will not output “right” and j + 1.
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2.2 Programming Language

For implementing our data structure, we chose C due to its speed and efficiency. We
primarily used the data types unsigned int, uint64_t, and unsigned __int128 to
efficiently handle large numbers and ensure precise arithmetic operations.

2.3 Code

In this subsection, we describe the data structure we implemented. Our implementation
consists of three parts, which are implemented in three C files: grammar.c, index.c
and queries.c. In file grammar.c, we implemented fundamental functionalities for the
grammar, such as parsing the BigRePair output, hash methods, and computing the
length of nonterminals. The second file, index.c, provides functionality for construct-
ing the grammar index and saving the built index to disk as a binary file. The last
file queries.c, contains functionalities based on index pattern matching. It includes
reading the constructed index from disk, reading the pattern, and executing the query.

2.3.1 grammar.c

In the file grammar.c, we included methods and data structures related to grammar
processing. We computed the sizes of nonterminals using the Depth-First Search al-
gorithm (tree version). For performing Karp-Rabin fingerprints, we chose a Mersenne
prime number p = 261 − 1. Mersenne prime numbers have efficient binary representa-
tions, which makes them advantageous for certain computational tasks. We also em-
ployed methods for exponentiation and multiplication with the modulo of a Mersenne
prime number2. Additionally, we obtained the random constant c = 28222 from the
website random.org, which generates true random numbers. This randomness comes
from atmospheric noise3.

We implemented the Karp-Rabin firgerprinting method to hash all nonterminals.
To compute the fingerprint of a substring T [1 . . . i], we start from the root nonterminal.
Considering the size of the left child (left side of the rule), there are three possibilities.
First, if the size of the left child is exactly i, then ϕ(T [1 . . . i]) is the fingerprint of the
left child (terminal or nonterminal). Second, if i is smaller than the size of the left
child, we recursively call this method for the left child. Last, if i is larger then the
size of the left child (it extends into the right child), then according to the Karp-Rabin
fingerprints (1.2.7), we compose the fingerprint of the whole left child and the result of

2Available online at https://github.com/dominikkempa/lz77-to-slp/blob/main/src/karp_

rabin_hashing.cpp#L110.
3https://www.random.org/

https://github.com/dominikkempa/lz77-to-slp/blob/main/src/karp_rabin_hashing.cpp##L110
https://github.com/dominikkempa/lz77-to-slp/blob/main/src/karp_rabin_hashing.cpp##L110
https://www.random.org/
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a recursive call on the right child multiplied by the constant c raised to the power of
the size of the left child:

ϕ(left)⊕ c|left| · ϕ(T[|left| . . . i]) mod p.

We get a fingerprint of nonterminal X by computing the fingerprint of the substring
T [i . . . j], where exp(X) = T [i . . . j] is the first occurrence of nonterminal X. According
to the properties of Karp-Rabin fingerprinting, we can obtain the fingerprint of a
substring T [i . . . j] by computing the fingerprints of substrings T [1 . . . i] and T [1 . . . j].
Then, we get the fingerprint of the substring T [i . . . j] as:

ϕ(T [1 . . . j])− ϕ(T [1 . . . i])

ci
mod p.

In modular arithmetic, it is more efficient to divide by multiplying by the inverse
number of c modulo p. Therefore, we obtain the fingerprint of T [i . . . j] as follows:

(ϕ(T [1 . . . j])− ϕ(T [1 . . . i]) · ciinv mod p,

where cinv is the inverse of c modulo p. The inverse number cinv only needed to
be computed once, at the start of the program, and used as a constant throughout.
The value of the inverse is cinv = 1738410520411018574 and was computed in the file
inverseNum.c.

Another computation required was the start position of the first occurrence of
each terminal and nonterminal expansion exp(X). To achieve this, we used recursion,
starting at the root nonterminal and recursively calling the function for the left and
right children (left and right sides of the rule). This approach helps us find the leftmost
occurrence of each nonterminal.

2.3.2 index.c

The file index.c builds an index. Initially, it processes command-line arguments to
read a .plainspl format file and a constant varepsilon such that 0 < ε < 1. The
.plainspl file consists of grammar rules, which are represented as two integers in line
separated by a space. Numbers smaller than 256 represent terminals, and numbers
256 and larger represent nonterminals. The first line of the file represents the first
nonterminal, i.e. 256. The last line of the file represents the root. The constant ε is
used to compute the lengths of blocks. Fig. 2.1 shows an example of .plainslp input
rules file (left top corner) and its tree representation.

Next, we compute the lengths of the prefix and suffix blocks in a for-loop using the
algorithm mentioned in 2.1.1.
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Figure 2.1: An example of input file .plainslp and its parse tree representation of
T = GATTAGATA\n

Further, we create prefix and suffix hash tables as described in 2.1.1. For each
nonterminal X and for every block length l ∈ L, if l < |X|, we add to the prefix hash
table the fingerprint of the prefix of X of length l as the key, and the first position of
exp(X) in T as the value. We perform similar steps for the suffix hash table.

Finally, we save the set L and both hash tables to a binary file and write it to disk.
For example, for input rules from Fig. 2.1 and for ε = 0.5, built index have 23

blocks and occupies 304 B of disk space.

2.3.3 queries.c

In the file queries.c, we perform queries. Initially, we process command-line argu-
ments to read the built index (hash tables), the pattern from a text file, and the
constant L, used in computing the length of the sliding window.

Next, we load the block lengths and the hash tables from the binary file. Then,
we use binary search to find the length k such that k is the predecessor in L of length
⌈L/2⌉.

We then scan the pattern P with a sliding window of length k. We hash the the
sliding window and compare the computed fingerprint with the hashes of blocks in
the prefix and suffix hash tables. Scanning and computing the fingerprint of a sliding
window of length k can be achieved in linear time using the properties of Karp-Rabin
hash with the following algorithm:

First, we compute the fingerprint ϕ(P [1 . . . k]) and find matches with fingerprints in
the hash tables. To compute the fingerprint ϕ(P [2 . . . k+1]), we subtract ϕ(P [1 . . . k])−
ϕ(P [1]). Then, we multiply the result by the constant cinv modulo p and add ϕ(P [k +

1]) · ck mod p.
Finally, we save to the result file every match of fingerprints that we find. Specifi-
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cally, we print ’l’ and the value from the prefix hash table (position) if we find a match
with a prefix block, and ’r’ and the value from the suffix hash table if the match is
with a suffix block. Additionally, we save the result file to disk.

2.4 Issues

In this subsection, we discuss some of the issues we needed to solve during the process.

2.4.1 Data structure and Performing Queries

During the implementation, we had some uncertainties about storing and transferring
hash tables. Another major problem was understanding the query algorithm, which
involves non-trivial algebraic background.

2.4.2 Finding the Inverse Number cinv

One surprising problem (in the sense that we did not expect it to be an issue) was
computing the inverse number of a constant c modulo p. In modular arithmetic, several
algorithms exist to find the inverse number. However, most of them were unusable as
we compute with a large prime number, p = 261 − 1. The first problem was that some
algorithms have high time complexity. The next problem we encountered while finding
the inverse was data overflow. We solved the problem of finding the inverse number in
the file inverseNum.c by using the GMP library4.

2.4.3 Integer Overflow

Since all hashes of nonterminals are large numbers and we needed to perform mul-
tiplication and exponentiation on them, this caused integer overflow. Despite using
64-bit integers, some operations (mainly power) caused overflow issues. To solve this,
we needed special algorithms optimized for this kind of computation. As a result, we
used some methods implemented by Dominik Kempa5.

4https://gmplib.org/
5Available online at: https://github.com/dominikkempa/lz77-to-slp/blob/main/src/karp_

rabin_hashing.cpp#L55.

https://gmplib.org/
https://github.com/dominikkempa/lz77-to-slp/blob/main/src/karp_rabin_hashing.cpp##L55
https://github.com/dominikkempa/lz77-to-slp/blob/main/src/karp_rabin_hashing.cpp##L55
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Experiments

In this chapter, we present the results of the experimental evaluation of our implemen-
tation. The experiments are provided on real-world data (sequences of covid genomes).
The aim of these experiments is to verify the functionality and effectiveness of our im-
plementation of data structure. We will test building of the index and the execution
of queries on large patterns (genomes).

3.1 Experiment 1

In the first experiment, we observed the impact of the parameter 0 < ε < 1 on the
number of prefix and suffix blocks.

3.1.1 Description

For building the index, we chose different number of sequences {1, 50, 100, 200, 500,
1000, 2000, 5000, 10000} from the covid genome dataset1, selecting only the charac-
ters A,C,G, T . The largest sequence (10k) contains 293,791,351 characters. For our
experiment, we chose ε ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

We built the index individually for each sequence and parameter ε. Different ε val-
ues result in different lengths of prefix and suffix blocks for each nonterminal. Therefore,
we recorded the number of all blocks (prefix and suffix combined) for each index built
on all data sequences with different ε values.

3.1.2 Results

In our experiment, we observed that the parameter ε has a significant impact on the
number of hashed blocks. For example, for the largest covid genome sequence of length

1Available online at https://github.com/fmaguire/recomb_mem_test_data/tree/master/

fasta
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10k, the index built with ε = 0.1 had 5.65 × 106 blocks, while the index built with
ε = 0.9 had only 0.29× 106 blocks.

Fig. 3.1 shows the relationship between the parameter ε, the length of covid genome
sequences, and the number of blocks.

Figure 3.1: Number of blocks for different sequences of the covid genome.

3.2 Experiment 2

In our second experiment, we observed the impact of the parameter L while performing
queries.

3.2.1 Description

We built an index on 10,000 sequences of the covid genome with the parameter ε = 0.25.
The built index occupies 26.6 MB of disk space and contains a total of 2,213,078
blocks. For our pattern, we used a single covid genome extracted from a differ-
ent set of 90 covid genomes2. We performed queries with different parameters L ∈
{2, 5, 10, 25, 50, 100, 200}. Our goal was to observe how many matches of the hash of
the sliding window we found in the hash blocks of the built index.

3.2.2 Results

During the second experiment, we observed that only short sequences are shared be-
tween two genomes. The exact numbers of found matches are shown in Table 3.1.

2Available online at https://github.com/fmaguire/recomb_mem_test_data/blob/master/

query_fasta/recombinant_query_seqs.fasta.xz

https://github.com/fmaguire/recomb_mem_test_data/blob/master/query_fasta/recombinant_query_seqs.fasta.xz
https://github.com/fmaguire/recomb_mem_test_data/blob/master/query_fasta/recombinant_query_seqs.fasta.xz
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L genom1 genom2 genom3 genom4 genom5 genom6 genom7 genom8 genom9 genom10
2 5,227,008 7,136,410 6,346,491 7,095,061 7,134,029 7,081,064 7,084,795 7,133,494 7,130,078 7,010,883
5 55 68 294 135 68 88 294 68 68 294
10 12 16 114 183 16 19 114 16 16 114
25 0 0 2 1 0 2 2 0 0 2
50 0 0 4 1 0 3 4 0 0 4
100 0 0 2 0 0 0 2 0 0 2
200 0 0 2 0 0 0 2 0 0 2

Table 3.1: Number of matches found for genomes genom1 - genom10 for different
parameters L.
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Conclusion

In this thesis, we first briefly introduced the topic of compressed text indices and estab-
lished the necessary terminology. Furthermore, we elucidated the ALCS data structure
by Gagie et al. [9] and then described the algebraic background of our data structure.
Next, we implemented a preliminary version of the ALCS index data structure3. The
implementation consisted of building an index and performing queries.

To build an index, two files were utilized: grammar.c and index.c. In grammar.c,
methods related to grammar such as computing sizes of nonterminals and fingerprinting
are implemented, while index.c serves for two major functionalities: reading input and
creating hash tables. Building an index is fast even for large data (approximately 30s
for 10k covid genomes), which also includes saving the built index to disk.

For performing queries, we implemented the file queries.c. File queries.c handles
reading the built index from disk and then hashing the sliding window of pattern P

and compares the hash values with hash tables. Finally, founded matches are reported
to the result file.

We then proceeded to evaluate the implementation. Two experiments on real-world
data (sequences of covid genomes) were provided. These experiments aim to prove that
the data structure is suitable for such data. In the first experiment, when building
the index, we observed the significant impact of input parameter ε on the number
of prefix and suffix blocks with different lengths of genome sequences. In the second
experiment, when performing queries, we searched for matches between the hash of
the sliding window of the pattern and the hash blocks of the built index with different
input parameters L.

The results of the experiments proved that our implementation works effectively;
however, there are still possibilities for optimization and improvement. One major
optimization is to check whether matches to prefix and suffix blocks with length ℓ > (1−
ϵ)⌈L/2⌉ can be extended to matches of length almost L. Another minor optimization
is, for example, in computing a set L of lengths of blocks. This can potentially be done
in O(logn) (currently it is computed in O(n)), where n is the size of the text T .

3Implementation available at https://github.com/zuzanaSKB/ALCS.
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Attachment A: Contents of the
electronic attachment

The source code of the program is located in the electronic attachment attached to
the paper. The source code is also published on the website: https://github.com/

zuzanaSKB/ALCS.
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