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Abstrakt

Táto práca sa zameriava na zostavenie zoznamu minimálnych nezafarbiteľných pod-
grafov snarkov a analýzu ich vlastností. Snarky sa stávajú čoraz populárnejšími, pre-
tože majú potenciál poskytnúť protipríklady k niekoľkým hypotézam v teórii grafov.
Aby sme vyriešili absenciu zoznamu minimálnych nezafarbiteľných podgrafov, vygen-
erovali sme tieto podgrafy algoritmom, ktorý postupne odstraňuje hrany a overuje min-
imalitu a nezafarbiteľnosť výsledných podgrafov. Minimálne grafy sú tie s najmenším
počtom prvkov, pričom sú stále nezafarbiteľné. Konkrétne, 3-hranovo-nezafarbiteľné.
Na optimalizáciu času výpočtu sme použili memoizáciu. Ako vstupy sme stiahli rôzne
sady grafov z online databázy. Naše výsledky zahŕňajú údaje o vygenerovaných pod-
grafoch, ako je ich rozdelenie podľa počtu vrcholov alebo časov trvania jednotlivých
generovaní, atď. Zistenia sú prezentované v mnohých tabuľkách a obrázkoch.

Kľúčové slová: snark, minimálny nezafarbiteľný podgraf, 3-hranovo nezafarbiteľné
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Abstract

This work focuses on compiling a list of minimal uncolorable subgraphs of snarks and
analyzing their properties. Snarks are becoming increasingly popular because of their
potential to provide counterexamples to several conjectures in graph theory. To solve
the absence of a list of minimal uncolorable subgraphs, we generated these subgraphs
with an algorithm that successively removes edges and verifies the minimality and
uncolorability of the resulting subgraphs. Minimal graphs are those with the least
number of elements while still being uncolorable. Specifically, 3-edge-uncolorable. We
used memoization to optimize the calculation time. As inputs, we downloaded different
sets of graphs from an online database. Our results include data about the generated
subgraphs, such as their distribution according to the number of vertices or the du-
rations of each generation, etc. The findings are presented in numerous tables and
figures.

Keywords: snark, minimal uncolorable subgraph, 3-edge uncolorable
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Introduction

This thesis aims to create a list of minimal uncolorable subgraphs of snarks and to
analyze the subgraphs and their properties. The thesis is divided into four chapters in
which we progressively go through definitions, implementation, data, and results.

In the first chapter, we briefly examine the historical context, explain the origin of
the term "snark," and define fundamental concepts such as minimality, coloring, and
snarks. We also review previous works related to this topic.

Chapter two starts with a few more definitions and graph formats, in which the
input and output data is stored, how the formats work, and the libraries that are
used. Next, we provide information about the generation algorithm, which is based on
the gradual removal of edges and verification of whether the generated subgraphs are
uncolorable and minimal. A minimal graph is a graph that has the smallest possible
number of elements while still meeting the required properties. In this context, uncol-
orable graphs are those that are 3-edge-uncolorable, meaning they cannot be properly
edge-colored with up to three colors. We also cover the memoization used in the algo-
rithm and discuss applied and potential improvements. Lastly, we provide proof of the
correctness of the algorithm.

Chapter three focuses on the input and output data. We describe various sets
of graphs obtained from the internet graph database [11], including their counts and
vertex numbers. A brief section at the end of the chapter discusses the formats of
output files and provides a link to the repository containing all related files.

The final chapter begins with an explanation of the number of vertices in the sub-
graphs, followed by results for each input set. This chapter includes numerous tables
with data such as the numbers of generated subgraphs, generation run times, the dis-
tribution of graphs based on vertex count, etc. A few selected figures are also provided.

While there is an existing database of snarks with up to 36 vertices (with additional
snarks available based on girth), there is no comprehensive list of minimal uncolorable
subgraphs of snarks. Snarks are of significant interest because they are believed to
potentially contain counterexamples to several conjectures. Therefore, a list like this
could provide new insights into this field.
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2 Introduction



Chapter 1

Snarks

In this chapter, we will briefly look at some historical context and reasoning for the
name “snark”, some basic definitions and the current state of the art.

1.1 History

In 1880 P.G. Tait wanted to find a new way to prove the four-color theorem [8]. But,
instead of coloring maps, he translated the original problem to the edge-coloring of
cubic graphs problem [24]. He believed, that all cubic graphs were 3-edge-colorable,
but he overlooked two kinds of cubic graphs of which some cannot be 3-edge-colored:
those with bridges and non-planar cubic graphs.

Martin Gardner was the first to popularize the term “snark” [13], after he looked into
nontrivial graphs, that cannot be 3-edge-colored and published a column in Scientific
American in 1976. He deduced the title from Lewis Carroll’s The Hunting of the Snark
[24].

1.2 Definitions

To fully understand the topic, we need to start with some definitions. All definitions
are sourced from [18] and common graph theory textbooks.

First, we need to define edge-coloring . Edge-coloring is an assignment of colors
to graph edges. Formally, it’s a mapping φ : E → X from a set of edges E of graph
G to a set of colors X. More specifically we need to define, proper edge-coloring ,
which is edge-coloring, where no two adjacent edges have the same color.

Chromatic index χ(G) of a graph G is the smallest number of colors needed to
achieve proper edge-coloring. Graph is said to be k-edge-colorable , if χ(G) ≤ k.

Edge-colorability (edge-uncolorability) is the property of a graph G, that has any
edge-coloring ϕ (does not have an edge-coloring).

3



4 CHAPTER 1. SNARKS

Since in this thesis, we will only work with 3-edge-colorability and 3-edge-uncolorability,
we will refer to it as colorability and uncolorability respectively.

An edge cut is a set of edges of a graph G of which, if removed (or “cut”), discon-
nects the graph. A cyclic edge-cut of a graph G is an edge cut, which separates two
cycles.

Edge-connectivity of a graph is the minimum number of edges λ(G) whose dele-
tion from a graph G disconnects G. In other words, it is the size of a minimum edge
cut. The edge connectivity of a disconnected graph is therefore 0, while that of a
connected graph with a bridge equals 1.

A graph G is cyclically k-edge connected if the deletion of fewer than k edges
from G does not create two components both of which contain at least one cycle.

A cyclic edge connectivity λc(G) is the size of a smallest cyclic edge cut, i.e.,
a smallest edge cut A such that G− A has two connected components, each of which
contains at least one graph cycle.

A graph H(V ′, E ′) is a subgraph of a graph G(V,E), where V, V ′ are sets of vertices
and E and E ′ are sets of edges. V ′ ⊆ V , E ′ ⊆ E. If H cannot be further reduced, so
that the properties of the original graph G are preserved, H is a minimal subgraph
of the graph G.

A girth of a graph is the length of the shortest cycle in the graph. If there are no
cycles in the graph, the girth is defined as infinity.

Several definitions of snarks exist differing in strength, but the most important part
is the colorability requirement, which is the same across all definitions. We will go with
this form of the definition: snark is a minimal cyclically 4-edge connected cubic graph
with an edge chromatic index 4 and girth at least 5.

Multipoles are graphs in which dangling (only one end of an edge is incident
with a vertex) or isolated (neither end of an edge is incident with a vertex) edges are
permitted.

An end of an edge that is incident with no vertex is labeled as a semiedge .
k-pole is a multipole with k semiedges.

Lemma 1 (Parity lemma). Let M be a k-pole and let k1, k2, and k3 be the numbers
of semiedges of color c1, c2, and c3, respectively. Then k1 ≡ k2 ≡ k3 ≡ k (mod 2).

As stated in [18], snarks are getting more attention lately since they might contain
counterexamples to several profound and long-standing conjectures. Therefore, under-
standing their structure is necessary to (dis)prove any of those conjectures. But they
are rare because almost all cubic graphs are hamiltonian, therefore 3-edge-colorable
[22].

We use two names for the inputs in the texts. A group represents input graphs with
a given number of vertices and a set represents the groups of a given girth together.
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1.3 Previous works

Generating snarks

In 2013 G. Brinkmann, J. Goedgebeur, J. Hägglund, and K. Markström published
a paper called Generation and properties of snarks [6]. They came up with a new
algorithm for all non-isomorphic snarks of a given order. The implementation was 14
times faster than previous snark-generating programs and could generate all snarks up
to 36 vertices. Until then, only snarks with up to 28 vertices were published. In their
analysis of the sets of generated snarks, they proved some conjectures such as some of
the strongest versions of the cycle double cover conjecture for all snarks of these orders,
Jaeger’s Petersen coloring conjectures imply that there are no small counterexamples
to Fulkerson’s conjecture. However, they successfully found some counterexamples of
eight previously published cycle-covering conjectures and the general structure of cubic
graphs conjectures.

Their algorithm is based on the one G. Brinkmann, J. Goedgebeur and B. D. McKay
described in [7] in 2011. Originally was the algorithm intended for generating all cubic
graphs without the restriction of girth, but it could be efficiently modified to generate
cubic graphs with girth at least 4 or 5. At first, from K4 are generated pairwise non-
isomorphic connected cubic graphs by building prime graphs with operations (a),(b),
and (c) shown in Figure 1.1. Afterward was the operation (d) applied.

Figure 1.1: The construction operations for cubic graphs from [6].

Older snark-generating algorithms worked by adding filters for graphs to a program
generating all cubic graphs of a given order. But the efficiency of the approach that,
at first, generated a larger group of cubic graphs and then uses filters on the output
to select only the ones that meet the given criteria depends on the filter complexity
itself and also on the ratio between the number of the generated graphs and the filtered
ones. In [6] they provide exact numbers and scores for this generating approach.
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Classification of snarks

Ján Mazák, Jozef Rajník, and Martin Škoviera then in 2021 classified all snarks up
to order 36 and explained the reason for their uncolorability in their paper Morfology
of small snarks [18]. They achieved this by computer-assisted structural analysis of
cyclically 5-connected critical snarks. Their results showed, that most of the analyzed
snarks are built up from pieces of the Petersen graph called Petersen clusters, and
depending on the reason of their uncolorability, they can be naturally distributed into
a small number of classes. Finally, they generalized some snarks to infinite families.

Database of snarks

In 2013, a comprehensive database of graphs [5, 11] was created by G. Brinkmann,
K. Coolsaet, J. Goedgebeur and H. Mélot. Their motivation was to have a searchable
database and offer a complete list of some graph classes and a list of other interesting
and relevant graphs, which can be used in graph theory problems or as counterexamples
to conjectures. Aside from other useful functionalities, it contains a list of all snarks
(of girth at least 5) up to 36 vertices, which will be useful in further research. In 2022
were the used technologies updated and some new features added (see [11]).

Related thesis

A related thesis was written in 2018 by Tomáš Vician, called Cores of uncolorable cubic
graphs [23]. The motivation for this thesis was to create a database or generator of
all small uncolorable cubic graphs and minimal uncolorable subgraphs of these small
snarks. Since many conjectures can be proved or disproved using snarks, it is useful to
have a database of them and their different variants to analyze various properties and
structures.

But generating graphs with brute force would have large complexity, so he tried
another method: to iteratively generate graphs using functions, that add graph ele-
ments (vertices, edges, graphs) to a graph in different ways and store canonical forms
to avoid storing isomorphic graphs. Finally, the generated graphs were then reduced
to “cores” - minimal uncolorable subgraphs.

His approach is based on an article from R. Nedela and M. Škoviera called Decom-
positions and reductions of snarks [21]. The idea was that snarks can be trivial and
non-trivial. Trivial snark is, for example, a snark, that does contain a bridge or one,
that is a “trivial” variation of another snark. Also, as stated in [21]: “It has been cus-
tomary to consider trivial any snark that has a digon (Figure 1.2) or a triangle because
these are trivial features that can be added to or removed from a snark without altering
its uncolorable property”. Based on the two theorems they provided and previous work,
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two types of operations to simplify a given snark needed to be considered - reduction
and decomposition [21, 18].

Figure 1.2: A digon.

The result of the thesis was some insight into the small snark generation. The
method he used for generating the cores was not very efficient and he only generated
them for 6-vertex graphs.

Both, [6] and [23] use the method of adding elements to a graph and removing them,
but they differ in what kind of elements they are adding or removing. In [6] they work
with more complex structures than in [23], where only some edges, loops, triangles,
and squares are added and two graphs are connected on nodes or on the edges.
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Chapter 2

Generating subgraphs

The goal of this thesis is to create a list of minimal uncolorable subgraphs of snarks
with more than 10 vertices. Such subgraphs can also be called edge-critical.

Definition 1 (Edge-critical graph). An edge-critical graph is a type of graph where
the chromatic index is decreased by removing any edge.

These subgraphs we are interested in can also be referred to as "critical" or "bicrit-
ical. These terms are used in various contexts with subtle differences, so specifically,
for our purposes, we define these terms as follows. But before we define the two terms,
"critical" and "bicritical," we must first establish one definition that is used in those
definitions [18].

Definition 2 (Removable, non-removable edge). A pair of distinct vertices {u, v} of a
graph G will be called removable if G−{u, v} is not 3-edge-colorable; otherwise it will
be called non-removable.

Definition 3 (Critical graph). A graph G is critical if every pair of adjacent vertices
in G is non-removable.

Definition 4 (Bicritical graph). A bicritical graph is a graph where every pair of
distinct vertices is non-removable.

In the related thesis [23] an algorithm for generating cubic graphs with up to 10
vertices and subgraphs with up to 6 vertices was described. The process of generating
the graphs took a while, so working with more than 10 vertices requires either faster or
better implementation, or a programming language, that is faster than Python - which
was used before.

The approach for generating the given subgraphs we used is based on the gradual
removal of edges. At first, we downloaded groups of input graphs from the internet
graph database House of Graphs [11].

9
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2.1 Graph formats

All the graphs were in graph6 format, which is a format for storing undirected graphs
in a compact manner [19]. The way graph6 works is that it represents the graph as
a string. More specifically, as numbers between 63 and 126, since those can be easily
converted into printable ASCII characters. The first part of the string is N(n), which
is a number based on the number of vertices n and it’s calculated as stated in Table
2.1

n N(n)

0 <= n <= 62 single byte n+ 63

63 <= n <= 258047
four bytes - 126 R(x), where x is the big-endian
18-bit binary form of n

258048 <= n <= 68719476735
eight bytes - 126 126 R(x), where x is the big-endian
36-bit binary form of n

Table 2.1: Calculation of N(n)

The second part of the string is R(x), where x is the upper triangle from the
adjacency matrix of a graph written as a bit vector, divided into groups of six bits
using ordering (0,1), (0,2), (1,2), (0,3), (1,3), (2,3), ..., (n-2,n-1) (if its length is not a
multiple of 6, zeros are added to the end of the bit vector). Then the sixes are read
as big-endian binary numbers and 63 is added to each one of them. These values are
stored one per byte. N(n) R(x) is the graphs representation.

Example 1. Let graph G have five vertices (n = 5) and edges 0-2, 0-4, 1-3 and 3-4.
So the adjacency matrix would look like this:

0 0 1 0 1

0 0 0 1 0

1 0 0 0 0

0 1 0 0 1

1 0 0 1 0


Then x = 0 10 010 1001. Since n < 62, N(n) = 68 and R(x) = R(010010 100100)

= 81 99. The graph is 68 81 99 or DQc in ASCII format.

Another format we used is sparse6. But since this format was used sparsely we will
mention it very briefly. The sparse6 format differs from the graph6 format not only
in the notation but also in the way of calculating the second part of the output string
because in this format self-loops and multiple edges are permitted. The notation of
sparse6 format for one graph is the character ’:’, the number of vertices, a list of edges,
and an end-of-line character, so the only difference from graph6 format notation is a
colon.
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2.2 Libraries

There are a few characteristics that the subgraphs must have and to verify that they
do, we used functions from a graph library ba-graph [1] provided by J. Mazák. The
library provides functions for working with graphs, such as graph conversion from/to
graph6/sparse6 formats, checking if the graph is edge-colorable, whether two graphs
are isomorphic, and many more. This library uses nauty [20]. Nauty is a program
written in C for computing automorphism groups of graphs and digraphs (directed
graphs). It can also produce canonical labels. But since we do not directly work with
nauty, we will not provide detailed information on it.

2.3 Generation algorithm

We wanted to generate minimal subcubic graphs, which were uncolorable. That means
that for every graph we generated, we had to check if it was minimal in the sense
of having the smallest number of elements (vertices, edges) so that the graph is still
uncolorable. The graph is minimal if its every subgraph is colorable or if there is no such
subgraph that is uncolorable. Otherwise, we would be able to either remove a vertex or
an edge to make a smaller graph that is uncolorable. Of course, if the graph itself was
colorable, all its subgraphs were also colorable, so those graphs could be removed right
at the beginning. If the graph was not minimal we tried recursively removing every
edge, until there were no more edges to be removed to generate a subgraph that was
not colorable.

While recursively going through the graphs, a set of minimal subcubic subgraphs
was created by putting possible candidates into it. A graph was a candidate while
no uncolorable subgraph was found. If at least one uncolorable subgraph was found,
the graph itself was removed from the set and the subgraph was added into the set.
To prevent redundancy of isomorphic graphs we converted the graphs into canonical
forms before they were added. The conversion was done with a function from ba-graph

library based on nauty’s [20] canonical labeling. More on how the Canonical Graph
Labeling Algorithm works can be found in [16].

This approach works, but for symmetric graphs, we reach many of the same graphs
while going into recursion. To make the time complexity better, we added a form of
memoization. For every group of graphs, we memoized every subgraph we encountered,
so that we did not compute the same branch of the recursion every time we came to
the same subgraph. This slightly improved the time of the runs, but more on that in
2.4. Finally, the algorithm is listed in 2.1.
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2.4 Memoization

When generating the subgraphs, a lot of isomorphic graphs were reached. However,
since it was not necessary to recompute the same subgraph multiple times we added
memoization. To memoize the subgraphs we used a hash set. Only canonical forms
of the graphs were put into it to prevent inserting different variants of the same graph.

When generating the minimal subgraphs we recursively removed every edge from a
given graph. So when we were processing a graph we inserted it into the hash set. The
hash set is a set of graphs that were already processed so they can be skipped when
encountered for the second time. Right at the beginning of the generation function, we
verified whether we had already seen the given graph and returned to the function call
or that we had not processed the graph before and added the graph to the hash set.

Algorithm 2.1: Generation algorithm

1 void generate_minimal_subgraphs ( graph g , s e t memo, s e t subgs ){
2 i f ( canon i ca l g in memo){ re turn ; }
3 put canon i ca l form o f g in to memo;
4
5 i f ( g i s not c o l o r ab l e ){
6 put g in to subgs ;
7
8 f o r ( every edge o f g ){
9 new_g = remove edge from g ;

10
11 i f (new_g i s not c o l o r ab l e ){
12 remove canon i ca l g from subgs i f p re s ent ;
13 put canon i ca l form o f new_g in to subgs ;
14 generate_minimal_subgraphs (new_g , memo, subgs ) ;
15 }
16 }
17 }
18 }

But since the graphs can share some subgraphs, we kept the hash set for the
whole group of graphs with the same number of vertices. A slight difference can be
seen even in the computation of subgraphs for the smallest snark - Petersen graph
(figure 2.1). Without the use of memoization, the program ran for 223 milliseconds,
and with memoization, it only took 9 milliseconds. In this case, the memoization
approach was almost 25 times better. When we ran the program on groups of cubic
graphs with a girth of at least 5 with 10, 12, 14, 16, and 18 vertices right one after



2.5. PROPER MEMOIZATION 13

another, with memoization, it finished computing after 16.266 seconds, but without
the memoization, it did not finish even after a few hours.

Figure 2.1: Petersen graph

This approach was good enough for the algorithm to run in a feasible amount of
time for the input we had. An improvement that could be made is to make the hash

set shared for all groups of input graphs with various numbers of vertices. But using
this method the information about the origin of the subgraph would be lost since a
subgraph might have multiple graphs from which it was created. A graph would be
inserted into the hash set at first sighting and ignored on every other, so if any of its
subgraphs were minimal and uncolorable, we would not know they are reachable from
the new starting graph.

2.5 Proper memoization

To not have to compute every subgraph all over again and to keep track of the origin
of subgraphs we modified the memoization we already had. When already seen graph
Gs was encountered while computing another graph’s G subgraphs, we simply added
all subgraphs of the already-seen graph Gs to the subgraphs of the graph G. To keep
track of which subgraph belongs to which graph we had to change the hash set to
hash map. Time-wise, on input snarks with a girth of at least 5 and the number of
vertices equal to 10, 18, 20, 22, and 24 without the proper memoization, we were able
to run the program in 4 hours. With the proper memoization, the computation took
only 2 hours and 41 minutes which is almost 1.5 times better. The algorithm is shown
in listing 2.2

One last update that could be made to make the time of each generation smaller, is
to save the hash map into a file and load it every time the program is run. That could
speed up the run since all computations of subgraphs for given input graphs would
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only have to be done once.
Another type of improvement that could be implemented is threading.

2.6 Correctness of the generation algorithm

We prove the correctness of the algorithm using induction. We do not take the mem-
oization into account, since it does not change the algorithm in terms of logic.

As the base case, we take a graph consisting of two vertices connected by an edge,
which is trivially colorable. For its colorability, our algorithm evaluates the condition
on line 9 as false (listing 2.2). Therefore returns an empty set of subgraphs, since
colorable graphs do not have uncolorable subgraphs.

Now let’s assume that for every cubic graph G′ with less than n edges the algo-
rithm returns a correct set of uncolorable subgraphs (the induction hypothesis). The
inductive step looks as follows: graph G has n edges. Then at first, the function checks
if G is colorable.

- If yes, then its subgraphs are irrelevant, so we can terminate.

- If no, then G is a candidate to be a minimal subgraph, so we iteratively remove
every edge of G one after another, creating a new Gnew every time an edge
is removed. If Gnew is not colorable, G is no longer a candidate because it
is not minimal. Then we recursively call the function for every Gnew. From
the induction hypothesis, the recursion call returns a correct set of uncolorable
subgraphs of Gnew which are added to the set of minimal subgraphs of G.

We cover every subgraph because we are recursively removing edges in all possible
ways. The memoization only keeps us from repeating the computations on similar
graphs and does not change the result. The output set includes only minimal subgraphs.
This is ensured by removing any graph that contains a subgraph, which is uncolorable,
from the set. The algorithm will always terminate because there is only a finite number
of edges that can be removed.
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Algorithm 2.2: Generation algorithm with proper memoization

1 void generate_minimal_subgraphs ( graph g , map memo, s e t subgs ){
2 i f ( canon i ca l g in memo){
3 f o r ( every subgraph in g ’ s subgraphs ){
4 add subgraph to subgs ;
5 } ;
6 re turn ;
7 }
8
9 i f ( g i s not c o l o r ab l e ){

10 put g in to subgs ;
11
12 f o r ( every edge o f g ){
13 new_g = remove edge from g ;
14
15 i f (new_g i s not c o l o r ab l e ){
16 remove canon i ca l g from subgs i f p re s ent ;
17
18 new_subgs = new empty map ;
19 generate_minimal_subgraphs (new_g , memo, new_subgs ) ;
20
21 f o r ( every new subgraph in new_subgs ){
22 add new subgraph to subgs ;
23 }
24 }
25 }
26 }
27 s e t subgs as va lue f o r canon i ca l g in memo;
28 }
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Chapter 3

Input data and output format

In this chapter, we will describe the input sets of graphs - what they were and the
reasoning behind choosing them. This thesis contains graphs, that are visualized with
internet tools [4], [2], and [3].

3.1 Input

For input, we downloaded various graphs from the internet graph database House of
graphs [11]. The database has a lot of filtering options for searching graphs and contains
many categories into which the graphs are split. In each category, there are graphs for
downloading. The two main categories that interested us were cubic graphs [9] and
snarks [10].

All input graphs have an even number of vertices. That is because we are working
with cubic graphs for which the following lemma holds [15, 17].

Lemma 2 (Handshaking lemma). For any graph G = (V,E) holds∑
v∈V deg(v) = 2|E|.

Therefore, any k-regular graph, where k > 0 is an odd number, must have an even
number of vertices.

Cubic graphs with girth at least 5

Graphs in the first set on which we ran the program were cubic with a girth of at least
5. The set consisted of graphs with numbers of vertices equal to 10, 12, 14, 16, 18,
and 20 (table 3.1). Our definition of snarks requires a girth of at least 5, so we took
this group as our first input to achieve the property of being a subgraph of a snark.
And since by removing edges we can increase the girth of a graph but not decrease,
our subgraphs will also have a girth of 5 or more.

17
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# vertices 10 12 14 16 18 20
# graphs 1 2 9 49 455 5783

Table 3.1: Number of cubic graphs (girth ≥ 5) by the number of vertices in a graph

With the specific requirements we need the graphs to have, there are downloadable
graphs with up to 26 vertices. Graphs from 28 to 32 vertices are not accessible for
download, but at least the number of them is known. The counts of the cubic graphs
with girth ≥ 5 and with the number of vertices greater than 38 are still unknown.

Snarks with girth at least 5

In the second set were snarks with a girth greater than 4. The reason why we chose
this set of graphs is the same as the one before, but we wanted to check, whether some
graphs are only reachable from snarks. Numbers of vertices in these graphs were 10,
18, 20, 22, 24, 26, and 28 (table 3.2).

# vertices 10 18 20 22 24 26
# graphs 1 2 6 20 38 280

Table 3.2: Number of snarks (girth ≥ 5) by the number of vertices in a graph

With the properties of this group, there are also more snarks if vertices are added.
From 28 vertices to 38 there are graphs for download. For greater numbers of vertices
not even the counts are known.

Weakening requirements

Then we tried to weaken our requirements and let girth be at least 4 in the case of
snarks. That resulted in bigger input groups - tables 3.3.

# vertices 10 18 20 22
# graphs 1 2 6 31

Table 3.3: Number of snarks (girth ≥ 4) by the number of vertices in a graph

When lower demands are made, it is clear that more graphs will meet the require-
ments. Therefore the computation of the graphs is harder and downloadable are only
snarks with up to 36 vertices. However, for snarks, the counts for graphs with no more
than 36 are known.



3.2. OUTPUT FILES 19

3.2 Output files

All generated outputs are saved in text files. We’ve categorized the file types into four
groups:

1. Files, sorted by some certain property such as the number of vertices, girth, etc.
containing only graph6 format graphs.

2. Files containing (all) graphs in the graph6 format, regardless of any specific
properties.

3. Files containing graphs in relation to other graphs, such as a graph and its sub-
graphs or a subgraph, and the graphs in which the subgraph is contained.

4. Files containing additional information but without actual graphs.

All files associated with the implementation and generated data can be found at
https://github.com/emmiiika/bach-thesis and in appendix.

https://github.com/emmiiika/bach-thesis
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Chapter 4

Results

This chapter is dedicated to the results of the generation algorithm and some statistical
data. We will go through each set of input graphs independently. For each input set, we
generated subgraphs for all graphs in the set and measured the time for each generation.
In the following text, we will refer to girth only as g.

In every input set, we can see that there are mostly subgraphs with an odd number
of vertices. One reason for this occurrence is that removing a single vertex from a
graph with an even number of vertices results in subgraphs with an odd number of
vertices. For cubic graphs holds the parity lemma [18].

In other words, the numbers of semiedges of colors c1, c2, and c3 must have the same
parity. They must also share the same parity as the total number of semiedges. In
our situation, immediately after removing one vertex, three edges become connected to
other vertices at only one end. Since the numbers of edges of the three different colors
must share the same parity as the total number of edges, these three edges must be
colored differently. Otherwise, one color would be used on an even number of edges,
which would not be congruent with the total number of edges modulo 2.

In each input set, subgraphs predominantly contain an odd number of vertices. This
frequently occurs because removing a single vertex from a graph with an even number
of vertices typically results in subgraphs with an odd vertex count. Additionally, when
a graph is uncolorable, removing one vertex does not alter the uncolorability of its
subgraph (a corollary of lemma 1). Put another way, if the graph G−v, where v is any
vertex of G is colorable, then the three semiedges must each have a different color in
the coloring ϕ. Consequently, the same coloring ϕ can be applied to the entire graph
G without violating the property of proper coloring. Therefore we can always remove
at least one vertex from an uncolorable cubic graph to get an uncolorable subgraph.

21
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4.1 Cubic graphs with g ≥ 5

As the first input, we took the cubic graphs with g of at least 5. We processed graphs
containing from 10 to 20 vertices. There are no cubic graphs with g ≥ 5 with less than
10 vertices. The ten-vertex graph is the Petersen graph and its generated minimal
uncolorable subgraph is shown in figure 4.1. As shown, only one vertex (and its edges)
can be removed to keep the graph uncolorable.

# vertices 10 12 14 16 18 20
# graphs 1 2 9 49 455 5783
# colorable graphs 0 2 9 49 452 5769
# subgraphs 1 0 0 0 11 76
Time [ms] 27 1 8 49 20346 974357

Table 4.1: Statistics for cubic graphs (g ≥ 5)

The graphs with 12, 14, and 16 vertices are all colorable, therefore they do not have
any uncolorable subgraphs. Since the algorithm checks whether a graph is uncolorable
right at the beginning, it does not try to remove any edges and directly skips the
colorable graph making the calculation time less than a few milliseconds. The row
“time” contains the overall computation times per each group.

Figure 4.1: Minimal uncolorable subgraph of the Petersen graph

Given the number of colorable graphs, all the generated subgraphs were generated
from 18 different uncolorable graphs. Few of the graphs share some subgraphs. For
example, the Petersen subgraph is a subgraph of 9 other graphs. In figure 4.2 are
shown 2 graphs with the Petersen subgraph as a subgraph. Seven other subgraphs are
also subgraphs of multiple graphs and the remaining 76 subgraphs have only one origin
graph.

Overall, after filtering away some redundant subgraphs, 84 different subgraphs were
generated from 6299 cubic graphs. The computation took 16 minutes (table 4.2). If
needed, graphs with 22 vertices could also be taken as input, which would be finished
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Figure 4.2: Graphs containing the Petersen subgraph

in a reasonable time. There are 90938 cubic graphs with 22 vertices which is similar
to the number of cubic graphs with g at least 4.

# all graphs 6299
# all colorable graphs 6281
# all subgraphs 84
Time sum [min] 16.5798

Table 4.2: Total numbers for cubic graphs (g ≥ 5)

# vertices 9 17 19
# subgraphs 1 10 73

Table 4.3: Distribution of subgraphs of cubic graphs (g ≥ 5) based on the number of
vertices.

Based on the number of vertices the distribution of the graphs is shown in 4.3. It
may seem as if we are only able to remove one vertex from the different groups of input
graphs, but many graphs have subgraphs containing fewer vertices than just one less
(table 4.6). From the 10-vertex graph, we are able to get only a 9-vertex subgraph,
but some of the 18-vertex graphs have 9- and 17-vertex subgraphs while some of the
20-vertex have 9-, 17-, and 19-vertex subgraphs.

graph subgraph
10 9,
18 9, 17,
20 9, 17, 19,

Table 4.4: # vertices in (sub)graphs

graph subgraph
15 12,
27 12, 23, 24,
30 12, 23, 26, 27,

Table 4.5: # edges in (sub)graphs

Table 4.6: Number of vertices and edges in graphs and their subgraphs

Not only are vertices removed from the graphs, but edges as well. The input graph
with 15 edges (Petersen graph) has one subgraph with 12 edges. From graphs with 27
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edges, subgraphs with 12, 23, and 24 edges originated. Last are graphs with 30 edges,
which have subgraphs with 12, 23, 26, and 27 edges. However, not every graph with a
given number of edges (or vertices) necessarily contains subgraphs with all the possible
numbers of edges (or vertices).

Figure 4.3: 20-vertex, 30-edge graph, and its two subgraphs

Figure 4.3 depicts a graph with 20 vertices and 30 edges with its only two subgraphs.
The first subgraph has 17 vertices and 23 edges and the second one has 9 vertices and
12 edges. The change to a canonical form causes the difference in the notion of the
vertices throughout the graphs.

The graphs differ in the number of subgraphs they have (table 4.7). The smallest
number of subgraphs is 1 and the subgraph that the three graphs share is the Petersen
subgraph. The three graphs are the Petersen graph and two others shown in figure 4.4.
On the other hand, the largest number of subgraphs for this input set is 18, but only
two graphs share this number. The subgraphs of the graphs in the rows of the table
are not necessarily the same - the graphs can only share the number of subgraphs, not
the subgraphs themselves.
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# subgraphs # graphs
1 3
2 1
3 2
5 5
6 1

# subgraphs # graphs
7 2
8 1
10 1
18 2

Table 4.7: Cubic graphs by number of subgraphs

Figure 4.4: Two of three cubic graphs that have a single min. uncol. subgraph

This input set is also the only one that includes other graphs besides the Petersen
graph that contain the Petersen subgraph (table 4.8). There are 10 such graphs, and
for 3 out of the 10, it is the only subgraph. Eight out of all generated subgraphs have
only different subgraphs.

# graphs
not contained in 8

contained in 10
its only subgraph 3

Table 4.8: Number of cubic graphs which (do not) contain Petersen subgraph

We examined the number of vertices and edges that needed to be added to the
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subgraphs to form the nearest snark. Nearest snark means that the number of elements
needed to be added is the smallest possible. In this input set, there are only two cases:
one where 1 vertex and 3 edges need to be added and the second one where 1 vertex
and 4 edges need to be added. As shown in table 4.9, 57 subgraphs can be extended in
the first way, and 7 in the second way. Not all subgraphs can be extended into snarks
because the subgraphs were generated from the cubic graphs which are a superset of
snarks. We tried to distinguish between the snarks with girth at least 4 and 5, but this
input set had the same numbers in both cases.

To find these results we took the list that contains all the generated subgraphs from
each input set separately. For each subgraph in the set, we have a list of graphs in
which the subgraph is contained. The graphs in each line of the file were grouped by
the same canonical form of the subgraph. Then we iterated the list of graphs, finding
the smallest one. Lastly, we calculated the difference between the number of elements
in the subgraph and the graph. For every subgraph that can be extended into a snark,
is the found snark the smallest one. If there existed a smaller one, it would have to be
in the list of graphs of which the subgraph is a subgraph.

# vertices # edges # subgraphs
1 3 57
1 4 7

sum = 64

Table 4.9: Subgraphs of cubic graphs by the number of elements needed to complete
the nearest snark with g ≥ 4 and g ≥ 5 (in terms of the number of elements)

4.2 Snarks with g ≥ 5

The second set of input graphs consisted of snarks with g ≥ 5. Although many snarks
with g ≥ 5 are available for download, those with 26 vertices required a significant
amount of computation time, as shown in table 4.10 and 4.11. From the definition,
snarks are uncolorable, therefore no graph can be skipped and the time for computation
is higher. But again there are no snarks with less than 10 vertices.

# vertices 10 18 20 22 24 26
# graphs 1 2 6 20 38 280
# subgraphs 1 10 55 189 471 3853
Time [ms] 8 560 6478 47896 434492 9241544

Table 4.10: Statistics for snarks (g ≥ 5)
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# all graphs 347
# all subgraphs 4525
Time sum [h] 2.703049444

Table 4.11: Total numbers for snarks (g ≥ 5)

An example from this input set is the Flower snark with 20 vertices (figure 4.5).
Only three vertices (and their 3 edges) are removable from this snark but always only
one at a time (figure 4.6).

Figure 4.5: Flower snark with 20 vertices

Figure 4.6: Subgraphs of 20-vertex Flower snark

Comparing the snarks and cubic graphs only on graphs with 10, 18, and 20 vertices
shows, that some cubic graphs are uncolorable but are not snarks. Specifically, one
18-vertex and eight 20-vertex graphs. As expected, since snarks are a subset of cubic
graphs there is also a smaller number of subgraphs of snarks than the ones of cubic
graphs.

Regarding the distribution of subgraphs according to the number of vertices, we
have 3 graphs with an even number of vertices (table 4.16, figure 4.8). They were
created by removing 2 edges. In some cases, even vertices are removed from graphs to



28 CHAPTER 4. RESULTS

# vertices 10 18 20
# all graphs 1 455 5783
# uncolorable graphs 1 3 14
# subgraphs 1 11 76

Table 4.12: Cubic graphs g ≥ 5

# vertices 10 18 20

# graphs 1 2 6
# subgraphs 1 10 55

Table 4.13: Snarks g ≥ 5

Table 4.14: Difference between cubic graphs and snarks

achieve these subgraphs. The 22-vertex one is achieved by removing two edges from
two 24-vertex graphs or 2 vertices and 5 edges from the other 3 graphs. To get the
24-vertex subgraph only 2 edges from 2 graphs or 2 vertices and 5 edges from 3 graphs
are removed. The 26-vertex graph is obtained by removing 2 edges from two different
graphs. Both 22- and 24-vertex graphs have 5 graphs of origin and even share two
origin graphs. The 24- and 26-vertex graphs also share 2 graphs of origin. We believe
it’s important to clarify that the edges we are removing are not adjacent.

In the table 4.15 are the origin graphs which the subgraphs with the even number
of vertices share. The graph6 format names of the subgraphs are long, so we will use
the following notion:

(a) U???WCC@?O‘C?O?OO?‘?OOC?O_?_Aa?DA?AGG?P? (22 vertices)

(b) W???GOB?GI@O@?A?_A??_C?O_AA?GC?O@??P_?C__@GC?D? (24 vertices)

(c) Y???GODA_@_@?_@??GOOA?@??CA?AC?C?_?_C?C?_?KC?@G_?AGO?@C? (26 vertices)

shared by origin graphs in graph6
(a) and (b) W?HI@eO???C?_?OCa_?CP_???CGO?O?g??GC???w@_??@O@

W??Y?EO??CCAP??Bo@A?‘G???_HO???_G@?G???{O??AG?@

(b) and (c) Y?HI@eO?????_?OCa_?CP_???SG@_??SCG???@?H?G???@C?A?C???B_

Y??Y?EO??CCAP??Bo@A?‘A???_KO??a?C_????@H??O?A?A?O?G???B_

Table 4.15: Origin graphs shared by subgraph with the even number of vertices

Based on the graphs we have generated, we can say that the subgraph with 22
vertices could be the first subgraph of snarks with an even number of vertices. We
cannot say this with absolute certainty, because we only generated subgraphs for snarks
with up to 26 vertices. There might be bigger graphs that will have even smaller
subgraphs but based on the data from 4.19 it seems like a reasonable guess.

From the edge and vertex removal point of view, the graphs and their subgraphs
can be divided as shown in table 4.19. This splitting does not mean that there is only



4.2. SNARKS WITH g ≥ 5 29

# vertices 9 17 19 21 22 23 24 25 26
# subgraphs 1 10 53 181 1 455 1 3822 1

Table 4.16: Distribution of subgraphs of snarks (g ≥ 5) based on the number of vertices.

Figure 4.7: Common origin snark for 22- and 24-vertex subgraphs

one subgraph with a certain number of vertices/edges in every group - there can be
multiple subgraphs with the same number of vertices/edges in one group.

It can be seen that every subgraph group with a certain number of vertices is
contained in the next one except for the 9-vertex, 22-vertex, and possibly 24-vertex,
and 26-vertex subgraph. This suggests that some subgraphs with an even number of
vertices could be present in both graphs with the same number of vertices and graphs
with two additional vertices.

On the other hand, in the table with numbers of edges, the subgraphs that are
created by the removal of three edges are not contained in the next group of graphs.

This input set also differs from the previous one in the distribution of graphs by
the number of subgraphs (table 4.20) - more graphs from which the subgraphs are
generated, and the Petersen subgraph is a subgraph only of the Petersen graph, which
does not have any other subgraphs. The biggest number of subgraphs is 26 shared by
52 graphs. An interestingly high number of graphs (137) have exactly 18 subgraphs.

This input set includes only one graph to which the Petersen subgraph is a subgraph
- the Petersen graph. Every other graph in this set contains only different subgraphs.
This data is shown in table 4.21.

Table 4.24 shows, that every generated subgraph of snarks with g ≥ 5 can be
expanded into a snark with the same girth but only some into snarks with g ≥ 4. This
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Figure 4.8: 22-, 24-, and 26-vertex subgraphs of snarks

is because of the difference in the sizes of our input sets.
The largest number of elements needed to reach the nearest snark in the first table

is 1 vertex and 4 edges, which was the case for 29 subgraphs. Second’s table largest
difference between a subgraph and a graph for 14 graphs was 1 vertex and 5 edges.
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graph subgraph
10 9
18 17
20 17, 19
22 17, 19, 21, 22
24 17, 19, 21, 22, 23, 24
26 17, 19, 21, 23, 24, 25, 26

Table 4.17: # vertices in (sub)graphs

graph subgraph
15 12
27 23, 24
30 23, 26, 27
33 23, 26, 29, 30, 31
36 23, 26, 29, 31, 32, 33, 34
39 23, 26, 29, 32, 34, 35, 36, 37

Table 4.18: # edges in (sub)graphs

Table 4.19: Number of vertices and edges in graphs and their subgraphs

# subgraphs # graphs
1 1
3 3
4 2
5 8
6 6
7 13
8 7
9 5
10 38
11 11
12 17

# subgraphs # graphs
13 2
14 15
15 13
16 4
17 1
18 137
20 1
24 8
25 3
26 52

Table 4.20: Snarks (g ≥ 5) by number of subgraphs

# graphs
not contained in 346

contained in 1
its only subgraph 1

Table 4.21: Number of snarks (g ≥ 5) which (do not) contain Petersen subgraph

4.3 Snarks with g ≥ 4

As previously mentioned, when the requirements are lowered, more graphs fulfill them.
In table 4.25 are the numbers of snarks with g ≥ 4. The number of subgraphs is also
slightly larger which is reflected in the almost 2 times longer computation time for
22-vertex snarks and 3 times larger for 24-vertex snarks. That is why this input set
consists only of graphs with 10 to 24 vertices. There are 1297 snarks with g ≥ 4 and 26
vertices, so the computation would be feasible but would take at least 3 times longer.
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# vertices # edges # subgraphs
0 2 2
1 3 671
1 4 29

sum = 702

Table 4.22: Nearest snark with g ≥ 4

# vertices # edges # subgraphs
0 2 3
1 3 4198
1 4 310
1 5 14

sum = 4525

Table 4.23: Nearest snark with g ≥ 5

Table 4.24: Subgraphs of snarks (g ≥ 5) by the number of elements needed to complete
the nearest snark (in terms of the number of elements)

# vertices 10 18 20 22 24
# graphs 1 2 6 31 155
# subgraphs 1 10 55 323 2031
Time [ms] 8 553 6387 84334 1284895

Table 4.25: Statistics for snarks (g ≥ 4)

The following tables 4.26, 4.29, 4.30, 4.31, 4.32, and 4.35 show similar data as the
ones in previous sections, but for snarks with g ≥ 4. The accompanying text is omitted
due to the considerable overlap with the previous set of snarks. No new findings have
been identified in the graph groups.

# all graphs 195
# all subgraphs 2385
Time sum [min] 22.936283333

Table 4.26: Total numbers for snarks (g ≥ 4)
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# vertices 10 18 20 22 24
# graphs 1 2 6 20 38
# subgraphs 1 10 55 189 471

Table 4.27: Snarks g ≥ 5

# vertices 10 18 20 22 24
# graphs 1 2 6 31 155
# subgraphs 1 10 55 323 2031

Table 4.28: Snarks g ≥ 4

Table 4.29: Difference between snarks with g ≥ 5 and g ≥ 4

# vertices 9 17 19 21 22 23 24
# subgraphs 1 10 53 315 1 2004 1

Table 4.30: Distribution of subgraphs of snarks (g ≥ 4) based on the number of vertices.

# subgraphs # graphs
1 1
3 2
5 4
6 1
7 16
8 3

# subgraphs # graphs
9 4
10 24
11 10
12 10
15 10
18 110

Table 4.31: Snarks (g ≥ 4) by number of subgraphs

# graphs
not contained in 194

contained in 1
its only subgraph 1

Table 4.32: Number of snarks (g ≥ 4) which (do not) contain Petersen subgraph

4.4 Flower snarks

Certain snarks are distinguished by specific names and flower snarks are one such
example. One specific snark was already mentioned in 4.2. We ran the generation
algorithm specifically on 5 flower snarks with 20, 28, 36, 44, and 52 vertices called
J5, J7, J9, J11, and J13, respectively. All of these snarks have three uncolorable minimal
subgraphs.

These graphs are very symmetrical (see figure 4.5). From the parity lemma, we
know, that from uncolorable cubic graphs, we can remove one vertex without altering
its uncolorability. Therefore the flower snark must have at least one vertex that is
removable so that the subgraph is minimal and uncolorable. As stated, the input flower
snarks all have 3 non-isomorphic subgraphs. Thus, three vertices can be removed. Each
one on a different layer (figure 4.9) of the snark.
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# vertices # edges # subgraphs
1 3 2262
1 4 121
0 2 2

sum = 2385

Table 4.33: Nearest snark with g ≥ 4

# vertices # edges # subgraphs
1 3 671
1 4 29
0 2 2

sum = 702

Table 4.34: Nearest snark with g ≥ 5

Table 4.35: Subgraphs of snarks (g ≥ 4) by the number of elements needed to complete
the nearest snark (in terms of the number of elements)

Figure 4.9: Three layers of vertices in flower snarks

Based on the structure and on the construction [12] of the flower snarks we can
assume that all flower snarks will have only three minimal uncolorable subgraphs. They
have three types of vertices (highlighted in color in figure 4.9): the ones in the base
(magenta vertices), in the n-cycle (cyan vertices), and in the 2n-cycle (green vertices).
So after removing those one by one, we get 3 different subgraphs. And since the flower
snarks are an infinite family of snarks, their subgraphs can also be divided into three
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infinite families based on the layers, from which one vertex is removed.

4.5 Future work

Some of the interesting questions we left unanswered are listed in this section.

Hamiltonian and hypohamiltonian graphs

Since we are working with graphs and their subgraphs and we also know how many ver-
tices each graph has it could be possible to divide the input graphs into (hypo)hamiltonian
and non-(hypo)hamiltonian. A graph G = (V,E) with a vertex set V and an edge set
E is said to be hypohamiltonian if it is not hamiltonian but for each v ∈ V the sub-
graph G− v is hamiltonian. This might be an interesting categorization, for example,
because of the connection between these types of graphs and the traveling salesman
problem [14].

Graphs with a subgraph with the same vertex number

We found three subgraphs that had the same number of vertices as their origin graphs,
which is only a fraction of the total number of found subgraphs. The number of results
is limited, because of the size and the computation time of the input group. But if a
longer run time is possible or a better algorithm for graph generation is used, more
graphs with the same vertex number as their origin graphs might be found.

Number of graphs having only one subgraph

The same goes for this question. From our results, it seems that only three different
graphs contained only one minimal uncolorable subgraph. Our inputs were bonded
above by 20, 26, and 24 vertices so with bigger input graphs the results could change.
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Conclusion

This thesis aimed to compile a list of minimal uncolorable subgraphs of snarks, analyze
these subgraphs and their properties, and offer potential insights into the study of
snarks in graph theory.

After introducing the topic through definitions and previous works, we presented
a generation algorithm based on the gradual removal of edges. Due to the lengthy
run times on the input sets, we incorporated memoization. We demonstrated the
correctness of the algorithm with a proof by induction.

We generated the minimal uncolorable subgraphs of three sets of input graphs:
cubic graphs with girth of at least 5 up to graphs with 20 vertices, snarks with girth
≥ 5 up to 26 vertices, and snarks with girth ≥ 4 up to 24 vertices. These subgraphs
were then analyzed, and the results are presented in numerous tables and figures in
chapter 4.

A special case of snarks was then used as input. We generated the subgraphs for five
of the flower snarks and identified three types of vertices present in every flower snark,
which can be removed to obtain three different subgraphs. Based on this discovery,
three distinct infinite families of flower snark subgraphs were identified.

Lastly, we listed some questions that could lead to interesting results if further
studied.
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