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Abstrakt

Koncept stavovej zložitosti je kľúčový pre porozumenie a kategorizáciu výpočtových
problémov, ako aj pre meranie a porovnávanie efektívnosti rôznych výpočtových mod-
elov. Významnou oblasťou štúdia v tejto oblasti je porovnanie stavovej zložitosti
dvojsmerných deterministických a nedeterministických konečných automatov, ako aj
jednosmerných deterministických a nedeterministických konečných automatov. Pri
jednosmerných konečných automatoch je známe, že existuje postupnosť jazykov, kde
jednosmerný deterministický automat potrebuje na ich akceptovanie exponenciálne
viac stavov ako jednosmerný nedeterministický automat. Pre dvojsmerné automaty
je však táto otázka stále otvorená. Preto sa vedci sústreďujú na skúmanie modi-
fikácií týchto dvojsmerných automatov. V tejto práci sa hlavne sústredíme na stavovú
zložitosť modelu zvaného opité konečné automaty, ktoré predstavujú modifikáciu dvojs-
merných automatov, ktoré nemajú kontrolu nad smerom pohybu hlavy. Namiesto toho
sa hlava pohybuje podľa náhodného procesu opitého chodca a smer posledného pohybu
je vstupom do prechodovej funkcie automatu. Kedykoľvek automat dosiahne koncový
znak vstupného slova, musí byť v správnom akceptačnom alebo zamietacom stave. V
tejto práci najprv ukážeme, že akceptujú množinu regulárnych jazykov a potom sa
sústredíme na skúmanie stavovej zložitosti ich deterministickej a nedeterministickej
verzie v porovnaní s jednosmernými konečnými automatmi. Špeciálne sa budeme ven-
ovať aj porovnaniu stavovej zložitosti týchto modelov pri regulárnych jazykoch nad
unárnymi abecedami. Ukážeme aj, že existuje postupnosť jazykov, kde opitý deter-
ministický automat potrebuje na ich akceptovanie exponenciálne viac stavov ako opitý
nedeterministický automat.

Kľúčové slová: konečné automaty, dvojsmerné automaty, stavová zložitosť, opité
automaty

vi



Abstract

The concept of state complexity is crucial for understanding and categorizing com-
putational problems, as well as for measuring and comparing the efficiency of various
computational models. A significant area of study in this field is the comparison of
the state complexity of two-way deterministic and nondeterministic finite automata,
as well as one-way deterministic and nondeterministic finite automata. For one-way
finite automata, it is known that there exists a sequence of languages where a one-
way deterministic finite automaton needs exponentially more states to accept them
than a one-way nondeterministic finite automaton. However, for two-way automata,
this question remains open. Therefore, researchers focus on studying modifications of
these two-way automata. In this thesis, we primarily focus on the state complexity
of a model called drunken finite automata, which represent a modification of two-way
automata that have no control over the head’s movement direction. Instead, the head
moves according to the drunkard’s walk random process, and the direction of the last
movement is the input to the automaton’s transition function. Whenever the automa-
ton reaches the end marker of the input word, it must be in the correct accepting or
rejecting state. In this work, we first show that drunken finite automata accept the
set of regular languages and then focus on examining the state complexity of their
deterministic and nondeterministic versions in comparison with finite automata. Spe-
cial attention is given to comparing the state complexity of these models for regular
languages over unary alphabets. We also demonstrate that there exists a sequence of
languages where a drunken deterministic automaton needs exponentially more states
to accept them than a drunken nondeterministic automaton.

Keywords: finite automata, two-way automata, state complexity, drunken automata
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Introduction

In the realm of computational theory, state complexity refers to the number of states
required by an automaton to solve a given problem. This concept is vital for un-
derstanding and categorizing computational problems, particularly in measuring the
efficiency of different approaches. Exploring state complexity allows us to understand
the trade-offs between different types of resources, like time and space.

State complexity, especially in the comparison of one-way deterministic and non-
deterministic finite automata, is a notable area of study in this field. It has been
established, as demonstrated in the work of Albert R. Meyer and Michael J. Fischer
[5] in ’Economy in Description by Automata, Grammars, and Formal Systems’, that
there are exponential gaps in state complexity between these two models.

This means that for certain languages, a nondeterministic finite automaton (NFA)
might require only n states to recognize a language and a deterministic finite automaton
(DFA) might need as many as 2n states for the same language.

Christos A. Kapoutsis’s ’minicomplexity’ paper [3] sheds light on the significance
of studying state complexity in the context of two-way finite automata. It builds upon
and extends the classical framework of Sakoda and Sipser, emphasizing the importance
of state complexity in understanding the computational capabilities of finite automata.
It integrates historical theorems and recent theoretical advances, highlighting their re-
lationship to Turing machines’ space complexity. Additionally, this work suggests that
an exponential gap in the number of states between deterministic and nondeterministic
two-way automata could, under certain conditions, contribute to resolving the L vs NL
problem, also known as the DLOG vs NLOG problem.

In light of this unresolved question, researchers have shifted focus to investigating
various modified versions of two-way automata. Richard Kralovič’s dissertation ’Com-
plexity Classes of Finite Automata’ [4] examines models of two-way finite automata
with restricted head movements, including rotating and sweeping automata. This in-
cludes identifying an exponential gap in state complexity between the nondeterministic
and deterministic models of rotating and sweeping automata. Sweeping automata are
similar to two-way finite automata, but they only change the read head’s direction at
the start or end of the input string. Rotating automata, on the other hand, are more
like one-way finite automata as they read input from left to right. However, they differ
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2 Introduction

in that they can traverse the input a fixed number of times.
Juraj Hromkovič and Georg Schnitger’s work, particularly on oblivious two-way

automata as detailed in ’Nondeterminism versus Determinism for Two-Way Finite Au-
tomata: Generalizations of Sipser’s Separation’ [2], is a significant contribution in this
field. Oblivious two-way automata are characterized by their reading head moving in
a fixed pattern, independent of the input. This means that for every input length,
the order in which the tape cells are visited by the automaton’s head is the same
for all inputs of that length. Their research not only explores these automata with
limited trajectories but also uncovers an exponential gap in state complexity between
deterministic and nondeterministic versions of these models.

Building on this foundation, this thesis investigates an extreme scenario, a modifi-
cation of two-way finite automata called drunken finite automata that have no control
over the direction of the head movement. In this study, both deterministic (dDFA)
and nondeterministic (dNFA) versions of drunken finite automata are examined. The
head’s movement in these automata follows the ’drunkard’s walk’ random process,
where the direction of the last movement dictates the automaton’s transition function.
Whenever the automaton reaches the input word’s end marker, it must transition to
an appropriate accepting or rejecting state. This concept draws inspiration from ran-
dom walks, particularly the idea of a ’drunkard’s walk’, as detailed in Frank Spitzer’s
’Principles of Random Walk’ [7]. Random walks are sequences where each step is
randomly determined, exemplified by the ’drunkard’s walk’, which depicts a random,
one-dimensional path akin to a drunken person’s stagger. The first objective of this
research is to identify the specific languages recognizable by drunken finite automata,
both deterministic and nondeterministic. The main focus of this thesis is to conduct
a comparative analysis of the state complexity in drunken finite automata relative to
various other types of automata. The study will compare the deterministic and non-
deterministic versions of these automata and will then broaden its scope to include
comparisons with deterministic finite automata and nondeterministic finite automata.



Chapter 1

Definitions

Definition 1 A Drunken Deterministic Finite Automaton (dDFA) is formally defined
as a quintuple A = (K,Σ, δ, q0, F ), where:

• K is a finite set of states,

• Σ is the input alphabet, with the symbols ←,→,£, e not in Σ,

• δ : K × (Σ ∪ {£})× {←,→} → K is the transition function,

• q0 ∈ K is the initial state,

• F ⊆ K is the set of accepting states.

The input to the automaton’s transition function includes the current state of the
automaton, the letter currently being read by the reading head, and the direction in
which the head last moved. Based on this information, the automaton changes state
and then moves head.

Definition 2 A configuration of a dDFA A = (K,Σ, δ, q0, F ) can be a triple (q, ε,£we)

if the head is reading the left end marker £, a triple (q,£w, e) if the head is reading the
right end marker e, or a triple (q,£u, ave), where the head reads the character a ∈ Σ,
with v, u ∈ Σ∗ and vau = w, for all cases q ∈ K and w is the input word.

Definition 3 A computation step of the dDFA A = (K,Σ, δ, q0, F ) is a binary relation
⊢A on the set of configurations of the automaton A such that:

1. (q,£v, aue) ⊢A (p,£va, ue) iff p = δ(q, a, x),

2. (q,£vb, aue) ⊢A (p,£v, baue) iff p = δ(q, a, x),

3. (q,£, aue) ⊢A (p, ε,£aue) iff p = δ(q, a, x),

4. (p, ε,£aue) ⊢A (q,£, aue) iff p = δ(q,£,←),

3



4 CHAPTER 1. DEFINITIONS

5. (q,£va, e) ⊢A (p,£v, ae) iff p = δ(q, e,→),

where x ∈ {←,→} represents the direction in which the head last moved before reading
a ∈ Σ, or e, or £, b ∈ Σ and uv ∈ Σ∗. No other pairs of configurations belong to this
relation.

Definition 4 A Drunken Nondeterministic Finite Automaton (dNFA) is formally de-
fined as a quintuple A = (K,Σ, δ, q0, F ), where:

• K is a finite set of states,

• Σ is the input alphabet, with the symbols ←,→,£, e not in Σ,

• δ : K × (Σ ∪ {£})× {←,→} → 2K is the transition function

• q0 ∈ K is the initial state,

• F ⊆ K is the set of accepting states.

The input to the automaton’s transition function includes the current state of the
automaton, the letter currently being read by the reading head, and the direction in
which the head last moved. Based on this information, the automaton can choose
which state to change into and then moves its head.

Definition 5 A configuration of a dNFA A = (K,Σ, δ, q0, F ) can be a triple (q, ε,£we)

if the head is reading the left end marker £, a triple (q,£w, e) if the head is reading the
right end marker e, or a triple (q,£u, ave), where the head reads the character a ∈ Σ,
with v, u ∈ Σ∗ and vau = w, for all cases q ∈ K and w is the input word.

Definition 6 A computation step of the dNFA A = (K,Σ, δ, q0, F ) is a binary relation
⊢A on the set of configurations of the automaton A such that:

1. (q,£v, aue) ⊢A (p,£va, ue) iff p ∈ δ(q, a, x),

2. (q,£vb, aue) ⊢A (p,£v, baue) iff p ∈ δ(q, a, x),

3. (q,£, aue) ⊢A (p, ε,£aue) iff p ∈ δ(q, a, x),

4. (p, ε,£aue) ⊢A (q,£, aue) iff p ∈ δ(q,£,←),

5. (q,£va, e) ⊢A (p,£v, ae) iff p ∈ δ(q, e,→),

where x ∈ {←,→} represents the direction in which the head last moved before reading
a ∈ Σ, or e, or £, b ∈ Σ and uv ∈ Σ∗. No other pairs of configurations belong to this
relation.
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Definition 7 A trajectory s of length n on the word w is a sequence s ∈ {←,→}n

that satisfies the following conditions:

• The net movement equals the length of the word: #→(s)−#←(s) = |w|

• For all prefixes s1 of s, it holds that 0 ≤ #→(s1)−#←(s1) < |w|

Thus, the trajectory s on the word w represents the movement that the head of the
Drunken Automaton would make across the word, ending at the right end marker with-
out having read it before.

Definition 8 A Trajectory-Based Computation is denoted by (q0,£, we)
s−→
∗
(q,£w, e).

This notation indicates that the automaton A starts in state q0 with the input w and
follows the trajectory s, and reaches state q with the right end marker e after processing
the word w.

Definition 9 A language Lacc(A) accepted by drunken finite automaton A = (K,Σ, δ, q0, F )

consists of all words for which there exists a trajectory such that there is a computation
ending in an accepting state on this trajectory:

Lacc(A) =
{
w ∈ Σ∗ | ∃s ∈ {←,→}∗ such that

s is a trajectory for w and ∃q ∈ F,

(q0,L, we)
s−→
∗
(q,Lw, e)

}
Definition 10 A language Lrej(A) rejected by drunken finite automaton A = (K,Σ, δ, q0, F )

consists of all words for which there exists a trajectory such that no computation on
this trajectory ends in an accepting state:

Lrej(A) =
{
w ∈ Σ∗ | ∃s ∈ {←,→}∗ such that

s is a trajectory for w and ∀q ∈ F,

(q0,L, we)
s−→
∗
(q,Lw, e) does not exist

}
We consider the automaton to be correct if every word over its alphabet belongs to

exactly one of these languages.

Definition 11 Let L be a language over an alphabet Σ, and let M be an automaton
model from the set {NFA, dNFA, DFA, dDFA}. The state complexity of L using model
M is defined as the minimum number of states required in an automaton of model M
to recognize L. Formally:

sc(M,L) = min {|Q| | A is an automaton of model M accepting L with a set of states Q}

Specifically, if the model is known, we will use sc(L) to denote the state complexity.
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Definition 12 We say that there is a gap in state complexity between two models M1

and M2 if there exists a sequence of languages Li such that:

lim
i→∞

sc(M1, Li)

sc(M2, Li)
= 0

We will say that there is a gap over Li if the equation above holds for a sequence
of languages Li.

Example:

A drunken deterministic automaton A = (K,Σ, δ, q0, F ) accepting the language L =

{w ∈ {a, b}∗ | #a(w) mod 3 ≡ #b(w) mod 3}, could look like this:

K = {[x, y, z] | x, y ∈ {0, 1, 2}, z ∈ {a, b,£}}

Σ = {a, b},

q0 = [0, 0,£],

F = {[x, y, z] | x, y ∈ {0, 1, 2}, z ∈ {a, b,£}, x = y}

The transition function δ is defined as:

δ([x, y, z], a,→) = [(x+ 1) mod 3, y, a], z ∈ {a, b,£}

δ([x, y, z], b,→) = [x, (y + 1) mod 3, b], z ∈ {a, b,£}

δ([x, y, a], z,←) = [(x− 1) mod 3, y, z], z ∈ {a, b}

δ([x, y, b], z,←) = [x, (y − 1) mod 3, z], z ∈ {a, b}

for all x, y ∈ {0, 1, 2}.
The number at the first position of the state represents the count of character ’a’

modulo 3 in the already processed part of the word. The number at the second position
of the state represents the count of character ’b’ modulo 3 in the already processed
part of the word. The character at the third position of the state indicates the symbol
that was last read before moving the head. Therefore, if the automaton reads a symbol
’x’, and the last step was to the right, it increases the part of the state counting the
occurrences of ’x’. If the last step was to the left, it subtracts from the count of the
last read symbol before making the move, which is remembered in the state.

The computation on the word "abba", where the head moves according to the
trajectory "→→←←→→→→" would look like this:

([0, 0,£],£, abbae) ⊢A ([1, 0, a],£a, bbae) ⊢A ([1, 1, b],£ab, bae) ⊢A
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([1, 2, b],£a, bbae) ⊢A ([1, 1, b],£, abbae) ⊢A ([1, 0, a],£a, bbae) ⊢A

([1, 1, b],£ab, bae) ⊢A ([1, 2, b],£abb, ae) ⊢A ([2, 2, a],£abba, e)

And thus it accepts the word "abba".
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Chapter 2

Computational Power of Drunken
Finite Automata

2.1 Computational Power of dDFA

Theorem 1 If there exists a DFA that accepts a language L1, then there exists a
corresponding dDFA that accepts L1.

Proof 1 For a language L1 and a DFA A = (K1,Σ1, δ1, q01, F1) with L(A) = L1, we
construct a dDFA O = (K2,Σ2, δ2, q02, F2) as follows:

K2 = 2K1 × (Σ1 ∪ {£})

Σ2 = Σ1

q02 = ({q01},£)

F2 = {({q}, x) | ∀q ∈ F1,∀x ∈ Σ1 ∪ {£}}

δ2((q, x),←, y) = ({p | ∃r ∈ q : δ1(p, x) = r}, y)

∀q ∈ 2K1 ,∀x ∈ Σ1,∀y ∈ Σ1 ∪ {£}

δ2((q, x),→, y) = ({p | ∃r ∈ q : δ1(r, y) = p}, y)

∀q ∈ 2K1 ,∀y ∈ Σ1,∀x ∈ Σ1 ∪ {£}

Informally speaking, the automaton O maintains in its state a set of states from au-
tomaton A, which represents the possible states that A could have been in when the
reading head was looking at the symbol reached after the last movement. Additionally,
it records the last read symbol in its state to be able to generate this set when moving
left.

Proof that L(A) = L(O).
Suppose for the sake of contradiction that L(A) ̸= L(O), i.e., there exists a word w such

9



10CHAPTER 2. COMPUTATIONAL POWER OF DRUNKEN FINITE AUTOMATA

that automaton A accepts w and O rejects it, or vice versa. This implies that there is a
computation on word w in automaton O that leads to a different result than automaton
A. Let x be the shortest such computation. We examine the head movements of O

during this computation. It could not have been just steps to the right, since in that
case, O merely simulates the computation of A. Therefore, the head must have made at
some point a left step followed by a right step (since the computation of the automaton
only finishes when the head reaches the right end marker). It is evident that before
moving left, the reading head could not have been reading the left end marker, as it
would not have been able to take another left step from there. Let x be the character
read by the head before these steps and let w = uyxv, u, v ∈ Σ∗, y ∈ Σ and let (m1, x)

be the state of the automaton before the head first moves left and then right during
this computation (i.e., the state it transitions to after reading x). Let (m2, y) be the
state after the head moves left (and reads y), and let (m3, z) be the state after the head
moves right again and reads x. We will show that m1 = m3. Clearly from the transition
function δ, z = x.

We want to show that m1 ⊆ m3 and m3 ⊆ m1. For the first part, let p1 ∈ m1. Then
there exists some p2 ∈ m2 such that δ1(p2, x) = p1. It follows that there exists some
p3 ∈ m3 such that δ1(p2, x) = p3, and therefore p3 = p1, which implies p1 ∈ m3.

For the second part, let p3 ∈ m3. Then there exists some p2 ∈ m2 such that
δ1(p2, x) = p3. It follows that there exists some p1 ∈ m1 such that δ1(p2, x) = p1, and
hence p1 = p3, which implies p3 ∈ m1.

Since (m1, x) = (m3, z), a computation by the automaton on a shortened trajectory
without these two steps would lead to the same result, thus we encounter a contradiction
with the assumption that the given computation is the shortest. Therefore L(A) =

L(O).
Thus drunken deterministic finite automata can accept all languages that are ac-

cepted by deterministic finite automata (i.e. all regular languages).

Theorem 2 Drunken deterministic finite automata accept precisely regular languages.

Proof 2 We have already proved that dDFA can accept any regular language. Now we
will construct an equivalent DFA from a given dDFA to prove they cannot accept any
non-regular languages. If we have any dDFA O2, we can build a DFA A2 such that
L(A2) = L(O2) by making A2 function in the same way as O2 on a trajectory where
the head only moves to the right. Since O2 is correct, a word w belongs to the language
if and only if O2 accepts it on every possible trajectory. Similarly, if a word w does
not belong to L(O2), O2 does not accept it on any trajectory. Therefore, the DFA A2

accepts a word w if and only if O2 also accepts it.
Therefore, drunken deterministic automata accept exactly regular languages.
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2.2 Computational Power of dNFA

Theorem 3 If there exists an NFA that accepts a language L1, then there exists a
corresponding dNFA that accepts L1.

Proof 3 According to the subset construction (also known as the powerset construc-
tion), any NFA can be converted into an equivalent DFA that accepts the same language.
As shown in Theorem 1, for any DFA, we can construct an equivalent dDFA. Addi-
tionally, any dDFA can be viewed as a dNFA. Therefore, for every NFA, there exists
an equivalent dNFA that accepts the same language. Thus drunken nondeterministic
finite automata can accept all languages that are accepted by nondeterministic finite
automata (i.e. all regular languages).

Theorem 4 Drunken nondeterministic finite automata accept precisely regular lan-
guages.

Proof 4 We have already proved that dDFA can accept any regular language. In the
same way that we demonstrated the construction of a DFA equivalent to a dDFA, we
can construct an equivalent NFA for any dNFA. Therefore, drunken nondeterministic
automata cannot accept languages that are not regular, and thus also accept precisely
the regular languages.
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Chapter 3

State Complexity Comparison
Between Models

In this chapter, we will compare the state complexity of deterministic and nondetermin-
istic drunken automata, as well as with their non-drunken counterparts, the one-way
deterministic and nondeterministic finite automata. Due to the unique nature of these
models over a unary alphabet, we will first focus on their state complexity separately.

3.1 Regular Languages over Unary Alphabet

Lemma 1 Graph of the transition function of every deterministic finite automaton
(DFA) over a unary alphabet is "Nine-Shaped"

Proof 5 Let A = (Q,Σ, δ, q0, F ) be a (DFA), where Σ = {a} is a unary alphabet.
Because the alphabet has only one symbol a, the DFA’s behavior is determined by

repeated applications of the transition function δ(q, a).
Since the set of states Q is finite, say |Q| = n, the DFA can only enter a limited

number of states. By the pigeonhole principle, as we keep applying the transition func-
tion δ, we must eventually revisit a state. That is, there must be some integers k and
j such that 0 ≤ k < j and δj(q0, a) = δk(q0, a). Here, δi(q, a) means applying the
transition function δ repeatedly i times starting from state q.

This means that after some number of transitions, the DFA will enter a cycle,
revisiting the same sequence of states repeatedly. The structure of this transition can
be described as:

1. A "tail" segment: a finite sequence of states starting from the initial state q0 and
leading to the start of the cycle.

2. A "loop" segment: a sequence of states that forms a cycle.
Thus, the transition function graph of the DFA is "nine-shaped", with a finite tail

leading into a repeating cycle.

13
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Figure 3.1: Fig.1: A DFA over Unary Alphabet

Theorem 5 A drunken deterministic finite automaton (dDFA) can accept any regu-
lar language over a unary alphabet using one more state than a deterministic finite
automaton (DFA) that accepts the same language.

Proof 6 Let A = (Q,Σ, δ, q0, F ) be a DFA, where Σ = {a}, that accepts a regular
language over a unary alphabet. The transition function of this DFA thus forms a
"nine" shape, as we proved in the last lemma. We define a dDFA B = (Q,Σ, δ′, q0, F ),
where:

• Q′ = Q ∪ {qpre}

• Σ = {a}

• δ′ is the new transition function defined below
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• q′0 = q0

• F ′ = F

The transition function δ′ of B is defined as follows: if the last head movement was
to the right, then δ′(q, a,Right) = δ(q, a). For the new state we define: δ′(qpre, a,Right) =
q0 and δ′(q0,£,Left) = qpre. If the last head movement was to the left, then δ′(q, a,Left) =
q′, where q′ is the predecessor of state q in the graph of transition function of DFA A.
Clearly, each vertex in the graph has exactly one predecessor (for q0 we added predeces-
sor qpre and qpre is predecessor for qpre ) , except for the junction vertex (intersection
of the tail and cycle), where we choose the predecessor from the cycle. Additionally, if
the reading head reads left end marker: δ′(q,£,Left) = qpre .

The transition function of DFA A can be visualized as a directed graph where each
state is a vertex in the graph and for each q ∈ Q, the edge (q, δ(q, a)) is a directed edge
in the graph. This graph has the "nine" structure, with a tail leading into a cycle. In
dDFA B, we add back edges: if the last head movement was to the left, dDFA moves
to the predecessor in the graph. By adding these back edges, we ensure that B has the
correct structure for both right and left movements. Using the extra state, we ensure
that if we step on the left end marker and then return from it to the first character, we
will be in the same state as at the beginning of the computation.

dDFA B thus mimics the behavior of automaton A for right movements and for
left movements dDFA B correctly moves back to the predecessor state, maintaining the
correct state sequence. Since dDFA B uses the same set of states Q with one extra
state as DFA A and transitions accordingly, both automata accept the same language.

Let us assume for the sake of contradiction that there exists a trajectory where dDFA
B reaches a different result than DFA A. Let x be shortest trajectory where dDFA B

reaches a different result than DFA A. Since dDFA B merely mimics DFA A for right
movements, there must be a left movement in x. Consider the shortest trajectory x that
leads to a different result, containing at least one left movement. Obviously, somewhere
in this sequence, the head must move to the left and then immediately to the right. So
x = x1 · Left · Right · x2.

But after moving left and then right, dDFA B returns to the same state q it would
have been in without these moves: If the automaton was in a state belonging to a
cycle before the left move, it will be in the same state after moving left and then right
according to the transition function. Similarly, if it was in a state on the linear path,
it would just move to the clearly defined predecessor state and return to the state it was
in. This does not apply to qpre, but evidently the automaton can only reach qpre if the
reading head reaches the left end marker, thus it cannot be in this state before a right
move. So:

δ′(δ′(q, a,Left), a,Right) = q
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Thus, x can be reduced to x′ = x1 · x2, contradicting the assumption that x was the
shortest sequence leading to a different result.

Theorem 6 A drunken nondeterministic finite automaton (dNFA) can accept any reg-
ular language over a unary alphabet using O(n2) states, where n is the number of states
of an nondeterministic finite automaton (NFA) that accepts the same language.

Proof 7 We begin by referencing the work of Marek Chrobak in "Finite Automata and
Unary Languages" [1], which demonstrates that any unary NFA A can be transformed
into a specific normal form. This normal form is characterized by a transition function
that consists of a single linear path leading to multiple branching points, each connecting
to a distinct cycle. This transformation results in an NFA A′ with O(n2) states, where
n is the number of states in the original NFA.

To illustrate: 1. Linear Path: States q0, q1, . . . , qm form a sequence where each state
transitions to the next under the input symbol a.

2. Branching Point: At the end of the linear path, the state qm has transitions to
multiple initial states pi,0 of cycles.

3. Cycles: Each cycle consists of states pi,0, pi,1, . . . , pi,yi−1, with transitions forming
a loop under the input symbol a.

For more details on this normal form and its properties, refer to Chrobak’s work.
Given an NFA A accepting L with n states, we can transform it into an NFA A′

with O(n2) = m states in this normal form. Next, we will construct a dNFA B that
accepts the same language L using m states, building upon this normal form.

The dNFA B will have the same set of states as A′ and one extra state qpre to handle
stepping on the left end marker. The transition function of B will operate as follows:
- If the last head movement was to the right, B mimics the transition function of A′. -
If the last head movement was to the left: - For states lying on a cycle, the transition
function moves to the predecessor state in that cycle. - For states lying on the linear
path or branches, the transition function moves to the predecessor state along the path
or branch. The predecessor of state q0 will be qpre. For completeness, we also add
transitions from every state to qpre when reading the left end marker and a transition
from qpre to qpre if the last move was left and reading ‘a’ or the left end marker.

Formally, let δB be the transition function of B and δA′ be the transition function
of A′:

δB(q, a,Right) = δA′(q, a)

δB(pi,j, a,Left) = {pi,(j−1) mod yi}

δB(qk, a,Left) = {qk−1} if qk is on the linear path and k > 0

δB(q0, a,Left) = {qpre}
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Figure 3.2: Fig.2: A NFA over Unary Alphabet in Normal Form

δB(q,£,Left) = {qpre} ∀q ∈ Q

δB(qpre, a,Left) = {qpre}

Thus, B correctly simulates A′ for both right and left head movements, ensuring it
accepts the same language L.

The dNFA B will traverse the word, moving through the states along the linear path
until it eventually makes a right move from state qm, the branching point vertex. At this
point, it will non-deterministically guess which initial vertex of the cycles to transition
into. For the remainder of the computation, the dNFA will move within that cycle.

It is evident that this construction works for similar reasons as the construction in
the previous theorem. The difference in proving that this construction works as well lies
in the fact that the automaton can be in any of the larger number of cycles during the
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computation and if the automaton has already entered a cycle, it will also remain in it
until the end of the calculation. However, within each of these cycles, the computation
would work the same as in the cycle of the previous theorem, and the same applies
to the linear path. This is also due to the fact that, as we can observe, apart from
the nondeterministic guess in state qm, automata B and A′ operate deterministically.
Hence B accepts L using O(n2) states.

3.2 Regular Languages over N-ary Alphabet

We will now focus on comparing state complexity over n-ary alphabets, where n is any
natural number ≥ 1.

Lemma 2 Let L be a regular language accepted by a drunken deterministic finite au-
tomaton (dDFA) using n states. Then, there exists a deterministic dinite automaton
(DFA) that accepts L using n states.

Proof 8 Let L be a regular language and let M = (Q,Σ, δ, q0, F ) be a dDFA that
accepts L using n states. We construct a DFA M2 = (Q,Σ, δ′, q0, F ) that accepts L and
also uses n states.

The DFA M2 operates as follows: for an input word w, M2 simulates the com-
putation of the dDFA M on the word w and a trajectory where the head moves only
to the right from the beginning to the end of the computation. By the definition of a
dDFA, this trajectory ensures that M2 accepts w if and only if M accepts w. Hence,
M2 accepts the language L.

Formally, the transition function δ′ of M2 is defined as:

δ′(q, a) = δ(q, a,Right)

for all q ∈ Q and a ∈ Σ.
This transition function ensures that M2 behaves exactly as M does when the last

direction of the head movement is to the right. Since M2 uses the same set of states Q

as M , M2 operates with n states.
Therefore, we have constructed a DFA M2 that accepts the regular language L using

n states, proving the lemma.

Corollary 1 For all regular languages L, we have:

sc(dDFA, L) ≥ sc(DFA, L)

Lemma 3 Let L be a regular language accepted by a drunken nondeterministic finite
automaton (dNFA) using n states. Then, there exists a nondeterministic finite au-
tomaton (NFA) that accepts L using n states.
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Proof 9 Similarly to previous lemma, we can construct an NFA M2 that simulates the
dNFA M by considering only the trajectory where the head moves in consistently to
the right. The NFA M2 will use the same set of states Q as M and accept the same
language L.

Corollary 2 For all regular languages L, we have:

sc(dNFA, L) ≥ sc(NFA, L)

Theorem 7 Let L be any regular language over the alphabet Σ. If there exists a
deterministic finite automaton (DFA) that accepts L with n states, then there exists a
drunken nondeterministic finite automaton dNFA B that accepts L with n · (|Σ|+1)+1

states.

Proof 10 Let L be a regular language over the alphabet Σ, and let A = (K1,Σ, δ1, q0, F1)

be a DFA that accepts L with n states. We construct a dNFA B = (K2,Σ, δ2, q
′
0, F2) as

follows:

K2 = (K1 × (Σ ∪ {£})) ∪ {qrej}

q′0 = (q0,£)

F2 = F1 × (Σ ∪ {£})

The transition function δ2 is defined as follows:
1. For any q ∈ K1, y ∈ Σ ∪ {£}, and x ∈ Σ:

δ2((q, x),←, y) = {(p, y) | δ1(p, x) = q}, or {qrej} if this set is empty

2. For any q ∈ K1, x ∈ Σ ∪ {£}, and y ∈ Σ:

δ2((q, x),→, y) = {(δ1(q, y), y)}

Informally, while moving to the right, automaton B simulates the computation of au-
tomaton A, while also remembering the last read character. When moving to the left,
it non-deterministically guesses the state to return to from the set of states from which
automaton A could transition to the current state after reading the last read character,
and it remembers the character it is currently reading as well. In this way, it might
happen that the automaton ends up in a state p, where if it moves back, the set of
states from which it can reach state p on the last read character is empty. Thus, the
automaton has incorrectly guessed a state while moving back. For this case, we have
added a state qrej, to which it transitions and remains for the rest of the computation.

An accepting computation must exist on every trajectory, because on a trajectory
where the automaton moves only to the right, it simply simulates A . On trajectories
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where the reading head also moves to the left, by definition of B, the automaton can,
at each step to the left, return to the state that A was in when it was processing the
same part of the word. Thus, at each step, B can guess the state that A would be in if
its head were in the same position.

To prove that B cannot accept a word that does not belong to L, assume for contra-
diction that there exists a trajectory x where B ends in an accepting state for a word
not in L.

Let x be the shortest such trajectory. It certainly includes left moves, and since it
must end at the right end of the word, it also includes a left move followed immediately
by a right move. The automaton B will evidently not get into the situation described
above where it would have to transition to state qrej, since this state is not accepting
and it cannot move out of it.

Let y be the character read by the head before these steps, and let w = uyxv, with
u, v ∈ Σ∗, y ∈ Σ. Let (p1, x) be the state before the head moves left and then right
during this computation. Let (p2, y) be the state after moving left, and (p3, z) be the
state after moving right and transitioning after reading x.

From the transition function δ2, z = x. We will show that p1 = p3. After moving
left and reading y, B transitions to some state (p2, y) such that δ1(p2, x) = p1. Since A

is deterministic, moving right and processing x must transition B back to (p1, y).
This implies that if an accepting computation exists for the longer trajectory, it must

also exist for the shorter one, contradicting the assumption that x was the shortest.
Thus, B cannot accept a word not in L and therefore accepts exactly L, using n · (|Σ|+
1) + 1 states.

Corollary 3 There does not exist a sequence of languages Li where each language in
this sequence is defined over a common alphabet Σ such that there is a gap over Li

between DFA and dNFA.

Theorem 8 There exists an exponential gap between drunken nondeterministic finite
automata (dNFA) and deterministic finite automata (DFA).

Proof 11 Consider the sequence of languages Ln over the alphabet Σ = {a, b}, where
each language consists of words such that the n-th character from the end is the letter
"a". It has been shown that for Ln, a DFA requires exponentially more states than an
NFA. This result can be found in the work by Albert R. Meyer and Michael J. Fischer
titled "Economy of Description by Automata, Grammars, and Formal Systems" [6].

We will now show that a dNFA can accept the languages Ln using n + 1 states,
where n is the number of states sufficient for an NFA. Consider a dNFA that operates
as follows: - The dNFA starts in an initial state q1 and scans the input word, moving
both to the right and to the left. - If the last move was to the right and the current
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character is "a", the dNFA non-deterministically guesses that it is at the i-th character
from the end and starts counting down the remaining characters using the remaining
n− 1 states.

Formally, the dNFA operates as follows: - Let Q = {q1, q2, . . . , qn, qreject} be the set
of states, where q1 is the initial state, qreject is an extra rejecting state, and qn is the
accepting state. - The transition function δ is defined such that:

• From q1, the automaton can move to the next state q2 on reading character "a"
if it non-deterministically guesses that this is the n-th character from the end or
can remain in the state q1 after reading any character and the head last moved
in any direction.

• Automaton uses states q1 to qn as a counter, to count down the remaining char-
acters.

• If the automaton moves left, it decrements the counter and returns to the previous
state.

• If the automaton moves right, it increments the counter and returns to the pre-
vious state.

• If the automaton moves right while in qn, it transitions to the rejecting state qreject,
ensuring that any additional characters invalidate the guess.

• if the automaton ever reaches state qreject, it will remain in this state until the
end of the computation.

Clearly, an automaton operating in this manner accepts precisely the language L.
It is sufficient for an NFA to use n states to accept the language where the n-th

character from the end is "a". A dNFA, as described, requires n + 1 states, which is
asymptotically the same as the NFA. On the other hand, a DFA requires exponentially
more states than an NFA for the same language, which is asymptotically much larger.
Therefore there is a exponential gap in state complexity between drunken nondetermin-
istic finite automata and deterministic finite automata over sequence of languages Ln

.

Theorem 9 There exists an exponential gap between drunken nondeterministic finite
automata (dNFA) and drunken deterministic finite automata (dDFA).

Proof 12 From Corollary 1, we know that for any regular language L, the state com-
plexity of a dDFA is at least as large as the state complexity of a DFA. Formally:

sc(dDFA, L) ≥ sc(DFA, L)
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Combining these results with results from previous theorem we get:

sc(dDFA, Ln) ≥ sc(DFA, Ln)

sc(dNFA, Ln) ≤ sc(NFA, Ln) + 1

As there is an exponential gap between the state complexity of DFA and NFA for the
languages Ln [6], it follows that there is an exponential gap between the state complexity
of DFA and dNFA for these languages. Since state complexity of a dDFA is at least
as large as the state complexity of a DFA., we conclude that there is an exponential
gap in state complexity between drunken nondeterministic finite automata and drunken
deterministic finite automata over sequence of languages Ln.

Table 3.1: Number of States Needed to Accept Ln

NFA dNFA DFA dDFA

Number of States n n+ 1 2n ≥ 2n
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Some Interesting Languages

An example of a language that could initially seem problematic for drunken nonde-
terministic automata is L2

k described below. It might appear that a drunken nonde-
terministic automaton could "get lost" after traversing the word and fail to remember
its position, potentially guessing the k-th ’a’ from the end incorrectly, leading to an
incorrect acceptance.

However, drunken nondeterministic automata can handle this language just as ef-
fectively as their non-drunken counterparts.

As an example, I will demonstrate a solution from my supervisor, Prof. RNDr.
Rastislav Královič, PhD.

Definition 13 Let k be a parameter. Define the language Lk over the alphabet Σ =

{a, b} as follows:

Lk = {w ∈ Σ∗ | the k-th character from the end of w is ′a′}

The language L2
k represents the concatenation of the language Lk with itself.

The language L2
k consists of words where the k-th letter from the end is ’a’ and

there exists an ’a’ at a distance of at least 2k from the end.
A one-way nondeterministic automaton can recognize L2

k using three phases:

• In the first phase, the automaton moves through the word in state q0 until it
nondeterministically guesses that an ’a’ read is the last ’a’ at a distance of at
least 2k from the end. This guess transitions the automaton into the second
phase.

• In the second phase, the automaton, in a single state, checks that it reads only
’b’s. Upon encountering a ’b’ (or the first ’a’ it encounters), it transitions to the
third phase.

23
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• In the third phase, the automaton uses 2k states to verify that it is at a distance
of 2k from the end and simultaneously checks that the k-th letter from the end
is ’a’. If not, it transitions to a rejecting state.

Simulating L2
k with a Drunken Nondeterministic Automaton: A drunken nondeter-

ministic automaton can directly simulate this process:

• In the first phase, it moves through the word in state q0.

• When in the second phase and it moves left, it only checks that it is still moving
over ’b’s. If it encounters an ’a’ while moving left, it returns to the first phase.

• In the third phase, the automaton has an exact counter, so it does not matter
whether it moves right or left. If it moves beyond the left edge of the counter, it
transitions back to phase 2.

Similarly, drunken automata can often handle languages as efficiently as their non-
drunken counterparts, especially in cases where the NFA performs only a finite number
of nondeterministic choices in each computation and where it is clear which state it
transitioned from during backward movements. For instance, languages such as those
containing words with specific subsequences, words where a specific number of certain
symbols must be present, or words where the number of certain symbols must be
congruent to n modulo k, do not pose a problem for drunken automata.

Furthermore, I examined languages where an NFA may need to make potentially
any number of nondeterministic guesses. This is particularly problematic in languages
where reaching a specific state can result from many different states, and incorrectly
choosing which one it was while moving left could lead the automaton to an incorrect
accepting state.

Languages where I believe there might be a gap in state complexity between drunken
models and their non-drunken versions include:

Definition 14 Let k be a parameter, and let Σk be an alphabet where each symbol
represents a bipartite graph G = (A,B,E) with vertex sets A and B both having k

vertices and edge set E. Let aj denote the j-th vertex in A and bj denote the j-th
vertex in B.

Lreach,k = {w ∈ Σ∗k | ∃ a sequence of edges (a1, bj1), (aj1 , bj2), . . . ,

(ajn−1 , b1) such that (a1, bj1) ∈ E1, (ajn−1 , b1) ∈ En, and

(aji−1
, bji) ∈ Ei for 2 ≤ i < n

}
where: - w = w1w2 · · ·wn is a sequence of bipartite graphs from Σk, - Each wi represents
a bipartite graph Gi = (A,B,Ei), - There exists a sequence of edges (a1, bj1), (aj1 , bj2), . . . , (ajn−1 , b1)
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such that: - The edge (a1, bj1) is in E1, - The edge (aj1 , bj2) is in E2, - ... - The edge
(ajn−1 , b1) is in En. - The sequence of edges forms a path such that the first edge starts
at a1 in the first graph and the last edge ends at b1 in the last graph.

Definition 15 Let k be a parameter. Define the summability language Lsum,k over
the alphabet Σk, where each symbol represents a subset of the set {0, 1, 2, . . . , k − 1}
(excluding the empty set).

Lsum,k = {w ∈ Σ∗k | ∃a1, a2, . . . , an with ai ∈ wi

and (a1 + a2 + · · ·+ an) mod k = 0}

where: - Σk = P({0, 1, 2, . . . , k − 1}) \ ∅, - w = w1w2 · · ·wn is a sequence of
subsets from Σk, - ai ∈ wi means that ai is an element chosen from wi, - The sum
(a1 + a2 + · · ·+ an) is taken modulo k.

The reachability and summability languages are designed to illustrate what i think
is the main deficiency of dNFA. In both languages, there is a choice (picking an edge or
picking a number) that an NFA can handle non-deterministically without any issues.
Therefore, the state complexity of an NFA would be k in both cases, as it either
remembers which vertex it is currently in or tracks the corresponding prefix sum after
reading the first few letters.

However, the dNFA model faces a problem because, even though it can use non-
determinism to make these choices while moving right, it cannot remember the choices
it made when moving left. Since there can be potentially any number of steps to the
left, the dNFA cannot remember the choices it made using just O(k) states (at least
not as far as we know).

In similar languages, remembering various data such as characters or sets of states
can lead to significant complexity increases. For the reachability language, after a
step to the left, we cannot determine which character was last read before the state
was changed or from which set of vertices to search for a backward edge without
remembering such information, which could be very "expensive." Nonetheless, these
are intuitions, and we currently cannot prove whether any of these languages indeed
present a gap.



26 CHAPTER 4. SOME INTERESTING LANGUAGES



Conclusion

In the beginning of this thesis, we introduced a modification of two-way automata
called drunken finite automata. We demonstrated that drunken deterministic finite
automata (dDFA) and drunken nondeterministic finite automata (dNFA) accept pre-
cisely the regular languages. We then compared their state complexity with one-way
finite automata. We showed that if a DFA can accept a language L over a unary al-
phabet with n states, then a dDFA can accept this language with n+ 1 states, and if
an NFA can accept a language L over a unary alphabet with n states, then a dNFA
can accept it with O(n2) states.

For a general alphabet, we showed that NFAs and DFAs do not require more states
than their non-drunken versions to accept a language. We also demonstrated that there
is an exponential gap in state complexity between dNFA and DFA, and between dNFA
and dDFA. Additionally, we showed that any dDFA with n states can be transformed
into an equivalent DFA with 2n × (|Σ|+ 1) states, and any dNFA can be transformed
into an equivalent NFA with 2n × (|Σ|+ 1) + 1 states.

Future research could explore other potential gaps and further investigate the lim-
itations of drunken finite automata. It would also be worthwhile to study other mod-
ifications of two-way automata, as these might offer different insights and could also
help to determine whether there is an exponential gap between nondeterministic and
deterministic two-way automata.
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