
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

3D Scene Reconstruction from DJI
Drone photos

Bachelor thesis

2024
Lukáš Bujňák

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

3D Scene Reconstruction from DJI
Drone photos

Bachelor thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: doc. RNDr. Andrej Ferko, PhD.
Consultant: RNDr. Martin Bujňák, PhD.

Bratislava, 2024
Lukáš Bujňák

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Lukáš Bujňák
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: 3D Scene Reconstruction from DJI Drone photos
3D rekonštrukcia scény zo záberov dronu DJI

Anotácia: Vytvárame 3D modely snímané bežným dronom, ktory adaptívne sníma alebo
označí príslušné časti scény. Zber dát i rekonštrukciu riadi používateľ mobilnou
aplikáciou.

Cieľ: Špecifikácia a vývoj mobilnej aplikácie, ktora sprístupní pohľad z kamery drona
a umožní používateľovi vhodné nastavenia.
Dátovo prepojíme aplikáciu s Reality Capture Node (ďalej iba RCNode).
Otestujeme možnosti na zatiaľ iba manuálne fotenie objektu, ktorého fotky budú
spracované RCNode, ktorý ich následne spracuje a poskytne nám 3D model.
Takto získaný model bude možné zobraziť priamo v aplikácii.
Navrhneme experimenty a overíme adaptívnosť procesov snímania
a rekonštrukcie.
Vyhodnotíme prototypové riešenie s ohľadom na očakávaný vývoj technológie.

Literatúra: Hartley, R. - Zisserman, A. 2004. Multiple View Geometry in Computer Vision.
Cambridge University Press.
SZ DJI Technology Co. Ltd. [online] https://developer.dji.com. 2024.
Najnovšie články z vedeckých konferencií v oblasti Computer Vision.

Kľúčové
slová: 3D reconstruction, photogrammetry, remote sensing

Vedúci: doc. RNDr. Andrej Ferko, PhD.
Konzultant: RNDr. Martin Bujňák, PhD.
Katedra: FMFI.KAG - Katedra algebry a geometrie
Vedúci katedry: doc. RNDr. Pavel Chalmovianský, PhD.

Dátum zadania: 11.10.2023

Dátum schválenia: 30.10.2023 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Lukáš Bujňák
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: 3D Scene Reconstruction from DJI Drone photos

Annotation: We create 3D models captured by the out-of-a-shelve drone, which adaptively
measures or signalizes the necessary parts of the scene. Data collection and
reconstruction are controlled by the user with a mobile application.

Aim: We intend to create a mobile application that will project the view from the
drone camera and basic UI settings.
Data from the mobile application with be shared with the Reality Capture Node
(hereinafter referred to as RCNode).
We intend to combine manual photography of an object, whose photos will be
processed by RCNode, which then exports a 3d model that can be displayed in
application.
Enable transferring between the application and the running RCNode over the
local network and the mobile network.
We will evaluate the prototype solution with regard to the expected development
of the technology.

Literature: Hartley, R. - Zisserman, A. 2004. Multiple View Geometry in Computer Vision.
Cambridge University Press.
SZ DJI Technology Co. Ltd. [online] https://developer.dji.com. 2024.
Recent papers from scientific conferences in the field of Computer Vision.

Keywords: 3D reconstruction, photogrammetry, remote sensing

Supervisor: doc. RNDr. Andrej Ferko, PhD.
Consultant: RNDr. Martin Bujňák, PhD.
Department: FMFI.KAG - Department of Algebra and Geometry
Head of
department:

doc. RNDr. Pavel Chalmovianský, PhD.

Assigned: 11.10.2023

Approved: 30.10.2023 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor

Acknowledgments: I would like to express my sincere gratitude to my super-
visor, doc. RNDr. Andrej Ferko, PhD., for his invaluable guidance, support, and
advice throughout this bachelor thesis. I also thank RNDr. Martin Bujňák, PhD.,
for his expert consultations and assistance with technical issues. I am grateful to all
the members of the Department of Computer Science at the Faculty of Mathematics,
Physics, and Informatics, Comenius University in Bratislava, for their contributions to
my education and for providing the necessary resources for this work. Finally, I would
like to thank my family and friends for their patience, support, and encouragement
during my studies.

v

Abstrakt

Táto bakalárska práca popisuje vývoj iOS aplikácie CR Fly, ktorá je navrhnutá na
zlepšenie procesu 3D rekonštrukcie scén pomocou snímok zachytených dronmi DJI.
Aplikácia využíva softvérovú vývojovú sadu (SDK) DJI, ktorá umožňuje obojsmernú
komunikáciu s dronom, a softvér RealityCapture, umožňujúci rekonštrukciu reálnych
objektov do ich digitálnych dvojčiat prostredníctvom dronových snímok. Vývoj apli-
kácie bol realizovaný s dôrazom na modularitu a škálovateľnosť pomocou architektúry
Model-View-Controller v programovacom jazyku Swift. Aplikácia taktiež poskytuje
užívateľovi pohľad z kamery dronu v reálnom čase, ako aj analýzu a 3D rekonštrukciu
snímaného prostredia, čo výrazne napomáha pilotovi pri snímaní jednotlivých objektov.
Rozsiahle testovanie potvrdilo funkčnosť a schopnosť aplikácie rekonštruovať detailné
3D modely rôznych scén. Pre experimentálnu rekonštrukciu boli vybrané Pomník Mi-
kuláša Koperníka a Kostol sv. Alžbety Uhorskej, ktoré reprezentujú jednoduchú a kom-
plexnú scénu a slúžia na overenie praktickej funkčnosti aplikácie. Na riešenie ďalších
limitácií existujúcich riešení, konkrétne autonómnych letov, bola aplikácia navrhnutá
tak, aby sa v budúcnosti dala rozšíriť o modul autonómneho snímania. Táto rozšíri-
teľnosť je umožnená tým, že mobilné zariadenie už disponuje fotografiami, polohami
kamier, 3D rekonštrukciou scény, a navyše, DJI SDK umožňuje nastaviť kontrolné body
pre autonómny let dronu.

Kľúčové slová: 3D rekonštrukcia, fotogrametria, diaľkové snímanie

vi

Abstract

This bachelor’s thesis describes the development of the iOS application CR Fly, which
is designed to enhance the process of 3D scene reconstruction using images captured by
DJI drones. The application utilizes the DJI Software Development Kit (SDK), which
enables bidirectional communication with the drone and RealityCapture software, al-
lowing the reconstruction of real-world objects into their digital twins using images
obtained from drones. The development of the application was carried out with an
emphasis on modularity and scalability using the Model-View-Controller architecture
in the Swift programming language. The application also provides the user with a
real-time view from the drone’s camera, as well as analysis and 3D reconstruction of
the captured environment, significantly aiding the pilot in capturing individual objects.
Extensive testing confirmed the functionality of the application and its ability to re-
construct detailed 3D models of various scenes. For experimental reconstruction, the
Monument of Nicolaus Copernicus and the Church of St. Elizabeth of Hungary were
selected, representing simple and complex scenes, which serve to verify the practical
functionality of the application. To address further limitations of existing solutions,
specifically autonomous flights, the application was designed to be extendable in the
future with a module for autonomous scanning. This extensibility is enabled by the
mobile device already possesing photographs, camera positions, 3D reconstructions of
the scene, and additionally, the DJI SDK allows setting waypoints for the drone’s
autonomous flight.

Keywords: 3D reconstruction, photogrammetry, remote sensing

vii

viii

Contents

Introduction 1

1 Background review 3
1.1 3D reconstruction . 3
1.2 Photogrammetry . 4
1.3 Aerial photography . 5

1.3.1 Example of GSD calculation . 6
1.4 The role of UAVs in 3D reconstruction 6
1.5 Review of related works . 7

1.5.1 Pix4Dcapture . 7
1.5.2 DroneDeploy . 8
1.5.3 Software comparison and shortcomings 9

1.6 Our approach . 9

2 Specification 11
2.1 Product overview . 11

2.1.1 Product objectives . 12
2.1.2 Product features . 12
2.1.3 Operating environment . 13
2.1.4 Documentation . 14

2.2 External interfaces . 14
2.2.1 User interface . 15
2.2.2 Hardware interface . 16
2.2.3 Software interface . 17
2.2.4 Communication interface . 17

2.3 System features . 18
2.3.1 Error handling . 18
2.3.2 Security . 18

3 Implementation 21
3.1 System architecture . 21

ix

3.1.1 CommandQueueController . 23
3.1.2 Core Component . 23
3.1.3 Drone Component . 25
3.1.4 Scene Component . 26
3.1.5 Architecture summary . 26

3.2 Command execution . 27
3.3 Communication with the UAV . 28
3.4 Communication with RealityCapture 29
3.5 User interface . 31

3.5.1 Home Screen . 31
3.5.2 Drone Control View . 32
3.5.3 Photo Album View . 33
3.5.4 3D Scene View . 34

3.6 Testing and optimization . 35
3.6.1 Manual testing . 36
3.6.2 Automated testing . 36
3.6.3 Optimization . 36
3.6.4 Summary and impact of testing 37

3.7 Potential enhancements to the application 37
3.7.1 Test coverage . 37
3.7.2 Model rendering using level of detail 37
3.7.3 Autonomous flight functionality 38

4 Experiments 39

4.1 Hardware setup . 39
4.2 Experiment 1: Monument of Nicolaus Copernicus 40

4.2.1 Procedure . 40
4.2.2 Results and analysis . 41

4.3 Experiment 2: Church of St. Elizabeth 41
4.3.1 Procedure . 41
4.3.2 Results and analysis . 42

4.4 Experiment 3: Part of Viničné village 43
4.4.1 Procedure . 43
4.4.2 Results and analysis . 43

4.5 Summary of results . 44

Conclusion 45

References 48

x

Appendix A: Software development documentation 49

Appendix B: Source code of the application 51

Appendix C: Reconstructed objects and physical models 53

xi

xii

List of Figures

1.1 Visual representation of GSD parameters 5
1.2 Visualization of individual modes in the Pix4Dcapture application . . . 8

3.1 UML diagram that details the architecture of the CR Fly 22
3.2 Home Screen Screenshot . 31
3.3 Drone Control View Screenshot . 32
3.4 Photo Album View Screenshot . 33
3.5 3D Scene View Screenshot 1 . 34
3.6 3D Scene View Screenshot 2 . 35

4.1 Scene analysis of the Monument of Nicolaus Copernicus 41
4.2 Scene analysis of the Blue Church . 42
4.3 Scene analysis of the part of Viničné village 44

xiii

xiv

List of listings

3.1 Example of command implementation 27
3.2 Source code clipout of CommandQueueController class 27
3.3 Source code clipout of DJIDroneController showing connection handling 28
3.4 Source code clipout of HTTPConnection initialization demonstrating

the setup and management of TCP connections 30

xv

xvi

List of acronyms

2D two-dimensional

3D three-dimensional

API Application Programming Interface

GIS Geographic Information System

GPS Global Positioning System

GSD Ground Sample Distance

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

LOD Level of Detail

MVC Model-View-Controller

RAM Random Access Memory

SDK Software Development Kit

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicle

UI User Interface

UML Unified Modeling Language

VFX visual effects

VPN Virtual Private Network

xvii

xviii

Introduction

In the field of three-dimensional (3D) scene reconstruction, we are witnessing signifi-
cant technological progress, which allows us to obtain accurate and detailed 3D models
of real scenes. Models of these scenes are used in a wide range of applications across
various industries, including creating visual effects (VFX), games, virtual production,
geodetic measurements, and virtual environment visualization. One innovative method
for attaining this objective involves the reconstruction of 3D models from image data
acquired via Unmanned Aerial Vehicles (UAVs), particularly those that are commer-
cially available for personal use.

The utilization of UAVs facilitates the generation of precise and detailed 3D models,
which requires acquiring a sufficient number of images from various angles, often from
locations inaccessible to humans. These images are captured from aerial perspectives,
and such an approach is not feasible with traditional ground-based methods. They
offer unparalleled views and data, allowing for detailed analysis and modeling that
surpass what is achievable through conventional techniques.

Various UAV manufacturers provide proprietary applications for controlling UAVs
and capturing images, featuring a range of camera settings options. However, a signifi-
cant limitation of these applications is the need for manual image transfer into software
designed for object reconstruction. Partial automation introduces significant efficien-
cies to the process, including actions like transferring images directly during flight or
initiating reconstruction calculations automatically. The process of reconstruction can
sometimes take several hours and by implementing these automation features, we could
drastically reduce the time required, enhancing productivity and operational efficiency.

In our bachelor’s thesis, we focus on utilizing the Application Programming In-
terface (API) from DJI [12], which grants us access to their Software Development
Kit (SDK) for UAV control. This approach enables us to develop a specialized applica-
tion that extends beyond the traditional functions of UAV operation. The application
will be integrated not only with the UAV’s control elements, but also with the process-
ing capabilities of the RealityCapture software [4]. The synergy with RealityCapture, a
software capable of effectively reconstructing 3D scenes from images, provides us with
a unique opportunity to automate and optimize the 3D modeling process from UAV-
captured images, thereby expanding the efficiency and application of this technology.

1

2 Introduction

In the initial part of the bachelor’s thesis, we will familiarize ourselves with the basic
concepts and the motivation behind the creation of our application. Subsequently, we
will examine existing UAV-based reconstruction solutions, based on which we will
aim to specify our application in such a way as to overcome their limitations. Later,
we will develop a functional prototype that communicates with DJI’s UAVs and the
RealityCapture software. The prototype will offer the capability for direct uploading of
images from the UAV to RealityCapture, where they will be processed into a 3D model.
This work lays the groundwork for future developments in fully automating the process,
including autonomous flight. Finally, with the operational application in hand, we will
conduct several experiments to demonstrate the variations in reconstruction quality
under different settings and with varying densities of images.

Chapter 1

Background review

At the beginning of this chapter, we introduce the process of reconstructing objects
into their digital twins, discuss the various methodologies employed, and describe the
methodology most suitable for use with UAVs. Subsequently, we will explore com-
pelling reasons for utilizing UAVs in reconstruction, and examine existing UAV-based
solutions along with their limitations. The terminology used throughout this chapter
is based on source [7]. Mathematically, we work in a 3D metric space (E3, d), using
the standard Euclidean metric. All measurements are specified in standard units, such
as meters for length.

1.1 3D reconstruction

The process of 3D reconstruction is dedicated to accurately documenting the shape and
appearance of real objects. The primary objective is to create a digital 3D model that
closely emulates the original object, capturing both its geometry and surface details
with high fidelity. Various methodologies are used to achieve this, broadly categorized
into two groups:

• Active scanning: This approach involves projecting structured light, infrared
light, or a laser beam onto the object to collect depth information. The inter-
action, typically through reflection, between the emitted light and the object’s
surfaces enables the detailed measurement of the object’s geometry.

• Passive scanning: Conversely, passive scanning employs techniques such as
stereoscopic vision, which requires the compilation of multiple images from dif-
ferent perspectives. These images are then analyzed to infer the object’s depth,
creating a depth map by comparing the variances and similarities among the
images, without the necessity for direct light projection onto the object.

3

4 CHAPTER 1. BACKGROUND REVIEW

These methodologies play a crucial role in producing detailed and accurate 3D
models that faithfully replicate the geometric and textural characteristics of the original
objects. The accuracy provided by these methods enables the broad application of the
resulting models in various domains, such as the development of virtual museums, the
design of game maps and game assets, the creation of character models in video games,
and geodetic measurements [13].

Photogrammetry, a leading passive 3D reconstruction method, leverages two-dimen-
sional (2D) photographs to generate accurate 3D representations of scenes and objects
within extended Euclidean 3D space or projective space, depending on the specific
application requirements. This technique offers distinct advantages and has become an
essential tool in the advancement of digital modeling practices.

1.2 Photogrammetry

Photogrammetry is an engineering discipline dedicated to the acquisition of reliable
data, typically from a set of images, on the characteristics of surfaces and objects,
without the need for direct physical contact with these entities. The results of pho-
togrammetric processes typically manifest as maps, drawings, measurements, or 3D
models, faithfully representing real-world objects or scenes [10].

At the core of photogrammetry is the use of photographic techniques to accurately
determine the dimensions and locations of subjects. It is important to note that the
quality of the photographs directly impacts the model’s precision and intricacy, which
can sometimes be more critical than the quantity of photographs.

While emphasis on photograph resolution is crucial for achieving precise and intri-
cate 3D models, not all applications of photogrammetry demand such detailed focus.
In fields such as cartography, the priority often shifts toward the quantity of objects
being mapped as well as their coverage. This aspect underscores photogrammetry’s
broad applicability, notably in the creation of modern maps where aerial photography
and photogrammetric techniques are combined to cover extensive geographic areas.

A noteworthy aspect of photogrammetry lies in its critical role in the preservation
of natural and cultural heritage. By facilitating the detailed 3D modeling of histori-
cal monuments and archaeological sites, photogrammetry serves as a powerful tool for
the documentation and digital preservation of these invaluable assets, ensuring their
accessibility for future generations. This method not only supports research and edu-
cation but also enhances restoration possibilities by offering a non-intrusive means to
accurately examine and replicate the intricate details of our cultural heritage. Conse-
quently, the application of photogrammetry in cultural heritage preservation highlights
its invaluable capacity to forge a connection between the past and the future.

1.3. AERIAL PHOTOGRAPHY 5

1.3 Aerial photography

In this work, we focus on scanning from drones, which can be considered as a form
of closer-range airborne photogrammetry. For the sake of clarity, however, we will
describe the principles of airborne photogrammetry.

Aerial photography is captured from an elevated or airborne perspective, unlike
traditional photographs taken from ground level. To cover large areas efficiently, images
need to be captured within a short timeframe. This often involves an aircraft flying at
a predetermined altitude, taking a sequence of images.

The principal limitation of this imaging technique is intrinsically linked to the
aircraft’s altitude. As the distance between the camera’s sensor (its focal point) and
the photographed object increases, a single pixel on the image covers a larger surface
area on the ground, which reduces the accuracy of the reconstruction.

The Ground Sample Distance (GSD) is a metric utilized to calculate the extent of
the ground footprint covered by a single pixel in an image. GSD is commonly expressed
as centimeters per pixel and is calculated using the following equations:

GSD = max(GSDH , GSDW),

GSDH =
H · SH

f · IH
, GSDW =

H · SW

f · IW
,

(1.1)

where GSDH and GSDW determine the size of the GSD, expressed in values of
height and width. The variable H represents the aircraft’s altitude above ground
level in meters. The focal length of the camera’s lens is denoted by f and measured in
millimeters. The sensor dimensions, SH for height and SW for width, are also measured
in millimeters, while IH and IW indicate the image’s height and width in pixels. The
meaning of these parameters is visually presented in Figure 1.1 [11].

Figure 1.1: Visual representation of GSD parameters

6 CHAPTER 1. BACKGROUND REVIEW

From Equation 1.1, it is easy to recognize that an increase in the aircraft’s altitude
is inversely related to image detail. This is because as the aircraft’s altitude increases,
a single pixel will represent a larger surface area on the ground, potentially diminishing
the fidelity of the reconstructed object. This interplay between the extent of ground
coverage and image resolution is a pivotal consideration in airborne photogrammetry, as
it significantly impacts the accuracy and detail of the derived maps. Let’s demonstrate
it on example.

1.3.1 Example of GSD calculation

Consider the use of a full-frame sensor utilized for airborne photogrammetry, where
the sensor dimensions are given as SW = 36 mm and SH = 24 mm. With an image
aspect ratio of 3:2 and a resolution of 50 megapixels, it follows that IW = 8660 pixels
and IH = 5774 pixels. In airborne photogrammetry, the focal length f is minimized to
reduce GSD, therefore, a typical focal length for a full-frame sensor is f = 24 mm. Let
the flight altitude of the aircraft equipped with the described sensor be H = 500 m.
Since SW

IW
> SH

IH
, it follows that GSD = GSDW , and GSDW is calculated as follows:

GSDW =
H · SW

f · IW
=

36 · 10−3 · 500
8660 · 24 · 10−3

≈ 0, 0866 m/px ⇒ GSD ≈ 8, 6 cm/px,

therefore, a single pixel captures an area of approximately 73, 96 cm2. For the
purpose of creating navigation maps, this resolution would be sufficient. However, for
creating a 3D visualization of a city, such resolution would lead to an undesirable loss
of detail.

1.4 The role of UAVs in 3D reconstruction

The calculation of GSD demonstrates how using UAVs for aerial photography dramat-
ically improves image quality due to their significantly lower flight altitudes. Conse-
quently, this enhanced image quality directly translates to a significant improvement
in the quality of the reconstructed model. This is due to the capability of UAVs to
operate at altitudes up to 100 times lower than traditional aircraft, allowing them to
capture images from much closer distances to the object.

Furthermore, the use of UAVs in airborne photogrammetry opens up possibilities
for accessing places that are inaccessible to traditional aircrafts equipped with imaging
sensors, such as various castles located in forests.

Moreover, many modern UAVs are equipped with obstacle avoidance sensors. If
fully autonomous flights become feasible, these sensors could maintain a controlled dis-
tance from objects, helping to automate remote sensing processes. This advancement
could lead to faster, more precise, and autonomous scanning of objects and terrain.

1.5. REVIEW OF RELATED WORKS 7

1.5 Review of related works

Currently, there exists a considerable number of solutions for object reconstruction from
aerial imagery, including those that facilitate the acquisition of these images directly
from UAVs. However, some software programs encounter issues when attempting to
automate the reconstruction process, while others are either limited by specific UAV
manufacturers or designed for particular purposes, such as geodetic measurements only.
Among the more effective solutions for scene reconstruction are Pix4Dcapture [9] and
DroneDeploy [3]. These will be discussed in detail, with an analysis of their weaknesses
aimed at suggesting potential improvements.

1.5.1 Pix4Dcapture

Pix4Dcapture is an application designed for mobile phones and tablets, developed and
maintained by the Swiss company Pix4D S.A., which is recognized as a market leader
in photogrammetry software technology. In addition to Pix4Dcapture, they provide
reconstruction solutions for images captured from airplanes, mobile phones, and other
camera-equipped devices. The application provides users with two capture modes: free
flight mode and autonomous flight mode.

In the free flight mode, the user can manually control the UAV while the appli-
cation ensures that its camera captures images. These images are acquired by altering
the UAV’s position, either every 5 meters horizontally or every 3 meters vertically.
Subsequently, the application illustrates on a map the locations where each image was
obtained.

In the autonomous flight mode, the flight itself is preceded by planning using a
2D planner. This 2D planner is utilized to create a flight plan for the UAV in the desired
reconstruction area. It offers three flight plan modes, which can be customized to fit
the specific requirements of the area. The most commonly used modes are represented
visually in the planner interface by a grey background with a white path indicating the
planned route (see Figure 1.2). These modes are listed as follows, from left to right:

• Grid mode – Creates an area where the UAV moves horizontally at a consistent
altitude, covering the entire area in a grid pattern.

• Orbit mode – Establishes an area that the UAV circles at a consistent altitude,
making one complete orbit around this area.

• Cylinder mode – Generates an area that the UAV orbits, but at multiple
different altitudes.

Depending on the selected mode, users will gain access to various settings including
flight altitude, camera angles relative to the horizon, and a percentage representation

8 CHAPTER 1. BACKGROUND REVIEW

of the overlap between individual image pairs. The execution of the flight itself can
then be described according to these phases:

• Planning phase. To execute the flight, we must create a flight plan using a 2D
planner, which will guide the UAV in flying and taking images over the designated
area.

• Flight and capture phase. This phase involves data collection (in our case, pho-
tographing) from the UAV using an automated flight algorithm.

• Processing and reconstruction phase. After collecting a sufficient number of im-
ages, they are uploaded to the cloud for processing and reconstruction.

These non-overlapping phases are carried out sequentially, with the initiation of a
new phase following the completion of the preceding one. Thus, it is evident that for
the reconstruction phase to begin, the capture phase must be concluded.

Figure 1.2: Visualization of individual modes in the Pix4Dcapture application

Since Pix4Dcapture is primarily designed for planning and controlling flight execu-
tion, we can view the reconstructed model, perform various measurements on it, and
analyze it on the cloud after completing the processing and reconstruction phase. This
cloud service, known as Pix4Dcloud, is described in detail on the Pix4D web portal [9].

1.5.2 DroneDeploy

DroneDeploy, similar to Pix4D, is an application designed for planning and controlling
the execution of UAV flights. It is developed by DroneDeploy Inc., based in California.
Their solution is relatively more user-friendly compared to Pix4D, as the entire project
management is conducted on the cloud, accessible via their web portal. Conversely,
flight planning takes place in the application, which is available for mobile devices and
tablets. At the first glance at the UAV’s camera view, it appears that DroneDeploy

1.6. OUR APPROACH 9

places greater emphasis on the application’s functionality for manually initiating image
captures, where the images are generated through direct user control.

The various phases of flight execution in DroneDeploy occur similarly to those in
Pix4Dcapture. A significant difference arises in flight planning, which offers only a grid
mode, also providing settings for flight altitude and overlap of individual photographs.
After completing the processing and reconstruction phase, we can proceed to the cloud
and interact with the reconstructed model [3].

1.5.3 Software comparison and shortcomings

Pix4Dcapture provides more planning options, whereas DroneDeploy offers improved
UAV control during flight. Notably, there are several common issues associated with
these commercial products that will be discussed further.

Challenges of autonomous flight. Autonomous flight requires users to specify
flight altitudes, which affects the utility of the capture. A prime example involves
flying over terrain with significant elevation changes, where it is essential to determine
the highest point to ensure complete aerial coverage. This requirement presents a
challenge as increasing the distance from the target leads to a reduced pixel size in the
final image. Consequently, there is a loss of detail and the creation of unusable data,
particularly in elements such as the sky or the surrounding landscape.

Field application feedback deficiency. In some cases, such flights may require
permissions from relevant authorities, which may not be readily available. Since we
can only estimate, not know in advance, whether the captured images will be sufficient
for reconstruction, there is a possibility that creating additional images could be de-
layed, thereby extending the time needed to reconstruct an adequately precise model.
Additionally, while awaiting further permissions, vegetation, such as grass, may grow,
significantly deteriorating the quality of the reconstruction outcome. Consequently,
each restarted reconstruction should begin with an empty scene, meaning the process
starts anew.

The inefficacy of cloud-based reconstruction. When utilizing the cloud, a
stable internet connection is generally required, which may not always be available or
may have limited speed in remote areas, such as woods.

1.6 Our approach

To address these challenges, our work aims to develop software that overcomes existing
limitations and effectively implements essential components for UAV-based photogram-
metry. Specifically, this software will facilitate the automatic transfer of images from
the UAV to the reconstruction software.

10 CHAPTER 1. BACKGROUND REVIEW

Furthermore, the pilot can optimize flight planning by utilizing data obtained from
a preliminary survey flight, as well as data generated during the reconstruction process
in the reconstruction software, allowing for the creation of an efficient flight path based
on this comprehensive dataset. Thanks to this approach, we can plan the flight route
in a 3D space, which enables us to reduce unusable data and streamline the remote
sensing process. Moreover, the software will not only plan and execute these flights
but also allow users to stop the flight if external conditions require it.

In response to the inefficacy of cloud-based reconstruction, our approach eliminates
the dependency on a global internet connection. Instead of relying on cloud services,
the proposed system utilizes a local setup in which a laptop or a mobile device serves
as an access point for Wi-Fi. The reconstruction process will be performed directly on
this laptop, ensuring that the system remains fully operational even in remote areas
with no or limited internet access. This approach not only enhances accessibility in
various environments but also improves the reliability and speed of the process.

Finally, the software will provide users with real-time reconstruction results through-
out the entire process, both during autonomous and manual operations, enabling them
to make informed decisions during the flight.

Chapter 2

Specification

As highlighted in the previous chapter, existing software solutions encounter various
shortcomings that limit their effectiveness in autonomous flights and field applications.
These issues include difficulties with flight altitude specification, inefficiency of cloud-
based reconstruction, and lack of real-time feedback.

The CR Fly mobile application aims to address these limitations by enhancing coor-
dination and efficiency in autonomous flight operations. It facilitates automatic image
transfer, eliminates dependency on cloud services, and provides real-time reconstruc-
tion feedback. To understand the application’s capabilities and design principles, we
will explore the product overview, objectives, features, operating environment, security
measures, and interfaces in detail.

2.1 Product overview

The CR Fly mobile application will be developed using Swift [2], widely utilized for
creating iOS applications. Swift is renowned for its performance and security, making
it ideal for developing responsive and intuitive mobile applications. The choice of Swift
and iOS was motivated by their advanced support for integrating graphic functional-
ities for interface design and imaging functionalities for data processing, essential for
efficiently handling UAV data and visualizing reconstructed scenes.

The application will be optimized to provide high performance and reliability when
used in field conditions, ensuring compatibility with the latest versions of iOS. This
measure will guarantee broad availability and high efficiency of the application for users
of Apple devices. Additional emphasis will be placed on developing an intuitive User
Interface (UI), which will simplify the control of UAVs and the processing of image
data, making the application accessible to a wide range of users, from amateurs to
professionals in the field of scene reconstruction.

11

12 CHAPTER 2. SPECIFICATION

2.1.1 Product objectives

The primary objective of the CR Fly mobile application is to establish an effective
communication bridge between UAV hardware and scene reconstruction software to
provide real-time feedback. It will be designed to support interchangeable components,
thereby enabling compatibility with various types of hardware and software, which
enhances its universality and adaptability across different application environments.

The application will facilitate the management of photographs and videos stored on
the UAV as well as on local devices. Furthermore, it will provide the capability to add
photographs taken on mobile devices, enhancing coverage of areas that are inaccessible
by the UAV itself. These photographs can then be uploaded to the reconstruction
software project for use in the 3D reconstruction process.

Additionally, the application will supports project management within the recon-
struction software, enabling not only the visualization of reconstructed scenes but also
the management of multiple reconstruction projects. It will allow users to initiate the
reconstruction process and adjust export settings, thereby optimizing the quality and
detail of the 3D models.

Lastly, the application will enable users to control UAVs and execute operations
such as photography and video recording. It will provide camera settings that allow
customization based on current conditions, enabling users to adapt the camera for
optimal performance under varying environmental factors.

2.1.2 Product features

The fundamental function of the application will be to enable user communication with
the UAV, allowing the user to conduct flights, adjust camera settings, and manage the
UAV’s storage. Additionally, the application will facilitate direct communication with
the reconstruction software, operating independently of UAV operations. It will also
ensure that UAV control remains unaffected by its connectivity with the reconstruc-
tion software. This dual independence permits the separate or combined use of both
components, preserving their full operational integrity without interference.

One of the key features of the application will be the ability to process photographs
in real-time during flight. This will allow users to receive immediate feedback on the
quality and coverage of the objects being reconstructed. Users will be able to identify
areas of these objects that are insufficiently covered by photographs and can make
immediate adjustments to flight procedures to ensure better quality reconstruction.

This feature will not only simplify user analysis but also facilitate the implemen-
tation of fully autonomous flights, requiring minimal user intervention. By allowing
the analysis of the reconstructed scene during flight, it enables real-time planning and
adjustment of the flight path. This dual capability ensures that users can efficiently

2.1. PRODUCT OVERVIEW 13

manage flight operations and optimize data collection simultaneously.
When implementing autonomous flight capabilities, this functionality allows us to

obtain a descriptive reconstruction of the scene through a simple survey flight. Us-
ing appropriate analysis, this reconstructed scene can then be utilized for flight path
planning.

2.1.3 Operating environment

The CR Fly application will be developed using the Model-View-Controller (MVC)
architecture, a widely recognized standard for creating structured and modular appli-
cations. This design pattern organizes the application into three primary components,
which will be detailed below. This separation not only enhances code management
efficiency but also significantly simplifies maintenance.

• Model – This layer represents the application’s data domain and business logic.
The model includes the definition of data structures for storing information about
flights, images, and reconstructed models. The model also ensures the processing
and storage of data obtained from UAVs, as well as integration with external
image processing software.

• View – This component deals with all aspects related to the UI. The view is
responsible for displaying data provided by the model to the user and for cap-
turing user inputs. This involves displaying flight paths, images, reconstruction
status, and navigation elements that allow users to interact with the application.

• Controller – The Controller acts as a mediator between the model and the view.
It manages the flow of data between the model and the view and processes all
user interactions. Most importantly, it controls the application’s logic, including
initiating and monitoring flights, processing inputs from the user, and invoking
updates in the model or view as needed.

The use of MVC architecture allows our application to be more flexible, scalable, and
easier to test. Each component can be developed and tested independently, which
enhances the efficiency of the entire development process and simplifies the addition of
new features or updates.

As our work will involve communication with the RealityCapture reconstruction
software, which provides an API accessible via internet communication, we will utilize
a client-server model where the client is our application and the server is a machine
running RealityCapture. This setup does not require global internet access, as it is
sufficient to create a Wi-Fi access point from a laptop, allowing communication between
the client and server even in remote areas without internet connectivity, such as forests.

14 CHAPTER 2. SPECIFICATION

Given the use of the DJI SDK, certain minimum application requirements for the
hardware and operating system of the mobile device have emerged. Similarly, Reality-
Capture necessitates a network connection for API communication, compelling us to
outline the following minimum application requirements:

• Hardware requirements: iPhone or iPad with an A10 Fusion chip or newer,
with 4 GB of Random Access Memory (RAM) and 64 GB of internal storage.

• Operating system: Apple iOS 9 or newer.

• Network requirements: Stable internet connection with a minimum speed of
10 Mbps for both upload and download.

These specifications ensure that the mobile application can operate efficiently and
leverage the full capabilities of the DJI SDK and RealityCapture software.

2.1.4 Documentation

Within the development of the CR Fly mobile application, we place a strong emphasis
on high-quality and accessible documentation, which is essential for the proper under-
standing and maintenance of the software. The code documentation is created directly
in the integrated development environment, Xcode, using the HeaderDoc tool [1]. This
tool allows for the generation of detailed documentation from source code comments
that describe functions, methods, classes, and other programming elements.

The documentation created using HeaderDoc provides clear and structured infor-
mation about each software component, which simplifies orientation in the project for
new developers or those performing maintenance and updates. Moreover, it ensures
that all functionalities are thoroughly documented, contributing to better cohesion and
reliability of the entire software solution.

The complete documentation created with HeaderDoc will be included as an Ap-
pendix A to this thesis. This will allow readers to view specific details of the imple-
mentation and provide a practical example of how to effectively use automatic tools
for generating documentation in real projects.

2.2 External interfaces

Given that we design our application to be extendable and modifiable for use with
various hardware and software, it can be characterized by its three main components:

• Core Component: The core component of the application is tasked with im-
plementing fundamental logic, managing data, and overseeing communication

2.2. EXTERNAL INTERFACES 15

among various components. The user interfaces, designed to interact directly
with data from the core, will ensure efficient management and transmission of
information.

• Drone Component: This component will ensure bidirectional communication
with UAVs. It will not only receive data from UAVs but will also generate and
dispatch requests to them. To minimize dependencies between the UAV and the
reconstruction software, the Drone Component will not communicate directly
with the Scene Component.

• Scene Component: Responsible for interfacing with the reconstruction soft-
ware, this component will handle tasks such as uploading images, initiating re-
construction processes, and transmitting data directly to the mobile phone’s dis-
play. Similar to the Drone Component, it is designed to restrict communication
flow solely through the application’s core.

The Drone Component will necessitate a SDK for communication due to its involve-
ment in hardware interaction. Most manufacturers do not provide direct software-based
UAV control. Instead, they use a controller that connects to mobile devices via a USB
port, facilitating newer and more efficient communication technologies.

In contrast, the Scene Component will interface with software that may adhere to
various communication standards, depending on the software solution employed. The
specifications of the hardware, software, and communication interfaces will be directly
tailored to our software, utilizing the DJI SDK and RealityCapture, to enhance the
compatibility and performance of our application.

2.2.1 User interface

The UI of the CR Fly mobile application will be implemented to provide intuitive and
efficient control of UAVs during scene reconstruction. It will be characterized by a
simple and clean design, with logically organized controls and information, enhancing
user comfort and work efficiency.

On the home screen, the current Global Positioning System (GPS) location of the
mobile device will be displayed, which is essential for identifying the functionality of
determining the pilot’s position relative to the UAV. This feature is crucial as the
Drone Control View includes a map showing both the pilot’s and the drone’s locations.
This capability facilitates the identification of the drone’s position if the pilot loses
visual contact. From the screen, users will be able to easily navigate to three main
views:

• Drone Control View: This view will incorporate a live video feed from the
UAV camera, accompanied by all essential components for UAV control. It will

16 CHAPTER 2. SPECIFICATION

be expanded with camera settings to produce the highest quality images and
basic UAV settings supported by the UAV model. The interface will become
accessible only after the device has been successfully connected to the mobile
device, ensuring communication with the UAV is established.

• Photo Album View: This view will be designated for managing photos stored
on the UAV and on the mobile device. It will allow performing basic life man-
agement operations such as preview, save, delete, download images to the mobile
device, and upload images to the reconstruction software.

• 3D Scene View: This view will facilitate user interaction with 3D reconstruction
software. It will display a visualization of the reconstructed object, either as a
mesh consisting of a point cloud, which is formed from vertices identified across
multiple photographs, or as a triangulated mesh that represents a fully realized 3D
object. In this latter format, vertices are interconnected to establish a coherent
and textured 3D structure. Additionally, this view will include a link to return
to the Photo Album View, allowing users to select and upload photographs that
will be incorporated into the reconstruction process.

Interaction with the application will be facilitated through a touchscreen interface,
allowing users to engage with the application via buttons and text fields for streamlined
operation. The buttons will be large and have maximum contrast, simplifying their
use even in challenging conditions such as direct sunlight, rainy weather, or dust.
These features guarantee that application control remains both intuitive and effective,
particularly for users in field conditions where screens can be challenging to read and
interfaces difficult to manipulate due to environmental influences.

The application will support display in dark and light modes, which will mirror the
settings of the mobile device, making the application suitable for both light and dark
environments. The design of each interface is optimized for responsiveness, ensuring
that the application maintains both aesthetic appeal and functional integrity across a
range of devices, from smartphones to tablets.

2.2.2 Hardware interface

Our work will implement hardware communication with DJI UAVs using the DJI SDK.
The specific version of the DJI SDK that will be used in the implementation supports
and requires the UAV – DJI Air 2S and older models. All supported UAVs are listed
on SDK’s documentation website1.

Since the application does not necessarily require a connection to the reconstruction
software, we can consider this part as a recommendation. Should the decision be made

1https://developer.dji.com/document/2c6f3a26-412e-45d2-a312-eb82e72411e7

https://developer.dji.com/document/2c6f3a26-412e-45d2-a312-eb82e72411e7

2.2. EXTERNAL INTERFACES 17

to utilize the application for reconstruction purposes as well, an additional limitation
will be introduced by the RealityCapture software. This software requires a 64-bit
machine with 8GB RAM, Windows 7 or later, an NVIDIA graphic card with 1GB
video RAM and CUDA2 3.0+, and a 10 Mbps internet connection. Updates to these
hardware requirements can be monitored on the developer community page provided
by Epic Games.3

2.2.3 Software interface

To leverage the reconstruction capabilities offered by RealityCapture, it is essential that
this software is installed on a computer or server accessible to the device operating the
application. This accessibility can be ensured either through a connection to the same
local network or via an internet connection, facilitating communication over broader
network infrastructures.

Furthermore, it is advisable to ensure that any UAV being operated by our ap-
plication is equipped with the most recent firmware versions officially released by the
manufacturer. Updating the UAV firmware not only enhances the operational capa-
bilities of the drone but also ensures compatibility with the latest enhancements and
security features introduced by the manufacturer. This practice minimizes potential
technical issues and maximizes the performance and reliability of the UAV.

2.2.4 Communication interface

Communication with the UAV will be facilitated through the use of objects and meth-
ods that adhere to the specifications outlined by the DJI SDK. These objects and
methods can be strategically delegated within the SDK’s shared instance, enabling the
effective monitoring of changes in the drone’s status. This gives us direct control over
reading and changing the state of the UAV, such as camera settings, changing the
shooting mode, or altering the UAV’s GPS coordinates.

Communication between the client (application) and the server (RealityCapture)
will be conducted via the Hypertext Transfer Protocol (HTTP). The server will receive
communication through RealityCaptureNode, which is capable of controlling Reality-
Capture and providing an API with precise specifications for GET and POST requests.
Should there be a change in status on the RealityCapture side, the data in our appli-
cation will also be updated.

2https://developer.nvidia.com/cuda-toolkit
3https://dev.epicgames.com/community/learning/knowledge-base/Wj7B/

capturing-reality-realitycapture-os-and-hardware-requirements

https://developer.nvidia.com/cuda-toolkit
https://dev.epicgames.com/community/learning/knowledge-base/Wj7B/capturing-reality-realitycapture-os-and-hardware-requirements
https://dev.epicgames.com/community/learning/knowledge-base/Wj7B/capturing-reality-realitycapture-os-and-hardware-requirements

18 CHAPTER 2. SPECIFICATION

2.3 System features

2.3.1 Error handling

The application will be designed to remain responsive in the event of an unexpected
error. It will undertake specific steps aimed at resolving the error. Below are four
common issues that may occur and their corresponding handling strategies:

• Loss or interruption of connectivity: In the event of connectivity issues, the
application will not notify the user of each interruption. Instead, it will attempt
to re-establish the connection and resume operations to restore the previous state.
If the connection cannot be restored within a few tens of seconds, the application
will conclude that a complete loss of connectivity has occurred and will prepare
to establish a new connection.

• Errors originating from the DJI SDK or RealityCapture: Should errors
arise from the DJI SDK or RealityCapture, the application will attempt to retry
the task. If the error persists after multiple attempts, a notification will be sent
to the user. These errors may occur due to system overload, with no expected
response forthcoming.

• Dependency error in task execution: When a series of tasks are interdepen-
dent, and one of them fails, subsequent dependent tasks will be automatically
canceled to prevent compounding errors.

• Application recovery after returning from background: If the application
reactivates after being in the background, it will attempt to restore the user’s
original session. To achieve this and prevent errors, the system will detect such
changes and maintain a memory of tasks assigned to the application.

To enhance error detection, repeatability, and traceability of changes, the Command
Design Pattern will be implemented. This approach will facilitate the resolution of
issues or help avoid them altogether. Conversely, errors that cannot be resolved will
be communicated to the user through alerts.

2.3.2 Security

The security measures for drone communications are inherently incorporated within the
SDK used. Therefore, our primary focus will shift to RealityCapture, whose network
communications could potentially be intercepted.

2.3. SYSTEM FEATURES 19

Rationale for using HTTP

The decision to use HTTP instead of Hypertext Transfer Protocol Secure (HTTPS)
is primarily influenced by the application’s design for communication within a local
network. Importantly, the data transmitted over these networks are not of a sensitive
nature, thus not necessitating encrypted communications under current usage scenar-
ios. However, the benefits of local networks go beyond security, offering significantly
faster transmission speeds which are advantageous for real-time data processing.

Security considerations in a local area network

In local area network environments, it is essential to recognize that although HTTP
does not inherently include encryption, the configurations of the internal network,
including firewalls and network access controls, are crucial in safeguarding commu-
nications. Should the demands for network security increase, the implementation of
additional protective measures, such as Virtual Private Network (VPN) or encrypted
network segment, may become necessary.

Future proofing for HTTPS

RealityCapture supports API communication via Secure Sockets Layer (SSL), but re-
quires keys, which is considered outside the scope of this work. Although, looking
to the future, if the expansion of the application’s scope requires internet-based com-
munication, the implementation of HTTPS will become imperative. The plan is to
integrate HTTPS seamlessly, enabling it automatically when the application detects
that communication extends beyond the local network. This proactive strategy guar-
antees that the application remains secure and flexible, adapting to changes in network
environments and user requirements.

20 CHAPTER 2. SPECIFICATION

Chapter 3

Implementation

This chapter delineates the implementation details of the CR Fly mobile application,
which are pivotal for facilitating robust interaction between the UAV and the recon-
struction software. It encompasses an examination of the system architecture, com-
munication protocols with both the UAV and the reconstruction software, user inter-
face design, and the strategies employed for testing and optimizing the application.
Each section aims to furnish a comprehensive understanding of the configuration and
interaction of the system’s components, thereby clarifying the technical foundations
underpinning the application’s functionality and performance. Moreover, this detailed
exploration not only illustrates the practical implementation of the theoretical concepts
discussed in previous chapters but also sets the stage for the experimental validation
described in the subsequent chapter.

3.1 System architecture

To familiarize ourselves with our software, we will provide an overview of the overall
architecture of the application and the structure of its components. This overview will
be detailed in subsequent sections, enabling a better understanding of the interactions
between individual components and the identification of parts that offer modifiable
aspects of the implementation.

Utilizing Unified Modeling Language (UML) diagram in Figure 3.1 and concise de-
scriptions of each part, we will provide insights into how the various components of
the application are organized and how they interact with one another. This overview
is crucial for understanding the fundamental principles that govern the operation of
the entire application. Additionally, it aids in illustrating the modular nature of the
software, highlighting how components can be independently modified or enhanced to
adapt to evolving requirements. This approach not only elucidates the structural com-
plexities but also highlights the design considerations crucial for ensuring robustness

21

22 CHAPTER 3. IMPLEMENTATION

and scalability within the software’s architecture. It is important to note that the pre-
sented UML diagram does not encompass the complete structure of the application but
rather focuses on key classes whose implementation and architecture are crucial. This
selective representation is designed to highlight the essential elements that are most
impactful for the application’s functionality. By concentrating on these critical com-
ponents, we provide a clearer and more manageable understanding of the application’s
architecture without overwhelming details, ensuring that the foundational concepts are
comprehensively conveyed and easily grasped.

Figure 3.1: UML diagram that details the architecture of the CR Fly

During the design of the application, we encountered specific communication lim-
itations that influenced our architectural decisions. For instance, in the case of Real-
ityCapture, which interacts via an API using the HTTP, it is not feasible to execute
two independent requests simultaneously. Although it supports communication with
multiple clients at once, it processes tasks serially, so the use of parallelism would not
benefit our case. Additionally, when communicating through a single connection, we
cannot send two independent network packets simultaneously.

Similarly, the DJI SDK does not support parallel operation – while downloading
media through this SDK, it was also impossible to load new content into the album.

These constraints necessitated the development of a universal class, designed to
manage and queue commands effectively, thereby circumventing the issues related to
parallel command execution.

3.1. SYSTEM ARCHITECTURE 23

3.1.1 CommandQueueController

This class is a key component of the application, as it manages the majority of tasks
via implementations of the Command protocol, which are maintained by its queue.
The primary function of this class is the synchronous execution of these commands
and verification of their successful completion. It also offers the possibility of task
repetition in case of failure and ensures the display of errors in the UI. The most
essential capability of this class is to halt command execution, which is necessary in
the event of connection loss, and to potentially schedule commands for execution upon
reconnection.

Command is a protocol that prescribes the mandatory structure for its implemen-
tations (commonly referred to as an interface). It requires that its implementations
incorporate the following method:

func execute(completion: @escaping(success: Bool, retryable: Bool,
error: (String, String)?) -> Void)

This method encapsulates the executable code for the command and involves a
single parameter, completion, which is expected to be called upon the command’s
completion. Through this closure, we can specify the action to be taken once the
execution completes (in our case, the CommandQueueController verifies the success
and initiates the execution of the next command). For such verification, the error

parameter is required, defined as a tuple where the first element is the error name and
the second is its description. The parameters success and retryable are considered
intuitive and self-explanatory. Lastly, the @escaping notation is crucial as it allows
the closure to be stored and used at a later time, which is particularly vital for oper-
ations that do not complete immediately, such as network requests or extensive data
processing tasks.

As outlined in Section 2.1.3, to ensure scalability and modularity, we can characterize
the application by its three main components: Core, Scene, and Drone. In the following
sections, we will explore each of these components in detail, highlighting their specific
functions and interactions within the system.

3.1.2 Core Component

The model of the Core Component is composed of seven data classes, each capable of
notifying the corresponding view which, in turn, redraws itself if currently displayed.
This division into seven independent classes ensures that data, which do not affect the
components displayed in the current view, do not trigger unnecessary redrawing.

24 CHAPTER 3. IMPLEMENTATION

Additionally, it defines the MediaTransferState protocol, which is crucial for defin-
ing diverse implementations of the media transfer state across different system compo-
nents, each tailored to specific operational needs.

The view within the Core Component includes multiple views, each designed accord-
ing to specifications and intended to operate independently of the Scene and Drone
Component implementations.

For enhanced scalability, the Photo Album View facilitates the management of
multiple albums. This is accomplished through the AlbumController protocol, whose
implementations display content from designated albums.

To address the specifications requiring media management both on the device and
on the UAV, we developed the AlbumSavedController and AlbumDroneController,
which incorporate all necessary functionalities for efficient media management.

The controller is pivotal as it orchestrates the data flow and UI interactions. It
comprises several key classes:

• AppController implements the App protocol, serving as the gateway for ap-
plication initialization and the integration of the DJI SDK, which is essential
for accessing drone functionalities. This controller contains the body variable,
which renders content on the device’s screen and monitors the application’s state
transitions, coordinating with other controllers as needed.

• ViewController manages the content displayed by the AppController. It in-
corporates a sophisticated navigation system that logs user transitions between
views, providing the option of navigating to any desired view and seamlessly
returning to the original one. Additionally, this controller dynamically maps
views based on their types, specifically designed to ensure that if a user navigates
away from a view and subsequently returns, the view will maintain its previous
state. It also centralizes error reporting and the status of media transfers, ensur-
ing consistent and accurate updates. These functionalities collectively enhance
navigational efficiency and significantly improve the overall user experience.

• AlbumController defines essential methods and properties for its implementa-
tions, facilitating media loading into albums and generating displayable content
within AlbumView. It plays a central role in media management across the ap-
plication.

• AlbumSavedController implements the AlbumController protocol, offering
functionalities for managing the content of media stored on the device.

3.1. SYSTEM ARCHITECTURE 25

• SceneController describes how the Core Component communicates with the
Scene Component. It specifies that the class implementing it must contain meth-
ods capable of handling changes in media downloads and responding by adjusting
uploads. For instance, if an upload is contingent on downloading a particular
media that was canceled, the upload will also be canceled. It also specifies data
classes and methods that must be implemented, as they are utilized in the UI to
facilitate interactions with the Scene Component.

• DroneController specifies the manner in which the core will communicate
with the Drone Component. It does not impose as stringent conditions as the
SceneController due to the impracticality of creating a universal view for UAV
control. However, it provides methods for managing the media download state,
such as resuming, pausing, and canceling downloads.

3.1.3 Drone Component

The model, unlike the Core Component’s model, includes only the implementation
of the MediaTransferState protocol, which manages the media download process. This
protocol maintains crucial information necessary for overseeing the entire download
process effectively.

The view comprises a single, specifically designed Drone Control View, crafted ac-
cording to specifications. The creation of a universal view within the Core Component
was deemed impractical due to limitations imposed by the DJI SDK.

The controller in the Drone Component comprises controllers specifically designed
for communication with DJI UAVs, including:

• AlbumDroneController is a specialized implementation of the AlbumCon-
troller protocol that facilitates the creation and management of new album for
images stored directly on DJI UAVs.

• DJIDroneController implements the DroneController protocol and is designed
to interact with the necessary classes and data within the Core Component. This
interaction often involves using methods defined within the Core Component or
modifying its data class to ensure seamless communication and functionality. Its
primary function is to delegate methods directly to the classes provided by the
DJI SDK, enabling it to establish and maintain communication with the UAV
and execute user commands. Additionally, this delegation simplifies the process
of obtaining a live video feed from the UAV’s camera, allowing for the live display
of this stream.

26 CHAPTER 3. IMPLEMENTATION

3.1.4 Scene Component

The model, similar to the model in the Drone Component, includes an implementation
of the MediaTransferState protocol, which manages the media upload process. This
protocol also maintains crucial information necessary for overseeing the entire upload
process, specifically tailored for media uploads to RealityCapture.

The view does not contain any specific views as they are not required within this
component. The display of relevant views is handled by the Core Component, and the
generation of project information is managed by the implementatio of SceneController.

The controller in this component contains a single controller specifically designed for
communication with RealityCapture:

• RCNodeController is a class that implements the SceneController protocol and
communicates with the Core Component similarly to the DJIDroneController.
This controller is responsible for establishing, maintaining, and terminating con-
nections and informing the corresponding view of these actions by modifying the
data class in the Core Component. Additionally, within its implementation of
the SceneController protocol, it provides project management functionalities for
RealityCapture.

3.1.5 Architecture summary

As we have previously suggested, the CommandQueueController class plays a pivotal
role in communication with external interfaces. Consequently, the DroneController and
SceneController protocols will require that classes implementing them inherit from the
CommandQueueController. This requirement underscores the importance of conduct-
ing communication synchronously. However, should communication occur via external
interfaces that support parallelism, modifications to the implementation of this class
would be necessary. In addition to ensuring synchronicity, we have created a control
point within which we can monitor, limit, and manage the flow of communication.

This strategic approach not only enhances modularity and maintainability but also
effectively addresses key issues previously outlined in the specification, which will be
discussed in the following subsections.

Errors originating from the DJI SDK or RealityCapture

The described implementation offers the advantage of allowing requests to be repeated
in the event of an unexpected server-side error through a retryable parameter, while
invoking the completion method within the Command ’s execute method.

3.2. COMMAND EXECUTION 27

Dependency Error in Task Execution

It is crucial not to overlook that the structure in place ensures that at the start of each
new command, verification is possible to determine whether the previous command has
fulfilled the prerequisites required by the subsequent one.

3.2 Command execution

The CommandQueueController class, along with the Command protocol, has been
previously described. Our interest lies in how to execute an implementation of this
protocol effectively. In Listing 3.1, we can observe how a command is simply created.
public class ExampleCommand: Command {

public func execute(completion: @escaping (Bool , Bool , (String , String)?) -> Void){
if 1==1 {

print("Hello World!")
completion(true , false , nil)

} else {
completion(false , true , ("What happened","Unknown Error"))

}
}

}

Listing 3.1: Example of command implementation

The sole purpose of this command is to print "Hello World!" to the console during
its execution. The parameters specified in call completion(true, false, nil) inform
the method that the command execution was successful. Conversely, an alternate
independent call completion(false, true, (...)) would indicate to the method that
the execution was unsuccessful but can be retried.

In Listing 3.2, we illustrate the process by which this command is executed.
public class CommandQueueController {

public func pushCommand(command: Command) {
this.commandQueue.append(command)
if !self.isExecutingCommand && self.commandExecutionEnabled {

self.processNextCommand ()
}

}

public func runExampleCommand () {
self.pushCommand(command: ExampleCommand ())

}

public func processNextCommand () {
if !self.commandQueue.isEmpty {

self.commandQueue [0]. execute(completion: {(a1,a2,a3) in print("Status: \(a1)")})
}

}
}

Listing 3.2: Source code clipout of CommandQueueController class

28 CHAPTER 3. IMPLEMENTATION

Upon invocation of the runExampleCommand() method, the specified command
is enqueued. Subsequently, the processNextCommand() method is executed, which
in turn invokes the execute(...) method with the predefined completion parameter.
The completion handler, invoked with specific parameters, assesses the success of the
command’s execution. Based on this assessment, it determines the subsequent actions
– it may execute another command, retry execution of current command or display an
error message when provided the number of attempts has surpassed the retry limit.

Each command implementation is comprehensively documented in the attached
documentation (see Appendix A).

3.3 Communication with the UAV

Let us analyze the communication process with the drone from connection initiation to
command execution. Establishing a connection with the drone, along with detecting
UAV connectivity, can be performed as follows:

public class DJIDroneController: CommandQueueController , DroneController ,
DJISDKManagerDelegate {
// Data class that holds information about drone connection and download status
public let droneData = DroneData ()
public func connectToProduct (){

// Check if the device is already connected to prevent SDK Errors
if(self.droneData.deviceConnected) { return }
DJISDKManager.stopConnectionToProduct () // Stop any previous attempts to connect

// Attempt to start a new connection to the UAV
DJISDKManager.startConnectionToProduct ()

}

// This function is delegated to DJISDKManager and handles the connection of
// components such as the UAV and the UAV ’s camera.
public func componentConnected(withKey key: String?, andIndex index: Int) {

// Initialize connection if the UAV is newly connected and valid
if(!self.droneData.deviceConnected && DJISDKManager.product () != nil

&& DJISDKManager.product ()!. model != "Only RemoteController"){
self.droneConnected () // Begin initialization of the connection

}
}

// Also delegated to DJISDKManager and handles the disconnect of components.
public func componentDisconnected(withKey key: String?, andIndex index: Int) {

// Cancel connection if the UAV is newly disconnected or invalid
if(self.droneData.deviceConnected && (DJISDKManager.product () == nil

|| DJISDKManager.product ()!. model == "Only RemoteController")){
self.droneDisconnected () // Begin cancellation of the connection

}
}
// Additional functions are omitted for brevity ...

}

Listing 3.3: Source code clipout of DJIDroneController showing connection handling

3.4. COMMUNICATION WITH REALITYCAPTURE 29

This clipout outlines the interaction of the code with library calls via the shared
DJISDKManager class. It begins by invoking a method to initiate a search for a UAV
connection and delegates methods to monitor connection and disconnection events, en-
suring immediate notification of any changes in connection status. When a connection
is established, the droneConnected() method enables the execution of commands in
the queue by setting the commandExecutionEnabled variable to true. Conversely, if
a disconnection occurs, the droneDisconnected() method sets this variable to false,
effectively disabling command execution.

Once the UAV is connected, communication is facilitated through command imple-
mentations that reside in the project directory at "CR Fly/DroneComponents/-
DroneCommands". This directory can be accessed in Appendix B.

3.4 Communication with RealityCapture

As previously mentioned in Section 2.1.3, communication with RealityCapture is con-
ducted via the HTTP, which does not require maintaining an active connection. The
standard library of the Swift language does not contain classes capable of capturing
connection states. To fully utilize the features provided by the CommandQueueCon-
troller in the implementation of RCNodeController, we were compelled to implement
a class capable of communicating with the server via the HTTP while also notifying
about the state of the connection.

This necessity led to the development of the HTTPConnection class to ensure the
required functionalities were met. Its implementation includes creating an instance of
NWConnection from Swift’s standard library, which can establish a Transmission Con-
trol Protocol (TCP) connection with the server and send packets through it. Once the
connection with the server is successfully established, the HTTPConnection class allows
us to use methods we implemented for sending and receiving data via the HTTP. It also
supports the creation of a custom handler for connection status changes, prompting
us to develop the HTTPConnectionStateObserver protocol, which notifies the imple-
menting class of any connection updates.

Communication through the command queue is initiated only after a stable and
active connection has been established, ensuring that all command transmissions are
reliable and secure. All implemented and usable commands that communicate with
RealityCapture can be found in the project directory at "CR Fly/SceneCompo-
nents/SceneCommands". This directory can be accessed in Appendix B.

The implementation details of the initialization and notification processes con-
ducted by the HTTPConnection class are presented:

30 CHAPTER 3. IMPLEMENTATION

public class HTTPConnection {
private var stateObservers: [HTTPConnectionStateObserver] = []

public init(host: String , port: UInt16 , ...) async throws {
// Define connection parameters with specified timeout settings
let options = NWProtocolTCP.Options ()
let params = NWParameters(tls: nil , tcp: options)

// Initialize the network connection with the provided host and port
self.connection = NWConnection(host: NWEndpoint.Host(host),

port: NWEndpoint.Port(rawValue: port)!, using: params)

// Setup a state update handler to manage changes in connection state
self.connection.stateUpdateHandler = { state in

switch state {
case .ready:

// When connection is ready , proceed with operations
self.connectionReadyContinuation ?. resume ()
self.httpConnectionState = .connected

case .failed(let error):
// Handle failures or waiting state by passing the error
self.connectionReadyContinuation ?. resume(throwing: error)
self.httpConnectionState = .disconnected

case .waiting(let error):
self.connection.forceCancel ()
self.connectionReadyContinuation ?. resume(throwing: error)

case .cancelled:
self.httpConnectionState = .disconnected

default:
break

}
// Notify all observers of the current state change
self.notifyObserversStateChange ()

}
// Start the connection with a global dispatch queue
connection.start(queue: .global ())

// Await the connection to be fully ready or end in error state
try await withCheckedThrowingContinuation
{ (continuation: CheckedContinuation <Void , Error >) in

self.connectionReadyContinuation = continuation
}

// Reset the continuation once the connection is established
self.connectionReadyContinuation = nil

}

private func notifyObserversStateChange (){
for observer in self.stateObservers {

// Notify all registered observers about the current connection state
observer.observeConnection(newState: self.httpConnectionState)

}
}

}

Listing 3.4: Source code clipout of HTTPConnection initialization demonstrating the
setup and management of TCP connections

3.5. USER INTERFACE 31

3.5 User interface

In the preceding chapter, Section 2.2.1, the requirements for the UI implementation
were delineated. This section aims to visually demonstrate how these requirements
have been achieved within the application by including screenshots that are optimally
selected to elucidate the UI. These images not only illustrate the individual views
but also provide critical insights into the functionality, aesthetics, and user interaction
mechanisms embedded in the UI. Screenshots serve as a pivotal component of the
documentation, offering a tangible representation of the abstract concepts discussed
and facilitating a deeper understanding of the application’s operational dynamics.

3.5.1 Home Screen

Before we proceed to the specified views, we first examine the foundational interface
displayed immediately prior to entering the application. This screen serves as a tran-
sitional interface between the other views. The background image used was generated
using ChatGPT [8].

Figure 3.2: Home Screen Screenshot – A screenshot of the Home Screen illustrates the
initial interface encountered by users, highlighting the primary functions and naviga-
tional aids of the application.

The elements marked in Figure 3.2 are described as follows:

1. Photo Album View access: This button allows users to switch to the Photo
Album View, facilitating the management and review of stored photographs.

2. 3D Scene View access: This button enables navigation to the 3D Scene View,
allowing users to interact with and explore 3D reconstructed scenes.

3. Location indicator: This feature displays the current location of the user’s
device. For optimal functionality, it requires that location services be enabled,
which ensures accurate navigation and enhances context-aware features within
the application.

32 CHAPTER 3. IMPLEMENTATION

4. Connection status button: This button reflects the UAV’s connection status.
When a connection is established, it changes to the "Let’s Fly" button, enabling
the user to transition to the Drone Control View for active flight and management.
If the UAV is not connected, it displays "Not Connected", prompting the user to
troubleshoot or re-establish the connection.

3.5.2 Drone Control View

The Drone Control View is a versatile library component provided by the DJI SDK
which supports extensive customization to meet specific application needs. It enables
comprehensive UAV control, providing the user with real-time information regarding
the UAV’s operational status. Additionally, this interface offers a variety of adjustable
settings, enhancing the ability to customize behavior for specific tasks or conditions.
Further details on these settings and their implications for operation will be elaborated
in subsequent sections.

Figure 3.3: Drone Control View Screenshot – This image showcases the customized,
versatile library component provided by the DJI SDK, illustrating the user interface
used for detailed UAV control and adjustments.

The key components highlighted in Figure 3.3 are detailed below to illustrate their
specific functionalities within the Drone Control View:

1. Drone status bar: This component displays critical information about the
UAV’s current status, including battery life, signal strength, and pre-flight check-
list. It is designed to provide quick, at-a-glance insights that are essential for safe
and efficient operation, ensuring the operator is always aware of the UAV’s health
and readiness.

2. Interactive camera controls: These controls offer the operator the ability to
adjust camera settings dynamically during flight. This includes modifications
to zoom, focus, exposure, and camera orientation. Additionally, operators can

3.5. USER INTERFACE 33

switch between photo and video modes, allowing for versatile media capture that
suits different documentation and inspection needs. The interactive nature of
these controls allows for precise adjustments to be made in response to vary-
ing conditions and requirements, thereby enhancing the quality of the imagery
captured and providing flexibility in how visual data is collected.

3. Location map and heading indicator: This feature displays a small, inter-
active map that shows the current geographical position of the UAV, marked by
a blue dot. This tool is vital for navigation, especially in complex environments
or when the UAV is out of visual line of sight. It helps operators ensure that the
UAV is on the correct flight path and assists in making informed navigational
decisions.

4. Distance and speed metrics: This component displays essential flight metrics,
including horizontal speed (H.S), vertical speed (V.S), distance (D), and height
(H) from the take-off point, all measured in meters or meters per second as
appropriate. This information is crucial for maintaining control during flight,
particularly in precision tasks or when maneuvering in tight spaces. It ensures
that the operator is continually updated on the UAV speed and distance metrics,
enabling more accurate and safe UAV operations.

3.5.3 Photo Album View

The Photo Album View is designed as a user-friendly interface for managing and re-
viewing all captured photographs and videos stored either on the UAV or on a local
device. This view supports sorting, tagging, and organizing media, features that are
particularly beneficial for simplifying media selection. It supports batch operations,
including deletion, downloading from the UAV, and uploading to RealityCapture.

Figure 3.4: Photo Album View Screenshot – This image depicts the view in media
selection mode during an active upload process.

34 CHAPTER 3. IMPLEMENTATION

The Photo Album View, detailed in Figure 3.4, streamlines media management that
enhances user interaction and operational efficiency by incorporating the following key
features:

1. Album status bar: This bar allows users to toggle between the UAV album and
the stored photos album, and it facilitates the switch to selection mode, where it
displays data about the selected media. Additionally, it allows the inclusion of
photos from mobile devices for uploading to RealityCapture.

2. Album filter: This feature permits users to apply filters for sorting or locating
specific media within the album, thereby enhancing the manageability of me-
dia. The available filters allow for segregation by media type, enabling efficient
organization and access based on content type.

3. Album selection option bar: This bar provides options for managing selected
media, including deletion, uploading to RealityCapture, and downloading from
the UAV, thus optimizing workflow efficiency.

4. System-wide status indicator: This indicator displays real-time information
on ongoing downloads/uploads and the status of tasks in RealityCapture. It is
consistently visible throughout the application and can be concealed via a button
located on the right edge.

3.5.4 3D Scene View

The 3D Scene View offers a sophisticated platform for visualizing meshes and 3D mod-
els, complete with project management features customized for RealityCapture. This
interface allows users to manipulate the models by zooming, rotating, and dissecting,
enabling detailed analysis of specific aspects of the terrain or structure.

Figure 3.5: 3D Scene View Screenshot 1 – This screenshot captures fundamental control
elements such as project management and scene mode switching.

3.6. TESTING AND OPTIMIZATION 35

Figure 3.6: 3D Scene View Screenshot 2 – This screenshot displays a reconstructed
model of a village, showcasing the colorized texture mode.

The 3D Scene View enhances 3D modeling and project interaction, as shown in Figures
3.5 and 3.6. It incorporates:

1. Project management bar: Displays comprehensive project details that assist
in analyzing the quality and coverage of the images used in reconstruction.

2. Shortcut to Photo Album View: This shortcut enables immediate access
to the Photo Album View from within the 3D Scene View, allowing users to
efficiently add photographs to the project that will be used in the reconstruction
process.

3. Model type selection bar: Offers various modes for viewing the 3D model,
including alignment checking, low-detail preview, normal, and colorized texture
models. This selection bar enables users to choose the appropriate visualization
mode for their specific analysis or presentation needs. Additionally, located at
the right corner of the bar is a button for initiating the reconstruction process
anew, enhancing workflow flexibility.

3.6 Testing and optimization

Testing is a cornerstone of software development that ensures an application meets its
specified requirements and performs reliably in various conditions. For this project, a
comprehensive approach was adopted that combined manual testing with automated
unit and mock tests, ensuring a broad coverage of the majority potential use cases and
scenarios.

36 CHAPTER 3. IMPLEMENTATION

3.6.1 Manual testing

Manual testing was prioritized to mimic real-world usage as closely as possible. This
hands-on approach involved:

Scenario-based testing – Running through all potential user scenarios to ensure
every aspect of the application functioned as expected. This included testing typical
day-to-day operations as well as less common tasks to ensure comprehensive coverage.

Edge case testing – Deliberately testing the limits of the application by simulating
rare conditions and potential error states that could occur in production. This helped
identify and resolve issues that Scenario-Based tests might miss, ensuring the appli-
cation’s stability and robustness under unusual conditions. The success of these tests
confirmed the application’s functionality and usability in realistic settings, significantly
enhancing user confidence in the product.

3.6.2 Automated testing

In addition to manual testing, automated tests played a crucial role in maintaining the
integrity of the application, especially during code expansion. Automated testing en-
sured that new changes did not disrupt existing functionalities. This section details the
specific automated testing methodologies used, namely unit testing and mock testing,
which were critical in ensuring the application’s robustness and reliability.

Unit testing: Focused tests were developed for critical components using Swift’s
XCTest framework. These tests were designed to ensure that individual units of code
performed correctly in isolation from the rest of the application. Unit tests were instru-
mental in verifying the discrete functionality of modules, helping to quickly identify
and isolate faults during development.

Mock testing: Certain components required interaction with external systems, which
were not always accessible for testing. Using mock objects, we simulated these external
interactions to test the interfaces and data handling capabilities of our components.
This approach allowed for comprehensive testing of system logic without the need
for actual external dependencies, thus speeding up the testing process and reducing
external influences on test results.

3.6.3 Optimization

Following the testing phases, optimization efforts were made to address any perfor-
mance issues discovered. This included refining algorithms and enhancing the effi-
ciency of data processing, which improved both the speed and responsiveness of the
application.

3.7. POTENTIAL ENHANCEMENTS TO THE APPLICATION 37

An example of necessary optimization involved the use of the ’Simplify’ functionality
in RealityCapture. This step was crucial because the reconstruction process generated
models of immense size and detail when dealing with point clouds containing more
than 100,000 points. Such complexity led to application crashes when attempting to
display these models. Implementing the ’Simplify’ feature effectively reduced the model
complexity, ensuring stable performance and preventing the application from crashing
during visualization.

3.6.4 Summary and impact of testing

The dual strategy of combining manual and automated testing methodologies ensured
a thorough validation of the application across all scenarios. Manual testing allowed
for real-world emulation and direct feedback on the application’s performance, while
automated tests provided continuous regression checks. This comprehensive testing not
only prepared the application for successful deployment but also established a robust
framework for future updates and enhancements.

3.7 Potential enhancements to the application

As technology and user needs evolve, there are numerous opportunities to enhance
the application’s functionality and user experience. One significant improvement could
involve the development of a smart autonomous flight capability, which uses real-time
3D data to enhance the efficiency and effectiveness of aerial photogrammetry tasks.

3.7.1 Test coverage

To further improve the reliability and robustness of the application, enhancing test
coverage is essential. Expanding the range and depth of test scenarios will ensure
that more functions are evaluated under a variety of conditions, reducing bugs and
improving overall software quality.

3.7.2 Model rendering using level of detail

Improving the visualization of 3D models without the need to simplify them can be
achieved by implementing Level of Detail (LOD) rendering techniques. This approach
allows for dynamically adjusting the complexity of a 3D model’s rendering based on
the viewer’s distance, which can significantly enhance performance and maintain visual
fidelity.

38 CHAPTER 3. IMPLEMENTATION

3.7.3 Autonomous flight functionality

The proposed enhancement involves introducing an autonomous flight mode to the
application. This mode would operate in several phases to optimize data collection
and model reconstruction:

1. Initial (manual) flight and data capture: Initially, the user would manually
pilot the UAV to conduct a preliminary survey flight. Alternatively, this flight
could be performed autonomously by selecting an area on the map, which would
initiate an autonomous flight in a grid pattern. During both manual and au-
tonomous flights, the UAV would perform imaging at timed intervals and data
collection, ensuring comprehensive coverage of the targeted area.

2. Data reconstruction and path planning: The images obtained during the
initial flight would be quickly processed and reconstructed into a 3D model of the
scene. Using this model, the application would perform an analysis to determine
the optimal flight path for further data collection. This path aims to cover all
necessary angles and areas that require additional detail or were underrepresented
in the initial pass.

3. Path review and approval: Before the autonomous flight is executed, the
user would have the opportunity to review and approve the suggested path. This
step ensures that the proposed route meets all safety and coverage requirements,
providing an additional layer of oversight.

4. Autonomous flight execution: Upon approval, the UAV would autonomously
follow the planned route, capturing photographs at strategic points where cap-
turing images would yield the highest quality data,. This phase would be fully
automated, with the UAV adjusting its flight pattern as needed to optimize image
quality and coverage.

5. Final model export: After the autonomous flight, the collected data would be
used to update or refine the existing 3D model. Finally, the final model would be
exported, providing the user with a high-quality representation of the surveyed
area.

This autonomous flight functionality would not only streamline the process of data
collection and model generation but also enhance the accuracy and reliability of the
3D models produced. By automating the flight path based on initial reconstructions,
the application can ensure optimal photo coverage and significantly reduce the manual
effort required from the user. Additionally, this feature would expand the application’s
usability in complex or large-scale surveying projects, where manual flight planning
and execution might be impractical or inefficient.

Chapter 4

Experiments

In this chapter, we propose and complete three experiments utilizing the CR Fly appli-
cation to reconstruct real-world objects. Each experiment includes a detailed procedure
and the motivation for selecting the specific object for reconstruction. The aim is to
demonstrate the practical application of the CR Fly mobile application in diverse en-
vironments and evaluate the effectiveness of the data collection and reconstruction
processes facilitated by the application.

4.1 Hardware setup

For the successful execution of these experiments, the following hardware was employed:

• Computer: The RealityCapture software was run on a computer equipped with
an Intel i7-10700K 3.8 GHz processor, 16 GB of RAM, and an NVIDIA Quadro
RTX 6000 graphics card. This setup ensured efficient processing and high per-
formance during the reconstruction tasks.

• UAV: A DJI Mavic Air 2 drone was used for capturing the images. It is equipped
with a 1/2-inch CMOS sensor capable of capturing 48MP still images and 4K
video at 60fps, providing detailed and clear images necessary for accurate 3D
reconstruction. Additionally, the drone can fly for up to 34 minutes on a single
charge, allowing sufficient time to capture the required images.

• Mobile device: The CR Fly mobile application was operated on an iPhone 13
Pro, which provided robust performance and seamless integration with the DJI
Mavic Air 2.

The following experiments were selected to demonstrate and highlight the applicabil-
ity and flexibility of the CR Fly application in two distinct scenarios. One scenario
requires detailed reconstruction of an object to showcase the application’s precision

39

40 CHAPTER 4. EXPERIMENTS

and accuracy, while the other focuses on quick coverage of an area with reconstruction
detailed enough for various Geographic Information System (GIS) tasks, emphasizing
efficiency over fidelity. These experiments aim to illustrate the diverse capabilities of
the CR Fly application, making it suitable for a wide range of practical applications
from detailed cultural heritage documentation to efficient large-scale mapping projects.

4.2 Experiment 1: Monument of Nicolaus Copernicus

The Monument of Nicolaus Copernicus, created by academic sculptor Tibor Bartfay
in 1974 [6], was selected for this experiment due to its intricate design and slightly
greater height, which make it an ideal subject for testing the application’s ability to
capture detailed features. Its historical significance and unique architectural elements
further enhance the value of this experiment, ensuring a comprehensive assessment of
the application’s 3D modeling capabilities.

4.2.1 Procedure

The goal of this experiment was to produce a highly detailed 3D model of the mon-
ument, accurately capturing its geometric features and surface textures. By meticu-
lously planning the flight and image capture process, we aimed to minimize errors and
optimize the quality of the final model.

Flight plan

We conducted a manual circular flight around the monument, starting at an initial
altitude of 0.5 meters. The altitude was incrementally increased by 0.5 meters, reaching
a maximum height of 3 meters, to capture images at various layers. The entire flight
and image capture process was completed within 15 minutes.

Image capture

A total of 115 images were captured at distances of 1 to 1.5 meters from the object,
ensuring approximately 80% overlap for accurate reconstruction. The upload of the
images from the UAV to RealityCapture was completed in 4 minutes.

Reconstruction

The mesh representing the point cloud contained 114,370 points, with the reconstruc-
tion process taking 40 seconds. Creating the colorized texture model with normal
quality, which comprised 4.4 million triangles, took 6 minutes. Producing the high-
quality colorized texture model, consisting of 17.5 million triangles, took 12 minutes.

4.3. EXPERIMENT 2: CHURCH OF ST. ELIZABETH 41

4.2.2 Results and analysis

The 3D model of the monument was highly detailed, with an accurate representa-
tion of geometric features and surface textures. Some minor artifacts were observed
in areas with significant shadowing, which could be corrected by adding additional
photographs taken from closer distances. Despite these minor issues, the model suc-
cessfully highlighted the monument’s intricate details, demonstrating the effectiveness
of our approach in capturing complex structures.

Figure 4.1: Scene analysis of the Monument of Nicolaus Copernicus

4.3 Experiment 2: Church of St. Elizabeth

The Church of St. Elizabeth, also known as the Blue Church, located in Bratislava, was
designed by the Budapest architect Ödön Lechner and constructed at the beginning of
the twentieth century [5].

It was chosen for its intricate design and substantial size, which present unique
challenges for reconstruction. This experiment aims to showcase the effectiveness of
the CR Fly application in capturing detailed architectural features and the overall
structure using remote sensing techniques, which can be more challenging than tradi-
tional ground-based methods. Additionally, the experiment seeks to demonstrate the
application’s versatility and reliability in various architectural settings.

4.3.1 Procedure

The objective was to produce a highly detailed 3D model of the Blue Church, accurately
representing its complex architectural features and overall structure. Given the build-
ing’s complexity and extensive size, the task posed significant challenges in capturing
all intricate details and ensuring comprehensive coverage, which further underscores
the capabilities of our application.

42 CHAPTER 4. EXPERIMENTS

Flight plan

We conducted a manual circular flight around the building, capturing images at dis-
tances ranging from 2.5 to 5 meters. The altitudes varied from 4 meters to 40 meters,
increasing in increments of 4 meters, to ensure images were captured at various layers.
This method ensured comprehensive coverage, allowing for the capture of both detailed
architectural elements and the overall structure.

Image capture

A total of 526 images were captured, ensuring approximately 70-80% overlap for accu-
rate reconstruction. The upload of the images from the UAV to RealityCapture was
completed in 20 minutes.

Reconstruction

The mesh representing the point cloud contained 1,180,966 points, with the alignment
process taking 5 minutes. Creating the colorized texture model with normal quality,
comprising 48 million triangles, took 36 minutes. Producing the high-quality colorized
texture model, consisting of 169.5 million triangles, took 118 minutes.

4.3.2 Results and analysis

The 3D model of the Blue Church was highly detailed, with an accurate representation
of its intricate architectural features and structural elements. Some errors were ob-
served due to insufficient photographic coverage, which can be corrected by adding ad-
ditional photographs taken under similar external conditions. Nevertheless, the model
effectively highlighted the church’s complex design, underscoring the potential of our
application for detailed architectural reconstruction.

Figure 4.2: Scene analysis of the Blue Church

4.4. EXPERIMENT 3: PART OF VINIČNÉ VILLAGE 43

4.4 Experiment 3: Part of Viničné village

This experiment was conducted to demonstrate the capability of our software to map
areas and perform tasks associated with geodetic surveying, which is directly supported
by RealityCapture. By focusing on a real-world environment with various structures
and natural features, we aimed to validate the software’s practical applications and
effectiveness in diverse surveying scenarios.

4.4.1 Procedure

The objective was to create a 3D model of a part of Viničné village, accurately rep-
resenting the area’s geographical and structural features, with enough detail to ensure
individual buildings are recognizable.

Flight plan

We conducted a manual flight at an altitude of 100 meters, following a grid pattern to
ensure comprehensive coverage of the designated area. The flight path was meticulously
planned to cover the entire reconstruction area and provide a detailed representation
of the surroundings.

Image capture

A total of 139 images were captured, ensuring approximately 70% overlap for accu-
rate reconstruction. The upload of the images from the UAV to RealityCapture was
completed in 5 minutes.

Reconstruction

The mesh representing the point cloud contained 321,734 points, with the alignment
process taking 2 minutes. Creating the colorized texture model with normal qual-
ity, comprising 17.7 million triangles, took 10 minutes. Producing the high-quality
colorized texture model, consisting of 69.6 million triangles, took 27 minutes.

4.4.2 Results and analysis

The 3D model of the Viničné village area was sufficiently detailed to accurately repre-
sent its geographical and structural features, allowing for the recognition of individual
buildings and streets. The model successfully demonstrated the potential of our ap-
plication for detailed area mapping and geodetic surveying, with applications in city
planning, highlighting its versatility and reliability in various surveying contexts.

44 CHAPTER 4. EXPERIMENTS

Figure 4.3: Scene analysis of the part of Viničné village

4.5 Summary of results

The experiments demonstrated that the number of images significantly impacts the
final quality of the 3D model, particularly when aiming to achieve highly accurate
wall structures or precise object shapes. As the number of images provided for the
reconstruction process increases, so does the number of triangles that constitute the
3D model, which consequently leads to an increase in the model’s detail and file size.

Through experimentation, we found that our computer struggled to display models
with over 5 million triangles in common applications designed for viewing 3D models,
such as SketchUp, Microsoft 3D Paint, and Microsoft 3D Viewer. This finding under-
scores a current limitation in our ability to create models that can be optimally viewed
in these applications.

Additionally, based on the conducted experiments, we can estimate that scene anal-
ysis consisting of a point cloud, hundreds of images require approximately tens of min-
utes, with the majority of this time being spent on the transfer process. The duration
of the alignment itself is thus negligible. Moreover, it is evident that the application’s
ability to transfer images during flight utilizes time to minimize the user’s waiting
period for alignment.

Consequently, we conclude that while we are capable of creating highly detailed
models, there is a need to manage the complexity and file size of these models to
enhance their usability across various platforms. As future work, we higly recommend
implementing model rendering using level of detail in our application. This approach
will ensure efficient rendering and viewing of models by dynamically adjusting the level
of detail based on the viewing context, thereby improving the overall performance and
usability of the generated models.

The previewable 3D model files and the physical model created in this part of the
work are included in Appendix C.

Conclusion

The primary objective of this bachelor thesis was to develop a mobile application,
CR Fly, to facilitate the 3D reconstruction of scenes using images captured by DJI
drones. The application aimed to streamline the process of image capture, transfer, and
reconstruction, ultimately enhancing the efficiency and quality of 3D model generation
by leveraging the DJI SDK as the drone controlling API and RealityCapture software as
a 3D reconstruction API. Additionally, the application simplified the scanning process
by providing real-time feedback.

The work comprehensively reviews existing methodologies and technologies in 3D
reconstruction and UAV-based photogrammetry. We identified key limitations in cur-
rent software solutions, particularly in terms of autonomous flight capabilities and the
seamless integration of data transfer and processing workflows. These insights guided
the specification and development of the CR Fly application, which addresses these
gaps through several innovative features.

Our implementation involved the use of Swift programming language and the MVC
architecture to ensure a modular and scalable design. The application supports real-
time image processing, intuitive UAV control, and efficient communication with Real-
ityCapture over a network. Key components, such as the CommandQueueController,
were introduced to manage command execution and handle potential errors robustly.

Extensive testing, both manual and automated, was conducted to validate the
functionality and performance of the application. The experiments demonstrated the
application’s capability to produce high-quality 3D models under various conditions,
highlighting its adaptability and effectiveness.

The results of our experiments, including the reconstruction of the Monument of
Nicolaus Copernicus, the Church of St. Elizabeth of Hungary, and part of the Viničné
village, confirmed that the application is easy to use and has the potential to deliver
detailed and accurate 3D models. These findings underscore the application’s utility
in fields such as cultural heritage preservation, urban planning, and geodetic measure-
ments.

In conclusion, the CR Fly application represents a significant advancement in UAV-
based 3D reconstruction. By addressing the limitations of existing solutions and pro-
viding a comprehensive tool for image capture and processing in real-time, this work

45

46 Conclusion

lays the foundation for future enhancements, such as fully autonomous flights and real-
time reconstruction. The application’s modular design and robust architecture ensure
its scalability and adaptability, positioning it well for future technological developments
in the field. Further research and development could focus on optimizing autonomous
flight algorithms and expanding the application’s compatibility with a wider range of
UAV models and reconstruction software.

References

[1] Apple Inc. HeaderDoc User Guide. https://developer.apple.com/library/

archive/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/

intro.html.

[2] Apple Inc. Swift Documentation. https://www.swift.org/documentation.

[3] DroneDeploy Inc. DroneDeploy Aerial and Help Center. Available at: https:

//dronedeploy.com.

[4] Epic Games, Inc. RealityCapture - 3D Models from Photos and/or Laser Scans.
Available at: https://www.capturingreality.com.

[5] J. Hal’ko and J. Sedlák. Modrý kostol: dejiny Kostola sv. Alžbety v Bratislave.
LÚČ, Bratislava, 2006.

[6] J. Hamšíková. Pamätník Mikuláša Koperníka. https://muop.bratislava.sk/

vismo/dokumenty2.asp?id_org=600176&id=4158, August 2012.

[7] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2nd edition, 2003.

[8] OpenAI Inc. ChatGPT 4. https://www.openai.com, 2023.

[9] Pix4D S.A. Professional photogrammetry and drone mapping software -
Pix4Dcapture. Available at: https://www.pix4d.com.

[10] T. Schenk. Introduction to photogrammetry. The Ohio State University, Colum-
bus, 106(1), 2005.

[11] SZ DJI Technology Co., Ltd. Ground Sample Distance. Available at: https:

//enterprise-insights.dji.com/blog/ground-sample-distance.

[12] SZ DJI Technology Co., Ltd. Mobile SDK V4 - Documentation and API Reference.
Available at: https://developer.dji.com/mobile-sdk-v4.

[13] Linglong Zhou, Guoxin Wu, Yunbo Zuo, Xuanyu Chen, and Hongle Hu. A com-
prehensive review of vision-based 3d reconstruction methods. Sensors, 24(7), 2024.

47

https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html
https://www.swift.org/documentation
https://dronedeploy.com
https://dronedeploy.com
https://www.capturingreality.com
https://muop.bratislava.sk/vismo/dokumenty2.asp?id_org=600176&id=4158
https://muop.bratislava.sk/vismo/dokumenty2.asp?id_org=600176&id=4158
https://www.openai.com
https://www.pix4d.com
https://enterprise-insights.dji.com/blog/ground-sample-distance
https://enterprise-insights.dji.com/blog/ground-sample-distance
https://developer.dji.com/mobile-sdk-v4

48 REFERENCES

All online references cited in this thesis were accessed on May 24, 2024.

Appendix A: Software development
documentation

This appendix includes the developer’s documentation of the software, which contains
detailed comments on individual classes and methods. The documentation is provided
as a single .doccarchive file in the electronic attachment.

49

50 APPENDIX A: SOFTWARE DEVELOPMENT DOCUMENTATION

Appendix B: Source code of the
application

This appendix contains the complete source code of the application. The source code
files and test files are included as electronic attachments.

The latest updates and revisions of the application are available on GitHub at:
https://github.com/lbujnak/CR-Fly.

51

https://github.com/lbujnak/CR-Fly

52 APPENDIX B: SOURCE CODE OF THE APPLICATION

Appendix C: Reconstructed objects
and physical models

This appendix presents the reconstructed models of objects discussed in Chapter 4.
All relevant previewable files are included as electronic attachments.

Additionally, physical models of the experiments discussed in Section 4.2 and Sec-
tion 4.3 are included as physical attachments.

53

	Introduction
	Background review
	3D reconstruction
	Photogrammetry
	Aerial photography
	Example of GSD calculation

	The role of UAVs in 3D reconstruction
	Review of related works
	Pix4Dcapture
	DroneDeploy
	Software comparison and shortcomings

	Our approach

	Specification
	Product overview
	Product objectives
	Product features
	Operating environment
	Documentation

	External interfaces
	User interface
	Hardware interface
	Software interface
	Communication interface

	System features
	Error handling
	Security

	Implementation
	System architecture
	CommandQueueController
	Core Component
	Drone Component
	Scene Component
	Architecture summary

	Command execution
	Communication with the UAV
	Communication with RealityCapture
	User interface
	Home Screen
	Drone Control View
	Photo Album View
	3D Scene View

	Testing and optimization
	Manual testing
	Automated testing
	Optimization
	Summary and impact of testing

	Potential enhancements to the application
	Test coverage
	Model rendering using level of detail
	Autonomous flight functionality

	Experiments
	Hardware setup
	Experiment 1: Monument of Nicolaus Copernicus
	Procedure
	Results and analysis

	Experiment 2: Church of St. Elizabeth
	Procedure
	Results and analysis

	Experiment 3: Part of Viničné village
	Procedure
	Results and analysis

	Summary of results

	Conclusion
	References
	Appendix A: Software development documentation
	Appendix B: Source code of the application
	Appendix C: Reconstructed objects and physical models

