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Abstrakt

Syntéza programov je proces konštruovania korektného programu podľa vstupnej špeci-
fikácie. Porovnávame tri metódy syntézy programov bez rekurzie zo špecifikáií v rozšíre-
niach prvorádovej logiky. Porovnávané metódy sú najprv stručne predstavené. Jazyky
vstupnej špecifikácie sú porovnané podľa expresivity, postupy syntézy sú vyhodnotené
podľa použiteľnosti na triedach problémov, a na koniec sú implementácie metód otesto-
vané na súbore referenčných problémov.

Kľúčové slová: syntéza programov, automatizované dokazovanie



Abstract

Program synthesis is the process of constructing a correct program according to an
input specification. We compare three methods of synthetizing recursion-free programs
from specifications given in extensions of first-order logic. The compared methods
are first each briefly introduced. The input specification languages are compared by
expressivity, the synthesis procedures are evaluated by their usability and aplicability
to classes of problems, and finally, implementations of the methods are tested against
a set of benchmarks.

Keywords: program synthesis, automated reasoning
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Introduction

Program synthesis is a sub-field of computer science that studies processes of taking
a formal specification, and outputting a program that meets the specification. There
are a number of common specification formats, including logical formulas, examples of
input-output pairs, or an existing program for which we want to find an equivalent,
better optimized program. The output of the procedures may also come in different
forms or be limited in certain ways, such as filling in blanks in user supplied templates,
or programs limited to recursion-free constructs. The goal of program synthesis is
to reduce the potential for human error and necessary effort to produce a correct
program, by partially or fully automating the task of programming. Program synthesis
combines techniques from formal methods, programming language theory, and artificial
intelligence to achieve its goals.

In this thesis, we focus on the sub-field of deductive synthesis. Deductive synthesis
methods are closely related to automated theorem proving and belong to the oldest
branches of program synthesis [8]. This approach assumes a complete formal specifi-
cation of the desired behavior, in the form of a pre-condition/post-condition pair in a
formal language. A proof of the post-condition is constructed from the pre-condition,
and the output program is extracted from this proof. By construction, this program is
guaranteed to satisfy the original specification. This is in contrast to other branches
of program synthesis, where the specification may be imprecise or incomplete, and a
separate verification step may be required to ensure that the program really complies
with the specification.

The main goal of our work is to compare the strengths and limitations of the
methods by Manna and Waldinger [19], Reynolds et al. [24], and Hozzová et al. [16].
Previous works have conducted general surveys of program synthesis [12, 9, 10]. Among
work that focuses on comparison and analysis, reports from Syntax-Guided Synthesis
Competition (SyGuS-Comp) [2, 3] analyze from a high level view results of many
implementations supporting SyGuS specifications. To the best of our knowledge, there
is no work attempting specifically to study the set of methods we have chosen and their
relative weaknesses and strengths in depth.

The first chapter briefly defines concepts used throughout the rest of the work.
Chapter 2 provides a self-contained introduction to all of the compared methods. Chap-
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2 Introduction

ter 3 compares the methods by their input specification languages, synthesis of an
example program, and the strengths and weaknesses of each method. In Chapter 4,
implementations of the methods are tested against a set of benchmarks and the results
are evaluated.



Chapter 1

Preliminaries

Throughout the thesis, we work with standard first-order logic, using the standard
notions of terms, literals, interpretations, formulas, and related concepts. We further
explain selected terminology used in the remainder of the work and for details we refer
to /citekovacs13.

An expression is either a formula or a term, and E[t] denotes a expression E con-
taining the subexpression t. Subsequent uses of E[s] then denote the expression E with
all instances of t replaced with the subexpression s. Further, to emphasize the case
when the term t is a variable x, we sometimes write E[x← s] for E[s].

Bold variable and constant names denote a vector of variables or constants respec-
tively. Eg. x stands for a vecotor x1, x2, . . . , xk

Single-invocation property Any quantifier-free first-order formula in the form of
Q[x, y] obtained from a formula Q[x, f(x)] by replacing f(x) with y.

Clausal normal form (CNF) A formula is in CNF if it is a conjunction of clauses,
where clause means a disjunction of literals.

Skolemization A formula is in Skolem normal form if all of its quantifiers are uni-
versal, and appear before the rest of the formula. Any first-order formula can be
Skolemized without affecting satisfiability.

In many sorted logics, a term is said to be of type bool if it will evaluate to either
true or false.

Completeness A formal system is called complete if every true formula can be
derived through the system.

A Unifier θ of terms A and B is a substitution such that Aθ and Bθ are syntactically
equal.

The Most general unifier (MGU) θ is a unifier of A and B, such that for each unifier
of A and B σ there exists a unifier γ, such that θ = σγ.

Superposition calculus Sup A logical inference system. It is parametrized by a
simplification ordering ≻ on terms, and a selection function, which selects a subset

3



4 CHAPTER 1. PRELIMINARIES

of literals in each clause (we shall denote selected literals of a clause by underlining
them). As long as the selection function conforms to certain properties, Sup is both
sound and refutationally complete [18]. We display Sup in Figure 1.1.

Superposition:

s ≃ t ∨ C L[s′] ∨D

(L[t] ∨ C ∨D)θ

s ≃ t ∨ C u[s′] ̸≃ u′ ∨D

(u[t] ̸≃ u′ ∨ C ∨D)θ

s ≃ t ∨ C u[s′] ≃ u′ ∨D

(u[t] ≃ u′ ∨ C ∨D)θ

where θ := mgu(s, s′); tθ ̸⪰ sθ; (first rule only) L[s′] is not an equality literal;
and (second and third rules only) u′θ ̸⪰ u[s′]θ.

Binary
resolution:

A ∨ C ¬A′ ∨D

(C ∨D)θ

where
θ := mgu(A,A′).

Factoring:

A ∨ A′ ∨ C

(A ∨ C)θ

where
θ :=

mgu(A,A′).

Equality resolution:

s ̸≃ t ∨ C

Cθ

where
θ := mgu(s, t).

Equality
factoring:

s ≃ t ∨ s′ ≃ t′ ∨ C

(s ≃ t ∨ t ̸≃ t′ ∨ C)θ

where
θ := mgu(s, s′);
tθ ̸⪰ sθ; and
t′θ ̸⪰ tθ.

Figure 1.1: Superposition calculus Sup. The underlined literals are selected.



Chapter 2

Introduction of the Compared
Methods

In this chapter, we present a short introduction to each of the compared methods as
they have been described in previous publications.

2.1 Overview

Across all of the compared methods, the input is given in some extension of first-
order logic, and the synthesized programs are expressed in first-order logic extended
by if-then-else constructors.

The method of Manna et al. [19] is in principle capable of constructing programs
involving recursion, though for the purpose of our work, we will only be interested in
non-recursive programs that could be generated. It is described as combining tech-
niques of unification, mathematical induction, and transformation rules into a single
deductive system. It describes sequents (data structures holding conditions), and a set
of transformation rules over these sequents. Once the sequents conform to a final form,
an executable program can be extracted from them. Notably, no implementation is
provided in this paper, and no algorithm is given for directing the application of trans-
formation rules. Thus for this approach, we can not run automated tests to compare
with the remaining approaches and must attempt to deduce possible results.

The work of Reynolds et al. [24] is significant for being the first program synthesis
engine implemented inside an SMT solver. Previous approaches utilizing SMT and
SAT solvers did not directly formulate the synthesis problem as a theorem proving
task, but used logic implemented outside of the theorem prover to query the prover
multiple times. Usually, the role of the theorem prover was to find counterexamples
or prove the correctness of candidate program fragments. Reynolds et al. formulate
the whole synthesis problem as a theorem proving problem, and solve it within the

5



6 CHAPTER 2. INTRODUCTION OF THE COMPARED METHODS

framework of an SMT solver. This is done by turning the constraints into a universally
quantified formula, and extracting the program from a proof of unsatisfiability of its
negation. Counterexample-guided techniques are used for instantiating quantifiers. A
method of encoding syntactic restrictions is also presented. The algorithms described
are implemented inside the CVC4 SMT solver [6], and later in its successor cvc5 [5],
allowing us to run practical tests on them.

The method of Hozzová et al. [16] uses first-order theorem proving to extract code
from correctness proofs of specifications. The input specification language is extended
with the ability to mark specific symbols as uncomputable, and forbid their use in the
output program. A modified version of the superposition calculus [4] is defined and
proven sound. The program is constructed while deriving a proof of the specification
using the modified superposition calculus. Substitutions into terms are tracked using
answer literals [11], and eventually composed to form the final program. This method
is implemented within the Vampire theorem prover [18].

2.2 Deductive Method of Manna and Waldinger

The work of Manna and Waldinger [19] is among the earliest focusing on the problem
of program synthesis and predates the work of both Reynolds et al. [24] and Hozzová
et al. [16] by more than three decades. It describes not yet a complete solution, but a
framework within which different theorem proving algorithms might be used to guide
the synthesis. In the remainder of this thesis we will be referring to this method as the
deductive method.

2.2.1 Specification

The program specification names a function to synthesize and its list of arguments.
Restrictions may be given in the form of pre-conditions for the function’s arguments,
and post-conditions on the arguments and outputs. An example specification might
look as follows:

(1) f(a) = find z such that R(a, z) where P (a)

where f is the function to synthetize, a is the list of arguments, z is the list of outputs,
P is the pre-condition, and R is the post-condition. The specification describes a func-
tional program, with no side effects. For such a specification, the framework requires
the use of a theorem proving algorithm to prove the following conjecture within the
framework.

(2) ∀a.∃z.P (a)⇒ R(a, z)
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2.2.2 Basic Structure

The datastructure operated on during the course of the proof is a sequent, which we
will represent as a table. Each line of the sequent contains either one assertion or
one goal, and optionally corresponding output expression. The pre-condition from the
specification is added as an assertion, and the post-condition as a goal, with the output
variable as its output expression. Formula (1) is rewritten as:

assertions goals outputs
P (a)

R(a, z) z

If during the course of the proof, by applying transformations, we reach the asser-
tion false, this is equivalent to the precondition in (2) being false, and therefore the
whole synthesis conjecture being true. If the assertion line has a corresponding output
expression, this, then, is a program which satisfies the given specification. Similarly,
if during the course of the proof we reach the goal true, this corresponds to the right
side of the implication in (2) being true, and therefore also the whole conjecture being
true, and the corresponding output expression is the synthetized program.

The distinction between assertions and goals exists only for ease of understanding
and does not add to the power of the framework. Any goal can be replaced with an
assertion containing its negation and vice-versa.

At the beginning of the proof, except for the given pre- and post-condition, the
sequent may also contain axioms of the theory being reasoned in in the assertions
column without output expressions. This is one of two ways by which domain specific
rules are injected into the framework’s reasoning, the other being the transformation
rules described later. The proof proceeds by applying transformations onto the sequent
to produce new lines, with the aim of reaching the assertion false, or the goal true.

2.2.3 Rules

The notation we will use for demonstrating rules in this section will be a sequent
divided by a double horizontal line, with the premises above the double line, and the
consequents below it.

Splitting Rules

The andsplit rule allows the decomposition of an assertion in the form of a conjunction
into separate assertions, and adds them to the end of the sequent with the same output
expression.
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assertions goals outputs
F ∧G t

F t

G t

The orsplit rule works analogically for goals in the form of disjunctions.

assertions goals outputs
F ∨G t

F t

G t

The ifsplit rule applies to goals in the form of an implication. The left side of the
implication is appended as an assertion, the right side of the implication as a goal,
both with an unchanged output expression.

assertions goals outputs
F ⇒ G t

F t

G t

Transformation Rules

Transformation rules are the second way in which domain specific reasoning enters the
framework. Transformations act on both assertions and goals, but in different ways.
Let

(3) r → s if P

be a transformation rule and F an assertion containing a subformula r′. If there exists
a unifier θ such that rθ is identical to r′θ, (3) may be applied to F , producing an
assertion

Pθ ⇒ Fθ[r′θ ← sθ]

with the output tθ. Similarly, let (3) be a transformation rule and G a goal containing
a subformula r′. If there exists a unifier θ such that rθ is identical to r′θ, (3) may be
applied to G, producing a goal

Pθ ∧Gθ[r′θ ← sθ]

with the output tθ.
To retain soundness in the proof, in all transformation rules used, P ⇒ r = s must

hold in the underlying theory.
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Resolution Rules

The resolution rules are a generalization of the original resolution principle [25] which
applies without needing to operate on clauses in conjunctive normal form. Let F and
G be assertions within a sequent, let P1 and P2 be subformulas of F and G respectively.
Let θ be the most general unifier of P1 and P2.

The AA-resolution rule states that a new assertion can be appended in the following
way.

assertions goals
F

G

Fθ[P1θ ← true] ∨Gθ[P2θ ← false]

Since goals can be seen as negated assertions, we also have GG-resolution

assertions goals
F

G

Fθ[P1θ ← true] ∧Gθ[P2θ ← false]

GA-resolution

assertions goals
F

G

Fθ[P1θ ← true] ∧ ¬Gθ[P2θ ← false]

and AG-resolution.

assertions goals
F

G

¬Fθ[P1θ ← true] ∧Gθ[P2θ ← false]

For all of the resolution rules, the output expression behaves in the same way. If
only one of the used lines had an output expression t, then the resulting line has the
output expression tθ. If the first line had the output expression t1 and the second line
had the output expression t2, the resulting output expression will be

if P1θ then t1θ else t2θ
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2.2.4 Polarity

The polarity strategy attempts to restrict rule applications which would not be helpful
to proving the conjecture. We assign a polarity to every subformula of a sequent as
follows

1. each goal is positive

2. each assertion is negative

3. if a subformula S has form “¬α,” then its component α has a polarity opposite
to S

4. if a subformula S has form “α∧β”, “α∨β”, “∀x.α”, or “∃x.β,” then its components
α and β have the same polarity as S

5. if a subformula C has form “α ⇒ β,” then β has the same polarity as S, but α

has the opposite polarity

All rule applications which would substitute a subformula for true or false are subject
to restrictions. A subformula can only be replaced by true if it has at least one positive
occurrence in the assertion or goal, by false if it has at least one negative occurrence.
The framework remains complete in first-order logic when restricted by the polarity
strategy. In practice however, this strategy alone is insufficient for pruning the proof
search space to a size which can be searched effectively.

2.3 SMT-Based Method of Reynolds et al.

Reynolds et al. [24] describe several related techniques for integrating program synthesis
into a pre-existing SMT-solver. Some have proven unpractical through experimenta-
tion, and to keep the scope of this section reasonable, we will only describe two which
have been implemented and proven practical. In the remainder of this thesis, we will
refer to this method as the SMT-based method.

The first is specialized for conjectures that can be expressed as singe-invocation
properties. The second is more generic, albeit its heuristics for finding candidate solu-
tions are somewhat weaker.

In this section, we’ll use the following specification formula as an example:

∃f.∀x1, x2. f(x1, x2) ≥ x1 ∧ f(x1, x2) ≥ x2 ∧ (f(x1, x2) = x1 ∨ f(x1, x2) = x2) (2.1)
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2.3.1 Specification

cvc5 takes a specification in a standardized language developed for this task in coor-
dination by multiple teams: SyGuS (Syntax Guided Synthesis) [21]. SyGuS is unique
in its ability to place complex syntactic restrictions on accepted solutions in addition
to the usual semantic restrictions. Given that the language described by the syntactic
restrictions contains efficient solutions for the program requested to be synthetized and
depending on the specific synthesis strategy selected, the restrictions can also guide the
solver towards a solution.

The semantic restrictions take the form of a synthesis conjecture

∃f1, . . . , fn.∀v1, . . . , vm.α =⇒ φ,

where f1, . . . , fn are the functions to be synthetized, and the assumptions α and the
constraints φ are lists of terms of sort bool.

The syntactic restrictions are provided as a context-free formal grammar G. Each
rule must have a type τ associated with it. On the left side of the i-th rule is a variable
vi of type τi. Symbol y1 of type τ1 is referred to as the start symbol of G. The type
τ1 must always be equal to the type of the function to synthetize. The expressions on
the right-hand side of the rule may be either (Variable σv), allowing rewriting to any
variable of type σv, (Constant σc), allowing rewriting to any constant of type σc, or
an ordinary term of type τi.

2.3.2 Single-Invocation Properties

The first technique works by first finding a solution disregarding the syntactic restric-
tions, and then attempting to reconstruct it to fit them.

Let Q[k, y] be the skolemized single-invocation form of formula 2.1, where x has
been replaced by fresh constants k. The algorithm builds up a set Γ of ground instances
of ¬Q[k, y], and then uses its contents to build the first version of the program. The
set Γ begins as an empty set. Then, while Γ is satisfiable, the SMT-solver looks for
a model I of Γ satisfying Q[k, e], where e is a fresh uninterpreted constant. If such a
model is not found, the algorithm terminates without a solution. If such a model is
found, the ground instance ¬Q[k, t[k]] for some term t[x] such that t[k]I = eI is added
to Γ .

If Γ becomes unsatisfiable, the loop terminates and the algorithm proceeds to the
next step. Here the first version of the program is constructed out of the elements of
Γ . The program always has the form of a nested if-then-else statement. Assuming
{¬Q[k, t1[k]], . . . ,¬Q[k, tp[k]]} is an unsatisfiable subset of Γ , the solution returned is

λx.if Q[k, tp[k]] then tp[k] else (· · · if Q[k, t2[k]] then t2[k] else t1[k] · · · ).
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This solution satisfies the semantic constraints, but not necessarily the syntactic
ones. Many SMT-solvers (cvc5 included) can reason about the theory of algebraic
datatypes. The syntactic restrictions can be embedded into restrictions over datatypes,
thus enabling the solver to reason about them. For example the syntactic constraint

(Int→ x1 | x2 | 0 | 1)

which allows only the variables x1, x2 and the literals 0, 1 to appear as integers in the
program, can be encoded as a datatype

I := x1 | x2 | zero | one.

The conversion from the grammar to the datatypes can be automated.
To tie the intended semantics of the symbols to the datatypes, evaluation operators

are defined. Evaluation operators take as arguments a datatype instance encoding a
term, and the original input variables. They evaluate the datatype to its counterpart
in the regular logic language of the prover. For example,

ev(plus(one, one),x) = 2.

After finding a candidate solution regardless of the syntactic restrictions, an at-
tempt to reconstruct the candidate solution to fit the syntactic restrictions starts. The
algorithm maintains a set A of triplets (u↓, u, δ), where δ is a datatype, u is a term
of type δ constrained by the corresponding restrictions for that type, and u↓ is a nor-
malized term equivalent to u. The algorithm begins by finding all subterms of the
candidate solution which do not satisfy their respective restrictions. For each of these
subterms t, it calls a function rcon, which checks the set A for a triplet containing a
normalized term u↓ equal to t normalized t↓. If such a triplet is found, t↓ is replaced
by u. If no such triplet is found, rcon attempts to substitute the term for a function
call, if the restrictions allow it, and solve the problem recursively over the terms given
as arguments of the function call. If this is not possible, rcon returns without making
progress, and the main loop of the algorithm adds new triplets to A and tries again.

2.3.3 Other Properties

If the property can not be rewritten as single-invocation, an alternative technique is
used. The synthesis conjecture is rewritten, so that each invocation of the function is
replaced with the evaluation of a term constructed from the custom datatypes. E.g.
the formula 2.1 can be rewritten as

Pev[g,x] := ev(g,x) ≥ x1 ∧ ev(g,x) ≥ x2 ∧ (ev(g,x) = x1 ∨ ev(g,x) = x2).
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The solver then attempts a refutation of ∀g∃x¬Pev[g,x]. The algorithm maintains
a set Γ of counterexample inputs, and a limit on the size of candidate solutions n,
which starts as 1. It proceeds by generating solutions within the size limit which are
not invalidated by any of the collected counterexamples. If such a candidate is found,
the solver tries to find counterexample inputs to invalidate the new solution. If no
counterexample is found, the new solution is returned. Otherwise, the new counterex-
ample is added to Γ , and the algorithm loops back to looking for candidate solutions.
If none can be found within the size limit n, n is increased.

In this case, a potential solution is instantiating g with if(le(x1, x2), x2, x1), which
can be rewritten back into the solver’s language as if x1 ≤ x2 then x2 else x1.

2.4 Saturation-Based Method of Hozzová et al.

The work of Hozzová et al. is the most recent among the methods described here. It
too makes use of automated proving to facilitate synthesis, and does so by integrating
the process into a first-order logic theorem prover, Vampire [18]. In the remainder of
this thesis, we will refer to this method as the saturation-based method.

2.4.1 Specification

The specification is given in a superset of the SMT-LIB language [TODO: citation].
It is extended to allow declaring a function to synthetize with its argument list, and
optionally a list of so-called uncomputable symbols. These are symbols which are not
allowed to appear in the output program. If this list is not given, all symbols are
assumed to be computable. Conditions and assertions from the specification are then
collected and processed into a conjecture of the form

A1 ∧ . . . An ⇒ ∀x.∃y.F [x, y]

where A1 ∧ . . . An are the assumptions, and F contains all of the conditions.

2.4.2 Saturation and Superposition

Saturation-based proving attempts a proof by refutation. It attempts to refute the
negation of the conjecture to-be-proven based on the assertions. The proof proceeds
by negating the conjecture and converting all the formulas into CNF, and iteratively
computing consequences of these clauses. Consequences are derived by applying rules
from an inference system onto already derived clauses.

A commonly chosen inference system is the superposition calculus Sup, described
in Chapter 1, which is also used by Vampire.
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2.4.3 Superposition with Answer Literals

Superposition (Sup):

s ≃ t ∨ C ∨ ans(r) L[s′] ∨ C′ ∨ ans(r′)

(D ∨ L[t] ∨ C ∨ C′ ∨ ans(if s≃ t then r′ else r))θ

s ≃ t ∨ C ∨ ans(r) L[s′] ∨ C′ ∨ ans(r′)

(D ∨ r ̸≃r′ ∨ L[t] ∨ C ∨ C′ ∨ ans(r))θ

s ≃ t ∨ C ∨ ans(r) u[s′] ̸≃ u′ ∨ C′ ∨ ans(r′)

(D∨u[t] ̸≃u′∨C∨C′∨ans(if s≃ t then r′ else r))θ

s≃ t∨C∨ans(r) u[s′]≃u′∨C′∨ans(r′)

(D∨r ̸≃r′∨u[t]≃u′∨C∨C′∨ans(r))θ

s ≃ t ∨ C ∨ ans(r) u[s′] ≃ u′ ∨ C′ ∨ ans(r′)

(D∨u[t]≃u′∨C∨C′∨ans(if s≃ t then r′ else r))θ

s≃ t∨C∨ans(r) u[s′] ̸≃u′∨C′∨ans(r′)

(D∨r ̸≃r′∨u[t] ̸≃u′∨C∨C′∨ans(r))θ

where (θ,D) is a computable unifier of s, s′ w.r.t. the argument of the answer
literal in the rule conclusion (i.e. if s≃ t then r′ else r for the left-column
rules, and r for the others); (rules on the first line only) L[s′] is not an equality
literal; and (rules on the second and third line only) u′θ ̸⪰ u[s′]θ.

Binary resolution (BR):

A ∨ C ∨ ans(r) ¬A′ ∨ C ′ ∨ ans(r′)
(D∨C∨C ′∨ans(if A then r′ else r))θ

A ∨ C ∨ ans(r) ¬A′ ∨ C ′ ∨ ans(r′)
(D ∨ r ̸≃r′ ∨ C ∨ C ′ ∨ ans(r))θ

where (θ,D) is a computable unifier of A,A′ w.r.t. (first rule)
if A then r′ else r or (second rule) r.

Factoring (F):

A ∨ A′ ∨ C ∨ ans(r)
(D∨A∨C∨ans(r))θ

where (θ,D) is a
computable unifier
of A,A′ w.r.t. r.

Equality resolution
(ER):

s ̸≃ t ∨ C ∨ ans(r)
(D ∨ C ∨ ans(r))θ

where (θ,D) is a
computable unifier

of s, t w.r.t. r.

Equality factoring (EF):

s ≃ t ∨ s′ ≃ t′ ∨ C ∨ ans(r)
(D∨s≃ t∨t ̸≃ t′∨C∨ans(r))θ

where (θ,D) is a computable
unifier of s, s′ w.r.t. r;
tθ ̸⪰ sθ; and t′θ ̸⪰ tθ.

Figure 2.1: Selected rules of the extended superposition calculus Sup for reasoning
with answer literals, with underlined literals being selected.

Similarly to output expressions in Subsection 2.2, the system uses answer liter-
als [11] to track partial progress during the synthesis of the program. They capture
candidate program fragments associated with each clause. One answer literal is added
to each clause originating from the specification conjecture. For practical reasons, these
are maintained as part of the clause, as opposed to extra metadata. Whenever a sub-
stitution is performed on a clause, the change is reflected inside the answer literal. Sup
is modified to take answer literals into account, but treats them differently from other
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literals. They are never constrained in the premises of an inference rule, which means
they do not influence the process of the saturation. We display selected rules of the
modified version of Sup in Figure 2.1.

2.4.4 Programs from Answer Literals

The synthesis conjecture is first skolemized and converted to CNF. Subsequently, an
answer literal is inserted into each clause. The proof system is guided towards producing
clauses in the form of C[σ]∨ans(r[σ]), where both C[σ] and ans(r[σ]) are computable.
Here r[σ] is a witness for y in ∃y.F [σ, y], and such a clause means that assuming ¬C[x],
r[x] satisfies the specification. This fact is recorded on the side, the clause is replaced
by C[σ], and the proof continues. The proof stops when the disjunction of negations
of the conditions recorded becomes unsatisfiable. At that point saturation stops, and
the final program is composed from segments ri conditioned on ¬Ci. The structure of
the program is a sequence of tests for ¬Ci, executing ri if evaluated to true, and falling
through to a test for Ci+1 if false. For example, if we collected the conditions ¬C1,
¬C2, ¬C3 with program segments r1, r2, r3, respectively, and C1 ∧ C2 ∧ C3 together
with the input assertions is unsatisfiable, then the final program is constructed as

if ¬C1 then r1 else if ¬C2 then r2 else r3.

2.4.5 Computable Unification

To make sure the final program only makes use of computable symbols, computable
unifiers are used in place of MGUs. Computable unifiers can be found with a modified
version of the standard unification algorithm [25]. They ensure that uncomputable
symbols are never substituted into answer literals.
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Chapter 3

Comparison

In this chapter we compare the previously introduced methods based on their specifi-
cation language and synthesis procedure.

3.1 Specification Languages

One important differentiating factor between the methods is the strength and expres-
sivity of the specification language. That is, what classes of problems can we specify,
and how efficient and clear the encoding of the problem is. We also consider the ability
to algorithmically convert from one specification system to another, which may also be
useful in cases where we want to try running a problem through multiple systems to
select the result that best suits us.

3.1.1 Syntactic Constraints

The deductive method does not include any dedicated mechanism for syntactic restric-
tions, they are altogether inexpressible in this framework.

The saturation-based method includes a weak mechanism for syntactic restrictions
through the enumeration of incomputable symbols. This allows us to use symbols which
are convenient for writing concise specifications, but for which we have no algorithmic
implementation. Higher level restrictions on the structure of the program however are
not possible.

The SMT-based method has the strongest mechanism for syntactic restrictions,
based on context-free formal grammars. The set of restrictions expressable by this
mechanism is clearly a superset of what can be done only by blacklisting uncomputable
symbols. The grammar can also be used to express structural constraints on the
program useful for ensuring properties relating to human readability, or time or memory
complexity.

17
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From this, it follows that if any syntactic restrictions are used for a specification
in the saturation-based or SMT-based system, there can not exist an encoding of it in
the deductive approach. Similarly, if the grammar used to specify a problem in the
SMT-based method imposes non-trivial restrictions (i.e. those that do not amount to
excluding a list of symbols), the specification will also be unencodable in the saturation-
based approach. Conversely, since the SMT-based method’s syntactic restrictions are
strictly stronger than the saturation-based and deductive method’s, the encodability
of specifications from those systems into the SMT-based method will only be subject
to the ability to convert semantic restrictions.

3.1.2 Semantic Constraints

In the saturation-based approach and the deductive approach, the constraints are given
in subsets of first-order logic, possibly extended with theories. SyGuS syntax supports
higher-order constructs as well, although currently the synthesis process itself will
fail to produce results for them in almost all cases. While the SMT and saturation-
based approaches include built-in support for multiple common theories, the deductive
approach requires that they be encoded by the user in transformation rules.

Another relevant difference here between SyGuS and the input formats of the other
two systems is, that as of revision 2.1, SyGuS does not have support for adding un-
interpreted functions directly to the logic being used. This is possible in the superset
of the SMT-LIB language that the saturation-based method uses and the deductive
method.

An encoding for uninterpreted functions is possible, at the cost of higher complexity
of code and scalability issues. The idea is, that since cvc5 has support for higher-order
logic, it is possible to declare new universally quantified variables instead of making
the function symbols a part of the logic vocabulary, and require these variables as
arguments in every function that uses them in its body. This can be done in an
algorithmic way.

For example, [16] used the group theory axioms:

(i) the operation ∗ is associative

(ii) the operation ∗ has a neutral element

(iii) there exists an inverse element for each element with respect to ∗.

We can define the group axioms as follows in SMT-LIB with op denoting ∗:

(declare-fun inv (s) s)

(declare-fun op (s s) s)



3.2. THEORETICAL DEMONSTRATION 19

(declare-const e s)

; Left inverse

(assert (forall ((x s)) (= (op (inv x) x) e)))

; Left identity

(assert (forall ((x s)) (= (op e x) x)))

; Associativity

(assert (forall ((x s) (y s) (z s)) (= (op x (op y z)) (op (op x y) z))))

and as follows in SyGuS

(synth-fun f ((x s) (e s) (op (-> s s s)) (i (-> s s))) s)

(declare-var e s)

(declare-var op (-> s s s))

(declare-var i (-> s s))

(assume (forall ((x s)) (= (op (i x) x) e)))

(assume (forall ((x s)) (= (op e x) x)))

(assume (forall ((x s) (y s) (z s)) (= (op x (op y z)) (op (op x y) z))))

where f is the function to synthetize, and x is the original input. In this way, we
allow cvc5 to use the neutral element, ∗, and the inversion operation in the construction
of f even though they are not a part of the underlying theory.

The saturation-based and deductive approaches only support specifying single-
invocation properties. This covers most useful properties, but does not cover some
properties, like monotonicity (as it involves a relation between multiple invocations of
the function).

3.2 Theoretical Demonstration

This section will demonstrate what the process of synthesis of a simple program looks
like in the theoretical synthesis frameworks of each method. The running example used
will be the synthesis of a program that produces the maximum of two numbers. The
corresponding specification is:

∃f.∀x1, x2. f(x1, x2) ≥ x1 ∧ f(x1, x2) ≥ x2 ∧ (f(x1, x2) = x1 ∨ f(x1, x2) = x2)

Since this is a single-invocation property, it can also be encoded by substituting y

for each function call site.
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∀x1, x2.∃y. y ≥ x1 ∧ y ≥ x2 ∧ (y = x1 ∨ y = x2)

3.2.1 Deductive Method

assertions goals outputs

1 y ≥ σ1 ∧ y ≥ σ2 ∧ (y = σ1 ∨ y = σ2) y
2 y ≥ σ1 ∧ y ≥ σ2 ∧ y = σ1 y
3 y ≥ σ1 ∧ y ≥ σ2 ∧ y = σ2 y
4 x ≥ x

5 ¬false ∧ true ∧ σ1 ≥ σ2 ∧ σ1 = σ1 σ1 GA-resolution 4, 2
6 ¬false ∧ true ∧ σ2 ≥ σ1 ∧ σ2 = σ2 σ2 GA-resolution 4, 3
7 σ1 ≥ σ2 σ1 logic rules 5
8 σ2 ≥ σ1 σ2 logic rules 6
9 σ2 = σ1 ∨ ¬σ1 ≥ σ2 σ2 logic rules 8
10 ¬σ1 ≥ σ2 σ2 orsplit 9
11 true if σ1 ≥ σ2 GG-resolution 7, 10

then σ1 else σ2

The above is a sequent built during the synthesis of the program. In some lines, multiple
simple steps have been folded into one for the sake of brevity. The first line (1) is a
skolemized version of the synthesis conjecture. Lines (2) and (3) are derived from line
(1) by applying distributivity, followed by the application of the andsplit rule. Line (4)
is an axiom of our logic system. Through the application of GA-resolution on lines (4)
and (2), we derive line (5), using P1 = x ≥ x, P2 = y ≥ σ1, θ = [x← σ1, y ← σ1]. Line
(6) is analogical, substituting for σ2 instead of σ1. By applying several simple logic
rules, such as simplification of true∧ P to P , and the symmetry of equality, we derive
line (7) from line (5) and line (8) from line (6). The system maintains consistency if we
include transformation rules from one expression to a logically equivalent expression.
Line (9) is obtained by applying a transformation rule x ≥ y ⇒ x = y ∨¬y ≥ x to line
(8). We obtain line (10) by applying the orsplit rule to line (9). Finally, line (11) is the
result of applying GG-resolution to lines (7) and (10), with P1 = σ1 ≥ σ2, P2 = σ1 ≥ σ2,
and θ = []. This simplifies to true∧¬false, which simplifies through a transformation
rule to true. The final program is

if x1 ≥ x2 then x1 else x2
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3.2.2 SMT-Based Method

The synthesis will follow the approach outlined in section 2.3.2. First we introduce
fresh constants by skolemiztion, a1 and a2 in place of x1 and x2 respectively, and e in
place of y. The set Γ begins as the empty set. The first iteration of the loop finds
a model I satisfying the conjecture. Since the conjecture is satisfied, either eI = a1

I

or eI = a2
I must hold. Assume that in this case I interprets e with the same value

as a1. Then we add the formula ¬Q[a, a1] to Γ . In the second iteration of the loop,
Γ ∪ Q[a, e] is determined to still be satisfiable. The next model must satisfy ¬Q[a, a1],
which simplifies down to ¬a1 ≥ a2. The solver’s only possible choice now is to select a
model where eI = a2

I . We add the formula ¬Q[a, a2], which simplifies to ¬a2 ≥ a1, to
Γ , which makes it no longer satisfiable. The procedure then terminates and builds the
final solution from the elements of Γ :

if x1 < x2 then x2 else x1

3.2.3 Saturation-Based Method

As part of pre-processing, the system rewrites predicates to their canonical forms,
namely in this example x ≥ y is rewritten to ¬x < y. Further, the system automatically
adds relevant axioms to the search space, and produces the following derivation:

(a) y < σ1 ∨ y < σ2 ∨ y ̸= σ1 ∨ ans(y) [input]
(b) y < σ1 ∨ y < σ2 ∨ y ̸= σ2 ∨ ans(y) [input]
(c) ¬x < x [< axiom]
(d) ¬x1 < x2 ∨ ¬x2 < x1 [< axiom]
(e) σ1 < σ1 ∨ σ1 < σ2 ∨ ans(σ1) [ER (a)]
(f) σ2 < σ1 ∨ σ2 < σ2 ∨ ans(σ2) [ER (b)]
(g) σ1 < σ2 ∨ ans(σ2) [BR (c), (e)]
(h) σ2 < σ1 ∨ ans(σ1) [BR (c), (f)]
(i) σ1 < σ2 [answer literal removal (g)]
(j) σ2 < σ1 [answer literal removal (h)]
(k) ¬σ2 < σ1 [BR (d), (i)]
(l) □ [BR (j), (k)]

The clauses (a) and (b) are obtained by converting the synthesis conjecture into
CNF and applying skolemization to the results. Clause (c) is the axiom of irreflexivity
for <, clause (d) is the asymmetry axiom. Clauses (e) and (f) are obtained through the
application of the equality resolution rule to clauses (a) and (b), using the substitutions
[y ← σ1] and [y ← σ2]. Clauses (g) and (h) result from the binary resolution of clause
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(c) with clause (e) and clause (c) with clause (f), respectively. Clause (g) is of the
form C[σ] ∨ ans(r[σ]), which means we store aside the condition ¬σ1 < σ2 and note
down σ2 as the corresponding answer program fragment. The same is done for clause
(h). We remove answer literals from clauses (g) and (h), deriving (i) and (j). Through
binary resolution of clauses (d) and (i), substituting [x1 ← σ1, x2 ← σ2] we derive
clause (k). From clauses (j) and (k) we derive the empty clause □, which tells us that
¬(¬σ1 < σ2 ∨ ¬σ2 < σ1) is unsatisfiable. This means we are ready to construct the
final program. Either the first condition is fulfilled and we can use the corresponding
program fragment, or (since we only have 2 disjuncts) we use the remaining program
fragment, obtaining:

if x1 < x2 then x2 else x1.

3.3 Strengths and Weaknesses

3.3.1 Deductive Method

The deductive approach, being the oldest of the three, was developed at a time when
automated theorem proving was in a much less mature state. The techniques needed
for a full practical implementation were still missing in some places. As a result, the
authors left significant gaps in the full algorithm to be filled in by later works. On its
own, the framework described provides little guidance on how the proof search should
be conducted. The only part of the system pertaining to this is the polarity strategy. It
reduces the search space somewhat, but does not single out the next step to be taken,
or even reduce the search space to a size that would make it practical to search by
simple enumeration. In practice, this effectively makes it more akin to a framework for
verification of programs. We either need to already know the proof to construct the
program, or know the final program and recreate the proof working backwards.

It also contains multiple mutually redundant mechanisms. The paper introducing
it itself remarks that only the resolution rules and some logical transformation rules
are strictly necessary. This further enlarges the search space for possible steps without
increasing the system’s expressivity.

Compared to the other two methods, this framework in theory also supports the
synthesis of recursive programs. The specific techniques needed for automated proof
search with induction are however still an open research area, though the last decade
has seen progress in integrating induction into SMT- and saturation-based reasoning
[23, 22, 14], also leading to automated recursive synthesis [15].
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3.3.2 SMT-Based Method

Compared to first-order theorem provers, SMT solvers excel at theory reasoning. The
solvers often contain numerous heuristics for each specific implemented theory, which
would be very difficult to emulate with a more generic approach. Many mature SMT-
solvers have accumulated a large number of non-generalizable optimizations that pro-
vide speed-ups for specific operations in some theories, which can in practice have a
significant impact on the speed of theory heavy reasoning. This is helpful for example
for specifications involving non-trivial real arithmetic or reasoning about bitvectors.

3.3.3 Saturation-based Method

Even though many SMT solvers have some support for quantified formulas, in prac-
tice they often struggle as quantifiers proliferate. This is also visible in the synthesis
techniques, where quantifier instantiation is often the main bottleneck. In comparison,
first-order theorem provers are usually much more capable in reasoning with formulas
involving multiple or alternating quantifiers, such as the previously mentioned group
theory axioms.

Vampire also supplements its own strengths as a first-order theorem prover with
the use of the AVATAR framework [26, 7], which queries SMT-solvers internally to aid
with proof search.
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Chapter 4

Experimentation

In this chapter we test the implementations of the SMT and saturation-based methods
on several example specifications.

The input files used for testing are included in the electronic attachment. All tests
were performed on an AMD Ryzen 5 5500U with access to 16GB of RAM, and with a 5
minute timeout. The versions used are version 1.1.0 for cvc5, and version 4.8 (commit
f9cebc54f) for Vampire. cvc5 was run with default settings. Vampire was run with the
following option settings:

• –-question_answering synthesis -t 300

• –-question_answering synthesis –mode portfolio -t 300

• –-decode lrs-11_2:1_av=off:inw=on:ile=on:irw=on:lcm=reverse:lma=on:

nm=64:nwc=1.5:sp=reverse_arity:urr=on:qa=synthesis_300

There is no maintained implementation of the deductive method, so we were unable
to perform practical tests of it. The following table summarizes the evaluation results.
In the rest of this chapter we describe each example in detail.

Name Vampire cvc5
Square of Sum yes no (yes with restrictions)
Absolute Value yes yes

Same Quotient, Different Remainder no yes
Invert Bitvector Addition no yes

Field Theory yes no
Quotient 1 no no

4.1 Square of Sum

∃f.∀x1, x2. f(x1, x2)
2 = x2

1 + 2x1x2 + x2
2

25
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This example tests whether the solvers are able to derive the identity of squaring a
sum. This example is taken from [16]. It was devised by looking for a simple identity
which uses an operation that can not be directly reversed on the integers.

The example was solved by Vampire and not solved by cvc5, replicating the results
from [16]. In addition, we also tested the effect of adding syntactic restrictions for
cvc5 to guide the synthesis process. We found that cvc5 successfully synthetized the
function if it was syntactically restricted to using the input variables, 1, unary minus,
addition, and multiplication. However allowing 0 or subtraction caused cvc5 to fail to
solve the example within the time limit. This highlights the fragility of using syntactic
restrictions in an attempt to help synthesis.

The natural solution, which was also found by vampire, is

f(x1, x2) = x1 + x2.

4.2 Absolute Value

∃f.∀x. f(x)2 = x2 ∧ f(x) ≥ 0

The example tests whether the solvers are able to derive a function calculating the
absolute value. Similarly to the previous example, the specification was written so that
the function can not be expressed simply by reversing operations applied to the input.

This example was solved by both Vampire and cvc5. Perhaps an interesting obser-
vation is, that the function synthetized by cvc5 contains many redundant checks.

(let ((square (*x x)))

(ite (= square 0)

0

(ite (= square 4)

2

(ite (= square 1)

1

(ite (>= x 0)

x

(ite (>= x 1)

3

(* (- 1) x)))))))

These appear as if they could be simplified by checking for redundancy, which just
have not been integrated into the synthesis process. Output minimization has not been
a stated goal of any of the examined methods.
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The solution to this example found by Vampire is

f(x) = if x > 0 then x else − x.

4.3 Same Quotient, Different Remainder

∃f.∀x. div(f(x), 2) = div(x, 2) ∧ f(x) ̸= x

This example asks for a function that returns a number different from the input
value, but with the same quotient with respect to 2. This example was solved by cvc5,
and not solved by Vampire. We attribute this to the more powerful theory reasoning
of the SMT solver.

The solution found by cvc5 is

f(x) = if div(x, 2) = div(x+ 1, 2) then x+ 1 else x− 1.

4.4 Invert Bitvector Addition

∃f.∀x1, x2 ∈ (BitVec 4). bvsge(bvadd(f(x1, x2), x1), x2)

This example is adapted from SyGuS-Comp 2019 [1]. It tests reasoning in the
theory of bitvectors [13]. It asks for a function, that given two 4-bit bitvectors, returns
a 4-bit bitvector which when added to the first given bitvector, is greater than or equal
to the second.

cvc5 solved this example, while Vampire does not support the theory of bitvectors,
and so was unable to solve it. The purpose of this example was to show the kind of
problem that SMT solvers have an inherent advantage at. Effective reasoning with the
bitvector theory requires theory-specific decision procedures which first-order theorem
provers generally do not implement.

The solution to this example was

f(x1, x2) = bvsub(x2, x1).

4.5 Field Theory

Assuming (F,+, ·) is a field: ∃f.∀x1, x2. (−x1) · x2 = −f(x1, x2)

Assuming (F,+, ·) is a field: ∃g.∀x1, x2. (−x1) · (−x2) = g(x1, x2)
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This example was inspired by the group theory examples from [16], but added
axioms for making F a field and used different identities. The goal is to derive two
basic identities, without the use of the −.

The encoding mentioned in section 3.1.2 was used to encode the uninterpreted
functions into SyGuS for cvc5. For Vampire, the symbol for the inversion operation
(unary −) was marked as uncomputable to make sure it is not used in the output.
Like the group theory examples, this example was solved by Vampire and not by cvc5.
This was expected, due to the limited ability of SMT solvers to handle quantifies, and
requiring reasoning with a theory not built into the solver.

The solution to both of the above examples is

f(x1, x2) = g(x1, x2) = x1 · x2

4.6 Quotient 1

∃f.∀x. x ̸= 0⇒ div(f(x), x) = 1

This example asks for an output such that its quotient with respect to the input is
1. It was selected as an example of a problem that intuitively looks like it should be
trivial to solve, but at which neither solver succeeds.

It was solved by neither Vampire nor cvc5. In general, reasoning with non-linear
integer arithmetic is undecidable [20], but for this specific example even the identity
function fulfills the constraint. We are not entirely sure why both solvers happen to
struggle with this specific case, but we speculate it may be related to general difficulties
of axiomatizing integer division.



Conclusion

In this thesis, we conducted a systematic comparison of three synthesis methods for
recursion-free programs. The input specification languages are compared and analyzed
with respect to the limitations on the classes of programs each is capable of specifying,
both in terms of syntactic and semantic restrictions on the output program. We de-
signed an encoding for programs featuring uninterpreted functions into SyGuS through
the use of higher-order variables. A direct comparison of the synthesis process of each
of the three methods was carried out on a shared example. We highlighted the spe-
cific limitations of each method’s synthesis process finding that the deductive method
cannot be fully automated, the SMT-based method struggles with quantifiers, and the
saturation-based method struggles with theory-heavy reasoning. These insights are
useful for future users of the respective synthesis frameworks, as well as directing the
researchers that develop them.

In the practical comparison, we designed targeted benchmarks with the intent to
test hypothesized strong and weak suits of tested methods. We tested the implemen-
tations and analyzed where and why the results conformed to or diverged from our
expectations.

Further work in this direction could include comparing a larger number of synthesis
methods, or extending the comparison to methods for synthesis with recursion. A tool
for automated bidirectional conversion between SyGuS and SMT-LIB specifications
(where possible) would make it practical to conduct implementation comparisons on a
larger scale. Alternative proposed specification languages, such as SemGuS [17] could
be compared to the ones included here. Further comparative work could also focus on
the differences in synthesized programs in terms of length or complexity.
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Appendix A: Contents of the
Electronic Attachment

The electronic attachment contains the input files for the benchmarks mentioned in
Chapter 4.
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