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Abstrakt

Cirkulárne r-hranové farbenie grafu G = (V,E) je zobrazenie c : E → [0, k), kde pre
každe dve susedné hrany e1 a e2, 1 ≤ |c(e1) − c(e2)| ≤ k − 1 a cirkulárny chromat-
ický index grafu je infímum z r, takých, že graf je cirkulárne r-hranovo zafarbiteľný.
Cirkulárny r-tok je priradenie orientácie a tokovej funkcie: ϕ : E → [1, r − 1] grafu
tak, že súčet tokových hodnôt hrán vchádzajúcich a vychádzajúcich sa musí rovnať pre
každý vrchol grafu.

Existuje dualita medzi farbeniami a nikde-nulovými tokmi. Podobná dualita exis-
tuje medzi cirkulárnymi farbeniami a r-napätiami, ktoré definoval DeVos.

Na výpočet možno použiť koncept balancovaného ohodnotenia r-tokov na zakó-
dovanie r-napätia ako zmiešaný lineárny program.

Túto dualitu sme využili na vytvorenie algoritmu, ktorý počíta cirkulárny chromat-
ický index grafu. Potom porovnáme dobu behu tohto algoritmu a triviálneho algoritmu
na výpočet cirkulárneho chromatického indexu, ktorý používa zmiešané lineárne pro-
gramovanie.

Kľúčové slová: cirkulárne chromatické farbenie, balancované ohodnotenie r-tok,
zmiešané lineárne programovanie
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Abstract

A r-circular edge coloring of a graph G = (V,E) is a mapping c : E → [0, k), where
for any two adjacent vertices e1 and e2, 1 ≤ |c(e1) − c(e2)| ≤ k − 1 and the circular
chromatic index is the infimum over all r, such that G has a r-circular edge coloring.
A circular r-flow is an asigning of an orientation and a flow function ϕ : E → [1, r− 1]

to the graph, where the flow value of outgoing edges must be equal to the flow value
of incoming edges for every vertex of the graph.

There exists a duality between colorings and nowhere zero flows. Similar duality
exists between circular colorings and r-tensions, that were defined by DeVos.

The concept of balanced valuation r-flows can be used to compute r-tensions using
mixed linear programming solvers.

We make use of this duality to construct an algorithm that computes the circular
chromatic index of a graph. We will then compare the runtime of this algorithm
to a trivial algorithm for computing circular chromatic index that uses mixed linear
programming.

Keywords : circular chromatic index, balanced valuation flows, mixed integer linear
programming
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Introduction

This thesis is about finding an efficient method of finding circular chromatic indexes
of graphs, mainly cubic graphs as they are the focus of our research group and many
atributes of cubic graphs can be broadenend to graphs as a whole.

This work will be centered around circular edge coloring, we’ll however first define
circular colorings.

Circular coloring is a modification on the usual graph coloring, where instead of
integers we map vertices to real numbers instead of integers.

Definition 1. A k-circular coloring of a graph G = (V,E) is a mapping c : V → [0, k),
where for any two adjacent vertices u and v

1 ≤ |c(u)− c(v)| ≤ k − 1

The circular chromatic number of a graph G, χc(G), is the infimum of all k, where
G has a k-circular coloring. We say that a graph G is circularly k-colorable if there
exists a circular k-coloring of G.

The circular chromatic number is well-defined, if a graph G has a circular k-coloring,
then it has circular l-coloring for any l > k.

It was originaly defined by Vince in 1988 who called it star coloring [19].

Theorem 2. [19] For any graph G,

χ(G)− 1 < χc(G) ≤ χ(G)

.

Circular coloring is an often researched field of Graph Theory, here are some inter-
esting articles conserning it. [23, 21, 22, 11, 4]

We’ll be mostly focusing on edge circular colorings:

Definition 3. A k-circular edge coloring of a graph G = (V,E) is a mapping
c : E → [0, k), where for any two adjacent vertices e1 and e2

1 ≤ |c(e1)− c(e2)| ≤ k − 1

1



2 Introduction

Definition 4. The circular chromatic index of a graph G, χ′
c(G), is the infimum of all

k, where G has a k-circular edge coloring.

As deciding whether an integer is a graphs chromatic number (or an index) is an
NP-complete problem [10], so is the problem of circular colorings. Thus finding an
effective algorithm, could vastly improve the speed of algorithmic computation of the
problem. Currently:

Kunertová [13] designed multiple methods to determine circular edge colorability
and compared their time complexity and running time. Then she used these algorithms
to compute circular indexes for small cubic snarks.

For snarks of orders higher then 20, dependant on the machine, this can take even
a couple of minutes, we would like something better, that could make computing the
indexes even of bigger graphs possible in an acceptable time.

We want to try one specific approach, where we will be transforming the graph into
another, making use of the flow-coloring duality, such that the graph’s index will be
equivalent to the flow of the new graph.

A circular k-flow is an asigning an orientation, a flow function ϕ : E → [1, k− 1] to
the graph, where the flow value of outgoing edges must be equal to the flow value of
incoming edges for every vertex of the graph.

When we look at planar graphs, there does exist a duality between flows and col-
orings.

The duality first proven by Tutte(1954):

Theorem 5. [3] For every dual planar multigraphs G and G′

χ(G) = ϕ(G′)

Similar duality exists between Circular coloring and circular flows. The proof of Tutte’s
duality Theorem can also be used as the proof of duality between circular Colorings and
circular flows.

For non-planar orientable surfaces a similar relationship can be established. Circular
coloring of a graph embedded in an orientable surface corresponds to a circural flow
in a dual graph, as long as we ensure that the flow value on the edges dual to the
irreducible cycles of the original graph, adds up to zero as well as all the conditions of
the original duality are satisfied.

Balanced valuations r-flows defined by Lukoťka[15], based on the concept of bal-
anced valuations by Jaeger [9], is the assignment of orientation to the graph and values
from the interval [0, r−2

r
] to the edges of the graph so that the sum of outgoing edges

minus the sum of incoming edges for each vertex is equal to the degree of the vertex
modulo 2. This concept corresponds to circular r-flows and we will be using it to
improve the calculation of the circular flow number.



Chapter 1

Circular coloring and its duality

1.1 Graphs with known chromatic indexes

Theorem 6 (Vizing [3]). For every simple graph G:

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

Based on Vizings theorem we separate graphs into two classes, class one graphs
that can be colored using ∆(G) colors and class two graphs that can be colored using
∆(G) + 1 colors. In this thesis we are mainly interested in class two graphs.

First we’ll look at some graphs with known circular chromatic indexes. We will
be mainly looking at snarks, cubic graphs, that are non-trivialy not 3-edge-colorable.
That is to say, they are class two graphs and are connected and bridgeless as graphs
with bridges are always not 3-colorable. We also demand that the graph contains
no triangles, as the triangle can be simplified while retaining its edge colorability by
taking the vertices of the triangle and contracting them into a single vertex. Graphs
containing a 4-cycle are also excluded as we can replace the cycle with two paralel
edges. We therefore consider a graph snark if it is bridgeless and of girth at least 5.

In this work we will be using some of these snarks for the purpose of testing the
correctness of our algorithm.

Mazák [17] talked about circular chromatic index of snarks by non-trivialy we ex-
clude cubic graphs with bridges and graphs of low girth. He establishes the circular
chromatic index of Petersen graph, which is 11

3
.

The main aim of Mazák’s paper was to determine the chromatic circular index of
Blanuša snarks, discovered by Danilo Blanuša in 1946, wich Petersen graph is a part
of. He proves that circular chromatic index of B1

m, which are Blanuša snarks created
from m A-pieces(the basic piece of a graph used in the construction of Blanuša snarks)
is:

χ′
c(B

1
m) = 3 +

2

3m

3
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Another group of snarks with known circular chromatic indexes are the Flower
snarks, first constructed by Isaacs, and Goldberg snarks discovered by Goldberg. The
circular chromatic idnex of Flower snarks was defined by Ghebleh et. al [5] and Gold-
berg snarks by Ghebleh [6].

Lukoťka and Mazák [16] prove that for every r, 3 < r < 3 + 1
3

there exists a family
of cubic graphs with circular chromatic index r.

1.2 Circular flows

Next we will be taking a look at flows and the duality that exists between them and
colorings(and also circular flows and colorings).

Definition 7. For directed multigraph G = (V,E) and Abelian group A, ϕ : E → A

is a nowhere zero flow if for every v ∈ V :∑
e∈E+(v)

ϕ(e) =
∑

e∈E−(v)

ϕ(e)

Where ϕ(e) is the flow function, E+(v) represents the set of edges incoming to v and
E−(v) denotes outgoing edges of v. This condition is reffered to as Kirchoff’s law,
And ϕ(e) ̸= 0 for every e ∈ E (therefore nowhere zero).
If k is an integer and 0 < |ϕ(e)| < k then ϕ is refered to as a nowhere zero k-flow. [3]
The flow number of graph G, ϕ(G), is the infimum of all integers r, such that G has a
circular nowhere zero r-flow.

As we are working with real numbers, we will be using circular flows, a modification
on nowhere zero flows, where we asign real values from [1, r − 1] to edges, such that
Kirchoff’s law applies. Circular flow number of graph G, ϕc(G), is the infimum of all
r ∈ R, such that G has a circular nowhere zero r-flow.

According to Tutte’s 5-flow conjecture[3], every bridgeless multigraph has a 5-flow,
therefore it also has a 5-circular flow. P.D.Seymore has proven in 1981 [18], that every
bridgeless multigraph has a 6-flow.

1.3 Balanced valuations

Definition 8. A balanced valuation r-flow on graph G is (O, ϕ, b), where O is an
orientation, b : V (G)→ Z, ϕ : E(G)→ R, such that:

1. b(v) ≡ deg(v)(mod 2) for every vertex v ∈ V (G),

2. − r−2
r
≤ ϕ(e) ≤ r−2

r
for every edge e ∈ E(G),
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3.
∑

e∈E+(v) ϕ(e)−
∑

e∈E−(v) ϕ(e) = b(v) for every vertex v ∈ V (G).

we can represent the circular r-flow more broadly as:

a11x1 + a12x2 · · ·+ a1nxn = k1r

a21x1 + a22x2 · · ·+ a2nxn = k2r

...

am1x1 + am2x2 · · ·+ amnxn = kmr

where every aij ∈ {−1,+1, 0} represents the orientation of j-th edge, in relation to
vertex i, +1 for incoming edges, -1 for outgoing ones and 0 if the edge is not incident
to i. Also for every i, the following applies, 1 ≤ xi ≤ r − 1. This way we can later,
instead of vertices, also include the irreducible cycles of the graph into this definition.

As for balanced valuation r-flows we can similarly define them as:

a11y1 + a12y2 · · ·+ a1nyn = b1
...

am1y1 + am2y2 · · ·+ amnyn = bm

where every bi ≡
∑

j aij(mod 2) and for every i applies − r−2
2
≤ yi ≤ r−2

2
.

Theorem 9. A bridgeless graph has a circular nowhere zero r-flow, if an only if it has
a balanced valuation r-flow.

proof :

"⇒" From formulas − r−2
2
≤ yi ≤ r−2

2
and 1 ≤ xi ≤ r − 1, we get:

1. yi = (xi
2

r
− 1)

and
2. xi = (y + 1)

r

2

we then subtitute 2. into the first set of equations, the ones for circular flows:

ai1x1 + ai2x2 · · ·+ ainxn = kir

ai1(y1 + 1)
r

2
+ ai2(y2 + 1)

r

2
· · ·+ ain(yn + 1)

r

2
= kir

r

2
(ai1(y1 + 1) + ai2(y2 + 1) · · ·+ ain(y3 + 1)) = kir

ai1(y1 + 1) + ai2(y2 + 1) · · ·+ ain(yn + 1) = 2ki
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ai1y1 + ai2y2 · · ·+ ainyn +
∑

j∈(1,n)

aij = 2ki

ai1y1 + ai2y2 · · ·+ ainyn = 2ki −
∑

j∈(1,n)

aij

parity of 2ki −
∑

j∈(1,n) aij, is the same as the parity of just the sum and both 2ki

and the sum are integers. Therefore 2ki −
∑

j∈(1,n) aij = bi.

"⇐" we substitute 1. into the second set of equations:

ai1y1 + ai2y2 · · ·+ ainyn = bi

ai1(x1
2

r
− 1) + ai2(x2

2

r
− 1) · · ·+ ain(x3

2

r
− 1) = bi

ai1x1
2

r
+ ai2x2

2

r
· · ·+ ainx3

2

r
−

∑
j∈(1,n)

aij = bi

2

r
(ai1x1 + ai2x2 · · ·+ ainx3) = bi +

∑
j∈(1,n)

aij

ai1x1 + ai2x2 · · ·+ ainx3 = (bi +
∑

j∈(1,n)

aij)
r

2

As bi and
∑

j∈(1,n) aij have the same parity, (bi+
∑

j∈(1,n) aij)/2 is always an integer,
we’ll call it ki, so:

ai1x1 + ai2x2 · · ·+ ainx3 = kir

Existing algorithms for circular flow numbers

Goedgeburg et al. [7] came up with an algorithm for for the computation of the circular
flow numbers of bridgeless cubic graphs. They then, using this algorithm, determined
the flow numbers for all snarks up to 36 vertices and that of various famous snarks.

Lukoťka describes [14] efficient polynomial algorithms to turn balanced valuations
and orientations into circular nowhere zero r-flows.

Lukoťka [15] also computed circular nowhere-zero flows, using balanced valuation
r-flows and mixed linear programming solvers. Using this method it was possible to
compute flow-numbers of cubic graphs of order up to 150, in a reasonable time of
running the algorithm of less then 15 hours.
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1.4 Duality between flows and colorings

Our interest in flows lies in the existence of a duality between nowhere zero flows and
colorings, which we will be using in our algorithm.

Definition 10 ([20]). An embedding of a graph G on a surface Σ is a representation of
G on Σ in which points of Σ are associated with vertices and simple arcs are associated
with edges, such that:

• the endpoints of the arc associated with an edge e are the points associated with
the endvertices of e

• no arcs include points associated with other vertices

• two arcs never intersect at a point which is interior to either of the arcs

Definition 11. Let G be an embedded graph, we define G′, a graph in the same surface,
as its dual graph. The vertices of G′ are the faces of G. For every edge e ∈ E(G) there
exists an edge e′ ∈ E(G′) that connects the two faces, that were adjacent to e.

As the flow-coloring duality applies to vertex colorings, we will be using the line
graph of the original graph instead,

Theorem 12. Line graph L(G) of G, is a such a graph that:

• each vertex of L(G) represents an edge in G

• two vertices of L(G) are adjacent, if their edges in G were incident.

In this way we represent the edges of the original graph as vertices in the line graph
and we can continue using circular coloring instead of edge coloring on the original
graph.

Definition 13. circular chromatic index of a graph G is the circular chromatic number
of its line graph L(G):

χ′(G) = χ(L(G))

We may then continue with circular vertex coloring using the line graph instead
and make use of its properties.

Theorem 14 (Euler formula,[3] ). for every connected planar graph G:

|V (G)| − |E(G)|+ |F (G)| = 2
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For graphs that can be embedded in surfaces, the Euler characteristic χ is defined:

χ = |V (G)| − |E(G)|+ |F (G)|

thus, every connected planar graph has the Euler characteristic of 2. A Genus, g of a
orientable surface can be defined using the Euler characteristic, χ = 2 − 2g. A genus
0 orientable surface is a sphere, genus 1 is a torus, genus 2 a double torus etc.

Definition 15. A cycle is a connected graph, where the degree of every vertex is even.
A circuit is a connected graph, where the degree of every vertex is 2.

Definition 16. For a given graph G, edge space of G is the set of all subsets of E(G).
This set forms a vector space over the Z2 field, where for every edge of E(G), 0 represent
the absence of the edge in the subset and 1 its presence.

Definition 17 ([8]). The cycle space of a Graph G is the subset of the Edge space
consisting of graph ∅, all the cycles in G, and all unions of edge-disjoint cycles of G

The flow-coloring duality theorem, however works under the condition that the
graph, and such also its dual, are planar. What about graphs that are not planar?
Can we define some sort of duality between them and nowhere zero flows? We will be
taking a look at graphs embedded in different surfaces than planes.

DeVos et al. define the concept of tension and local tension as well as i-chains,
boundries and coboundries.

Definition 18 ([2]). For directed graph G embedded in a surface. Map Φ: E(G)→ R
is a tension if for every C ⊂ G, if the sum of the forward edges of C is equal to the sum
of backward edges of C. If this is satisfied for every contractible curve in the surface,
Φ is a local tension.

This concept of tensions corresponds to our concept of circular chromatic colorings.

Theorem 19 ([2]). χc(G) = inf{α ∈ R|G admits an α− tension}

Similarly we can define for local tensions:

Definition 20. χloc(G) = inf{α ∈ R|G admits a local α− tension}
We call χloc(G) the local circular chromatic number of G.

Lets take an Abelian group A and an embedded graph G . We call 0-chain a map
from V(G) to A, we call 1-chain a map from E(G) to A, and 2-chain a map F(G) to A.
Let i = 0, 1, 2,, then i−chains form a group under componentwise addition, we denote
Ci(G,A).

We define < v, e > for vertex v ∈ V (G) and edge e ∈ E(G) as < v, e >= 0 if v and
e are not incident, as < v, e >= −1 if v is the first vertex of e and as < v, e >= 1 if
it is the second edge. For a face F and its bounding cycle S = v0, e1, v1, . . . , ek, vk we
define < e, F >=

∑
1≤i≤k|e=ei

< vi, ei >.
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Definition 21 ([2]). If c ∈ C0(G,A), we define the coboundry of c as δc ∈ C1(G,A)

where δc(e) = Σv∈V (G) < v, e > c(v).
If c ∈ C1(G,A), we define the coboundry of c as δc ∈ C2(G,A) where δc(F ) =

Σe∈E(G) < e, F > c(e).
If c ∈ C1(G,A), we define the boundry of c as ∂c ∈ C0(G,A) where ∂c(F ) =

Σe∈E(G) < v, e > c(e).
If c ∈ C2(G,A), we define the boundry of c as ∂c ∈ C1(G,A) where ∂c(e) =

ΣF∈F (G) < e, F > c(F ).

If c1 is a 1-chain and c1 = δc0 for 0-chain c0, we call c1 a tension. We note the set
of tensions as T (G,Γ).

If ∂c1 = 0, c1 is a flow. We note the set of flows as L(G,Γ).
If G is an embedded graph and δc1 = 0, we call c1 a local tension. We note the set

of local tensions as F (G,Γ).
If c1 = ∂c2 for c2 ∈ C2(G,Γ), we call c1 a facial flow. We note the set of facial flows

as K(G,Γ).
C1(G,Q) is a vector space. F (G,Q) and K(G,Q) are its subspaces. Also, K(G,Q)

is a subspace of F (G,Q).

Lemma 22. Let G be a graph embedded in a surface. Let A1, . . . Ak be an integer basis
of vector space K(G,Q). Let A1, . . . Ak, B1, . . . Bm be an integer basis of vector space
F (G,Q), then x ∈ T (G,R)⇔ x ∈ L(G,R) and x.Bi = 0 for all i ∈ {1, . . .m}.

proof (R. Lukoťka, personal communication):
⇒: See [2, propossition 3.1]
⇐: Let x be a flow, x ∈ L(G,R) and x.Bi = 0 for all i ∈ {1, . . .m}, as x ∈ L(G,R),
x.Ai = 0 for all i ∈ {1, . . . k}.
We want to prove, that x ∈ T (G,R), based on propossition 3.1, we need to prove:
d.x = 0 for every d ∈ F (G,Z). Let us take any d ∈ F (G,Z).
Every flow d ∈ F (G,Z) is also a flow in F (G,Q), so

d = y1.A1 + . . . yk.Ak + z1.B1 + · · ·+ zm.Bm

where yi and zj are from Q.
We multiply by lowest common denominator:

z.d = y′1.A1 + . . . y′k.Ak + z′1.B1 + · · ·+ z′m.Bm

where y′i and z′j are from Z.

z.(d.x) = (z.d).x = (y′1.A1 + . . . y′k.Ak + z′1.B1 + · · ·+ z′m.Bm).x =

= (y′1.A1).x+ . . . (y′k.Ak).x+ (z′1.B1).x+ · · ·+ (z′m.Bm).x = 0
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In R, z.(d.x) = 0, means d.x = 0.

Therefore if a graph could be represented as embedded in an orientable surface,
we could, and it is our aim in this paper, transform it into its dual and calculate its
circular chromatic index using the dual’s flow number.

In [12] the authors looked at some interesting characteristics of high girth graphs,
that is graph that don’t have any short cycles. They prove that the circular chromatic
index of every cubic graph with girth 6 or more is less or equal than 7

2
and that the

index of a subcubic graph with odd-girth at least 7 is at m ost 7
2
.



Chapter 2

Implementation

In this chapter, we will explain the process through which we will transform a graph
to its dual, so that we may use the linear program for its flow number, and describe
the basic program that calculates circular chromatic numbers.

2.1 Trivial circular coloring algorithm

First we will describe the aformentioned algorithm that uses mixed linear programming
to calculate the circular chromatic index of a given cubic graph.

While this algorithm may not be the most efficient method of solving this problem,
it will give us a rough estimate as to what orders of cubic graphs a simple algorithm
can handle and we can use this estimate as comparison to our algorithm.

For each edge e of graph G we set a variable xe that will correspond to the color of
e, xe = c(e). The graph is represented as a two dimentional array of vertex adjecency,
there will be 2 such variables for each edge of the graph. To encode the circular
chromatic index of the graph, χ′

c, we add a variable t.
We set the upper bound for t as 4, as chromatic index of a cubic graph is less then

4, as according to Vizings theorem [3] ∆(G) ≤ χ′(G) ≤ ∆(G) + 1, and the circular
index is always smaller or equal than its chromatic index, χ′

c(G) ≤ χc(G).
We will then set constraints for each vertex v such that for any two edges, e and f

that are incident to v :
1 ≤ |xe − xf | ≤ t− 1,

We will also need 3 binary variables for each vertex,bv1, bv2, bv3, that one for each pair
of incident edges, to represent the absolute value. We want to represent a constraint
with absolute value in linear programming. We’ll split this formula into two parts,
|xe − xf | ≤ t− 1 and |xe − xf | ≥ 1.

To represent the first inequality is easy, we just add two constraint,

xe − xf ≤ t− 1

11
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−(xe − xf ) ≤ t− 1

as t-1 is always positive and either xe − xf or −(xe − xf ) is always negative.
To represent |xe − xf | ≥ 1 we will need to make use of the binary variables. We’ll

add two constraints:
(xe − xf ) +M.be,f ≥ 1

−(xe − xf ) +M.(1− be,f ) ≥ 1,

where be,f is the binary variable for e and f and M is a constant large enough, that
if b = 1, that inequality will be true independently of xe − xf , for cubic graphs we’ll
choose 4, as xe − xf < 4 based on Vizings theorem. Beacause of this the constraints
will be, depending on be,f , either:

(xe − xf ) ≤ 1

−(xe − xf ) + 4 ≤ 1

where the second inequality is always true, or:

(xe − xf ) + 4 ≤ 1

−(xe − xf ) ≤ 1

where the first inequality is always true.
Lastly, for every edge e and its variable xe we also need to set the bound:

xe ∈ [0, t)

We will be running the program using the lp_solve5.5 mixed linear programming
solver [1] . Using this algorithm, for cubic graphs of smaller orders, graphs with up to
twenty vertices we are able to get results in a relativly short time. These results are of
course dependent on hardware and other factors.

2.2 Duality algorithm

As we have said, our algorithm will be transforming a graph into its dual, while keeping
the right orientation. We also need to asure, that the flow coloring duality of the graph
is retained. Altough we start with a cubic graph, its line graph, so we can think of our
aim as finding a vertex coloring for the cubic graph. The line graph won’t be a cubic
graph. It will be a 4-regular graph, as each edge in a cubic graph has 2 other edges
incident to each of the vertices of this edge.

We won’t analyze the time complexity of this algorithm, as this algorithm will
be polynomial. The time complexity of the linear program is non-polynomial, so the
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runtime of the whole program will be determined based on the effectivity of the linear
algorithm.

The following algorithm will be written in c++ code, and this code will be then
used when gathering results in the 3. chapter of this paper. We will however try
to describe the algorithm independent of c++ syntax and the same principles should
apply regardless of the choice of programming language, the effectivity of the algorithm
could be affected and the times achieved by our algorithm in comparison to the trivial
program may also be different.

Faces of the graph

First, for the construction of the dual graph and finding the basis of the cycle space of
the graph, we will need to find the faces of the graph. Knowing the number of faces of
the given graph and using the Euler formula ,Theorem 14, will allow us to find what
surface can the given graph be embedded in.

To find the faces of a graph we use a simple algorithm. We start by finding an edge
not yet used in any face. We then go to the second vertex of the edge, and find the
next edge incident to this vertex in some given orientation of the surface. We then go
to the second vertex of this edge and repeat the same. We do this until we return to
the edge we started with. This sequence of edges is one of the faces. We then find
another edge that wasn’t yet used twice, as each edge is present twice in faces of the
graph, it could even be twice in a single face. We repeat the same approach as the first
time and continue this until all the edges of the graph has been accounted for.

We will be representing these faces as edge matrices. For this we need some ordering
of edges. We’ll pick any trivial ordering, we will be using this order for all edge matrices
of this graph and later for the graphs dual, with the appropriate edges.

The edge matrix will belong to Z2. Value of 1 if the edge belongs to the face, or
any other subgraph we will be using edge matrices for, and 0 otherwise. Next, the
algorithm will transform the face matrix into a triangular matrix. The pseudocode for
this algorithm is shown in algorithm 1.

basis of cycle space

If the graph is planar, the set of face cycles will form a basis of cycle space of the graph.
In non-planar graphs, we will need to find the basis of cycle space and by finding which
cycles are lineary independent to the face matrix, we will find those cycles that are
irreducible in the non-planar embedding.

For the purpose of finding thebasis of cycle space of the graph, we’ll next need to
find a spanning tree of the graph. We will be using a trivial algorithm for finding a
spanning tree of the graph. First we take an ordering of all the edges in the graph. We



14 CHAPTER 2. IMPLEMENTATION

Algorithm 1 Algorithm to transform face cycles into edge matrix

edges ← array of all edges of the graph
for face in faces do

row ← new Array
for edge i in edges do

found ← 0
for edge j in face do

if i == j then
found ← 1

end if
end for
row.push ← found

end for
result.push ← row

end for

start with a spanning tree graph with only the first edge. We add the second edge in
the ordering to our spanning tree. We then go through the spanning tree using breadth
first search to see if any cycles exist in it. If a cycle exists, we remove the edge last
added. If a cycle does not exist, we keep the edge in the spanning tree. We then add
the next edge and repeat the same process. We do this until we have tried every edge
or until the number of edges in the spanning tree is equal to the number of vertices
minus one, as that means all vertices are included in the spanning tree. Note that this
method will give us an arbitrary spanning tree, and for the purposes of effectivity of
the mixed linear program it may not be the best approach.

A basis of cycle space can be made from a spanning tree, containing cycles formed
by an edge e outside the spanning tree and the edges from the spanning tree that create
the cycle from one vertex of e to the other. To find these cycles, we’ll go through all
the edges in the graph. If this edge is not present in the spanning tree, we’ll run a
function, that will, using breadth first search, find a path in the graph from one vertex
of the edge to the other. This path together with the edge will be the cycle we were
after. We’ll repeat this approach with all the edges not in the spanning tree and we’ll
get a set of cycle that form the basis of the cycle space of the graph.

Irreducible cycles

Then, as by lemma 22, we have the basis of the facial flow space A1, . . . , Ak, that we can
take from the faces of the graph and the basis of vector space A1, . . . , Ak, B1, . . . , Bm,
that is the cycle basis from the spanning tree algorithm. We then need to find which
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cycles are the irreducible cycles, that is cycles B1, . . . , Bm. We’ll do this by transforming
the cycle basis, tranforming it into an edge matrix, using the same algorithm as with
the facial matrix.

This matrix, denoted as cycleMatrix, is a two dimentional n ∗m array of elements
from Z2, where each row represents one of the m cycles from the spanning tree algorithm
and for each edge of the graph ei, i ∈ [0, n), cycleMatrix[k][i] = 1 if the k-th cycle
contains the i-th edge and 0 otherwise.

We also have the facial Matrix, denoted as faceMatrix, a two dimentional n∗f array
of elements from Z2, constructed the same way as the cycleMatrix. We have however
already triangulated this matrix.

Next we’ll take the facial matrix and one by one add the cycles, in the cycle basis,
then after each we’ll once again triangulate as seen in algorithm 2 and 3.

Algorithm 2 Algorithm for finding the irreducible cycles in a graph
for cycle c in cycleMatrix do

originalSize ← faceMatrix.length
faceMatrix.push ← c
triangulate(faceMatrix) ▷ algorithm 3
if faceMatrix.size > originalSize then

result.push ← c
end if

end for

The triagulation of a matrix as defined in algorithm 3 works followingly. We have
an array, leadingOnes, where we keep track of which rows leading ones have already
been determined. We then go column by column until we find a row that starts with
one and its leading one has not been determined. This row will have the leading one
in this column. We the add this row to all other rows that have a one in this column.
After this operations the first column will have only one leading one and all other
zeros. We continue this until all rows have asigned leading ones, then the matrix is in
triangular form.

If the row added, that is the cycle, is lineary dependant, that would mean it was
already part of the original facial basis and as such the cycle belongs to A1, . . . , Ak,
not B1, . . . , Bm. After repeating this with all the rows of the matrix we get the set of
edges not in the original basis, B1, . . . , Bm.

Orientation

For the purposes of computing the flow of the graph we will need to find the orienta-
tion of the graph. We’ll pick the orientation for the edges of the graph even before the
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Algorithm 3 Funcions that gets a matrix over Z2 and makes it a triangular matrix
using row operations

procedure triangulate(matrix)
array<bool> leadingOnes ← (matrix.size, false)
rowsCompleted ← 0
for i=0, i<matrix.columnNumber, i++ do

j ← 0
while j<matrix.size do

if matrix[j][i]=1 and !leadingOnes[j] then
leadingOnes[j] ← true;
rowsCompleted++
for k = 0, k < matrix.size, k++ do

if matrix[k][i]=1 and j!=k then
addRows(matrix[j], matrix[k]) ▷ addition (mod2)

end if
end for
break

end if
j++

end while
if rowsCompleted=matrix.size then

break
end if

end for
removeZeroRows ▷ we can do this trivialy by a for cycle

end procedure
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construction of the dual. We can pick any arbitrary orientation for this, for example
in the testing algorithm we picked an orientation from the vertex with the lesser index
to the one with the greater index for each edge. Later, during the construction of the
dual, we just pick either clockwise or counterclockwise orientation of the surface. This
orientation will determine the orientaion of the edges in the dual graph in relation to
the original edges. We will also want the orientation of the edges in relation to the ori-
entation of the same edges in the irreducible cycles. We’ll need this relation to compute
the flow, as the flow on the cycle should be equal to zero in a consistent orientation.
We’ll compare the orientation we picked to an orientation of each irreducible cycle and
for each edge we store if it was the same or opposite. The pseudocode for this can be
seen in algorithm 4.

Algorithm 4 Algorithm for finding the orientation of irreducible cycles in comparison
to graphs orientation

for cycle in irreducibleCycles do
array<pair<int, bool>> cycleOrientaion
for Edge c in cycle do

for Edge e in edges do
if e.first=c.first and e.second=c.second then

cycleOrientaion[c] ← true
else if e.first=c.second and e.second=c.first then

cycleOrientaion[c] ← false
end if

end for
end for
result.push ← cycleOrientaion

end for

Dual graph

The last thing we’ll need is to transform the graph we have, that is the line graph of
the original graph we started with, into its dual. It is important to note, we want to
retain the order of edges in the faces when we turn them into vertices and the order
of edges in the vertices when we turn them into faces. We also want to retain the
orientation of all the edges, just rotated according to our chosen plane orientation.

The function will take the graph and its faces as arguments and return the dual
graph, the edges of the dual in the same ordering as in the original graph and a map
showing the orientation of each edge in the dual.

The algorithm will take an ordering of edges, the same one we used before, in the
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face algorithm. For each of these edges we will then find the two faces that contain
this edge create an corresponding edge from one face to the other and compute its new
orientation. We will also add the edge to the dual graph in the same index as was its
position in each of the faces, so the order of edges is retained. See algorithm 5

After we have gone through all the edges, we’ll have the whole dual graph together
with its orientation and edge ordering. We now have all we need to begin the compu-
tation using mixed linear programming.

Algorithm 5 Algorithm for finding the Graph
for edge e in edges do

pair found ← (-1,-1) ▷ variable for the first instance of this e
for face in faces do

for edge f in face do
if f = e and found = (-1,-1) then

found ← (face, f, graph)
else if f = e then

dual[face][f] ← found.first
dual[found.first][found.second] ← face
bool orientation ← findDualOrientation(face, edge) ▷ algorithm 6

end if
end for

end for
end for

Algorithm 6 takes the graph, current edge, denoted u-v, and one of the faces that
include this edge, F . The algorithm returns true, if the next edge incident to v after u-v
in the original representation of the graph is one of the edges that form the bounding
cycle of F .

If findDualOrientation() returns true and we want to retain the same orientaion as
per the edge sequence in the original graph, then the new the dual edge will incoming
to F . If it returns false, the new edge will be outgoing from F .
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Algorithm 6 Algorithm for the new orientation in the dual graph, this orientation is
based on the order of edges in the original graph

procedure findDualOrientation(face, edge, graph)
size ← graph[second].size();
for edge e in graph[edge.second] do

if e.second = edge.first then
nextEdge ← graph[edge.second][(e+1)%size] ▷ the next edge in the

second vertex after our edge
for edge f in face do

if f = nextEdge then
return true

end if
end forreturn false

end if
end for

end procedure

2.3 Calculating flow using mixed linear programming

For computing the circular flow number of the graph we’ll be using balanced valuation
r-flows. Using this approach it is possible to use mixed linear programming solvers for
circular flow as was first done by Lukoťka [15] in 2023.

Construction of the mixed linear program

We will now transform the problem of finding a balanced valuation r-flow into mixed
linear problem, and later use a LP solver to calculate the flow number, which as proven
above, is equivalent to the balanced valuation of the graph.

From the definition 8 of balanced valuation r-flows 3. and 2.,

b(v) =
∑

e∈E+(v)

ϕ(e)−
∑

e∈E−(v)

ϕ(e) ≤ r − 2

r
deg(v)

b(v) ≤ deg(v)− 2deg(v)

r
For the encoding of b, as b ∈ Z and integers in mixed linear programming are lower

bounded by 0, to retain the parity of b we encode b(v) for given vertex or irreducible
cycle v of G followingly. We define mv for any v, as the maximum value that b(v)

can attain. We assume that r ≤ 6, as proven in Seymour’s 6-flow theorem [18]. Then
based on the above formula: mv = deg(v)− ⌈2deg(v)

6
⌉ We then add an integer variable

xv for every v with a range of [0,mv]. The relation between b and x is the following:
b(v) = 2xv −mv.
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We encode the ϕ function followingly. Let t be the variable representing the limit of
ϕ(e), this will be representing r−2

r
. Next for every edge e ∈ E(G) we’ll have a variable

xe that will represent the edges flow value. The LP solver will then, while minimizing
t we have the following constraints:

1. 0 ≤ xv ≤ mv, for every vertex or irreducible cycle v,

2. −t ≤ xe ≤ t, for every edge e,

3.
∑

e∈E+(v) ϕ(e)−
∑

e∈E−(v) ϕ(e) = 2xv −mv, for every vertex or
irreducible cycle v,

Where with the first formula we bound xv to the range specified above. With the
second formula, we satisfy the 2. condition of the balanced valuation r-flow definition,
that is definition 8, where we define the range for the edge flow values. With the third
set of constraints we will satisfy the 3. condition in definition 8. In these constraints
we represent b(v), using its assingned xv, and mv variables as was specified above.

The result we get from the solver, will be the minimized t, from which we’ll get our
result we’ll calculate r as per following: r = 2

1−t
.
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Results

In this chapter we’ll take a look at some results of using the algorithm and the linear
programming solver to compute the circular flow indexes of several different cubic
graphs. We’ll also take a look at the comparison between the speed of the algorithm
and the trivial algorithm using linear programming described in 2.1. For solving the
mixed linear part of the algorithm we used lp_solve5.5 [1]. We ran these tests on a
computer with Intel Core i5-10300H CPU @ 2.50GHz processor.

We tested this algorithm on some smaller graphs first, for testing bugcatching pur-
poses adn as interesting comparison of the difference in time between the c++ part
of the algoritm and the solver. For small orders of graphs the polynomialy complex
algorithm could have slower times than the trivial algorithm. Namely, we used the K4

graph and petersen graph.

As the main interest of this paper are the circular indexes of Snarks, we run this
algorithm on the main major families of snarks, Flower Snarks, Goldberg snarks and
Blanuša snarks. In 1.1 we mentioned Snarks with known chromatic indexes, we used
these Snarks for result verification.

In table 3.1 we can see the results and time comparisons for our algorithms on flower

Flower Snarks

index
vertex
order

ϕc

time dual
(s)

time triv-
ial (s)

3 12 7
2

0,815 3,939
4 16 3 2,238 0,573
5 20 17

5
198,262 1253,579

7 28 10
3

31 052,234 47 654,323

Table 3.1: Running time of our algorithm (left) and the trivial algorithm(right) for
flower snarks.
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Small cubic graphs

graph
vertex
order

ϕc

time
dual (s)

time
trivial
(s)

K4 4 3 0,001 0,001
Cubical
graph

8 3 0,002 0,002

Pentagonal
prism

10 3 0,004 0,005

Small non-
planr graph

10 3 0,028 0,005

Petersen 10 11
3

0,329 3,246

Table 3.2: Running time of our algorithm (left) and the trivial algorithm(right) for
some cubic graphs of small orders.

snarks. As we can see, the dual algorithm preforms better on small order snarks, J3
and J5. Flower snark J4 isn’t really a snark, as its chromatic index is 3, as is its circular
index. We can see the trivial algorithm, preforms significantly better on J4 then the
dual algorithm. This may be caused by the relative speed of the lp solver compared
to the rest of the algorithm when it is easy to find the correct circular index. The J7

snarks runs faster on the dual then on the trivial algorithm, but not as remarkably.
This is propbably caused by higher order graphs having more non-planar edges, thus
having more irreducible cycles which cause the linear program to have more variables
thus increasing complexity. The trivial program does not have these variables as it
doesn’t use the duality.

In table 3.2 we’ve taken a look at some small cubic graphs, mostly non-snarks,
to compare the results. For the planar graphs the speed is mostly the same. The
non-planar graph runs longer on the dual algorithm, this result may be caused by the
added complexity in the c++ part of the code or it may be the additional variables
and constraints in the linear program. This suggests that the less planar, that is more
crossing edges and irreducible cycles there are, the slower the linear program runs. For
more complex graphs, especially snarks as we can see for the Petersen graph, the dual
algorithm gives us larger time savings.

In table 3.3 we’ve run the tests on the first and second Blanuša snarks and on the
Goldberg snark G3. We can see that, similarly to Flower snarks, the dual algorithm’s
runtime is significantly faster then the trivial algorithm.
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Blanuša and Goldberg snarks

graph
vertex
order

ϕc

time
dual (s)

time
trivial
(s)

First
Blanuša
snark

18 10
3

16,371 287,863

second
Blanuša
snark

18 13
4

27,108 96,586

Goldberg
snark G3

24 10
3

109,366 2873,073

Table 3.3: Running time of our algorithm (left) and the trivial algorithm(right) for
Goldberg and Blanuša snarks.
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Conclusion

In this thesis we looked at circular chromatic edge colorings, circular flows and the
relationship between these two concepts . We used the concept of r-tensions to represent
the duality of circular colorings. We have also mentioned several cubic graphs with
already known circular edge colorings that were proven before and we have taken a
look at some already existing algorithms for circular colorings as well as circular flows.

We have implemented an algorithm, which takes the graph, or its line, transforms
it into its dual, while retaining all properties that we find important, the sequence
of edges in the dual corresponds to the sequence in the faces of the graph and the
orientation of edges in the dual is consistent with the original graph.

We have then implemented a mixed linear program that will using the arguments
given by the previous algorithm compute the r-tension of the graph, from which we can
get, due to the duality, the circular chromatic index of the original graph. To encode
the r-tensions as a mixed linear program, we used the concept of balanced valuation
r-flows, which are equivalent to a graphs circular r-flow ,slightly modified to include
irreducible cycles in the graph, that are necessery to compute the circular chromatic
number (or index) of a graph embedded in an orientable space other then plane, using
this method.

We have also implemented a trivial algorithm that uses mixed linear programming
to compute a graphs circular chromatic index without the use of the before mentioned
duality. In the last part of this thesis we compared the results of these two algorithm
on several snarks as well as some cubic graphs of low orders. We have found that the
dual algorithm performed many times better on graphs of higher orders and about the
same on graphs of low orders, most probably due to the polynomial complexity of the
algorithm as opposed to the non-polynomial complexity of mixed linear programming
solvers, that preform significantly worse on graphs of higher orders, so by making this
part of the algorithm more effective, we have achieved faster runtimes.

The results from this algortihm, or algorithms of similar concept, could be used to
more effectivly compute circular chromatic indexes of higher snarks. Further improve-
ments could be made by optimizing the choice of the spanning tree in order for the
linear program to have less variables or constraints.
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