
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

A tool for visualizing software
requirements traceability

Bachelor’s Thesis

2024
Havriil Pietukhin

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

A tool for visualizing software
requirements traceability

Bachelor’s Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: RNDr. Jana Kostičová, PhD.

Bratislava, 2024
Havriil Pietukhin

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Havriil Oleksiiovych Pietukhin
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: A tool for visualizing software requirements traceability
Nástroj na vizualizáciu sledovateľnosti softvérových požiadaviek

Anotácia: Sledovateľnosť požiadaviek je veľmi dôležitým pojmom v celom procese
vývoja softvéru. Veľké množstvo IT projektov zlyhá práve kvôli nesprávnym
požiadavkám, ktoré vznikajú pri nedodržaní princípov sledovateľnosti. Tento
pojem nie je jednoduché zrozumiteľne vysvetliť študentom informatiky.
Cieľom práce je navrhnúť a vyvinúť nástroj, ktorý prehľadne vizualizuje
sledovateľnosť softvérových požiadaviek naprieč celým procesom vývoja
softvéru a podporí tak výučbu princípov tvorby softvéru na FMFI UK.

Cieľ: - Podporiť výučbu princípov tvorby softvéru na FMFI UK poskytnutím
nástroja, ktorý vizualizuje a vysvetľuje koncept sledovateľnosti softvérových
požiadaviek
- Umožniť odsledovať pôvod ako aj nasledovníkov špecifickej požiadavky,
vrátane nasledovníkov vo forme konkrétnych fragmentov kódu a iných
relevantných výstupov procesu vývoja softvéru
- Správne vizualizovať rôzne verzie požiadaviek a s nimi prepojených položiek
- Umožniť vytváranie a validáciu hierarchií požiadaviek pre všetky bežne
používané modely / metodiky vývoja softvéru

Literatúra: Ian Sommervile: Software Engineering, 10th edition, 2016
Karl Wiegers, Joy Beatty: Software Requirements, 3rd Edition, 2013
P. Bourque a R.E. Fairley, eds.: Guide to the Software Engineering Body of
Knowledge, Version 3.0, IEEE Computer Society, 2014; www.swebok.org

Vedúci: RNDr. Jana Kostičová, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 27.10.2023

Dátum schválenia: 30.10.2023 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Havriil Oleksiiovych Pietukhin
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: A tool for visualizing software requirements traceability

Annotation: Requirements traceability is a very important concept in the entire software
development process. A large number of IT projects fail precisely because
of incorrect requirements that arise when the principles of traceability are
not followed. This concept is not easy to explain clearly to computer science
students. The goal of the work is to design and develop a tool that clearly
visualizes the traceability of software requirements across the entire software
development process and thus supports the teaching of the principles of software
design at FMFI UK.

Aim: - To support the teaching of principles of software design at FMFI UK by
providing a tool that clearly visualizes and explains the concept of software
requirements traceability
- To enable the user to trace both backward and forward lineage of a specific
requirement, including forward lineage to specific code fragments and other
outputs of software development process
- To visualize correctly different versions of requirements and linked items
- To enable the user to create and validate requirements hierarchies for all
commonly used software development models / methodologies

Literature: Ian Sommervile: Software Engineering, 10th edition, 2016
Karl Wiegers, Joy Beatty: Software Requirements, 3rd Edition, 2013
P. Bourque and R.E. Fairley, eds.: Guide to the Software Engineering Body of
Knowledge, Version 3.0, IEEE Computer Society, 2014; www.swebok.org

Supervisor: RNDr. Jana Kostičová, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 27.10.2023

Approved: 30.10.2023 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor

v

Acknowledgments: I would like to express my deepest gratitude to RNDr.
Jana Kostičová, PhD. for her persistent help and guidance throughout the
duration of this thesis. Her insights and expertise were crucial in the successful
completion of this work. Additionally, I wish to thank to my family and
friends for their support and encouragement, which were instrumental in my
academic journey.

vi

Abstrakt

Táto bakalárska práca predstavuje vývoj nástroja na vizualizáciu sledovateľ-
nosti softvérových požiadaviek, ktorý je navrhnutý na podporu vzdelávania
v oblasti softvérového inžinierstva na Univerzite Komenského. Nástroj rieši
problémy sledovania softvérových požiadaviek počas celého vývojového pro-
cesu, kľúčový faktor vo vysokej miere neúspešnosti IT projektov spôsobenej
nedostatočne definovanými alebo nesledovateľnými požiadavkami. Vývojom
rozhrania založeného na grafe nástroj umožňuje používateľom vizuálne sle-
dovať cesty odvodenia a alokácie požiadaviek, čo zlepšuje pochopenie a ma-
nažment softvérových špecifikácií. To prispieva k efektívnejšiemu učeniu a
aplikácii princípov vývoja softvéru, čo potenciálne znižuje riziká spojené s
nesprávnym manažmentom požiadaviek.

Kľúčové slová: sledovateľnosť softvérových požiadaviek, vizualizačný ná-
stroj, vzdelávanie v oblasti softvérového inžinierstva, grafické rozhranie, ma-
nažment IT projektov

vii

Abstract

This bachelor thesis presents the development of a visualization tool for soft-
ware requirements traceability, designed to support the education of software
engineering principles at Comenius University. The tool addresses the chal-
lenges of tracing software requirements throughout the development process,
a key factor in the high failure rates of IT projects due to poorly defined or
untraceable requirements. By developing a graph-based interface, the tool
allows users to visually trace the derivation and allocation paths of require-
ments, enhancing understanding and management of software specifications.
This contributes to more effective learning and application of software devel-
opment principles, potentially reducing the risks associated with requirement
mismanagement.

Keywords: software requirements traceability, visualization tool, software
engineering education, graph-based interface, IT project management

Contents

Introduction 1

1 Terminology 3

2 Methodology 5

2.1 Pros of graph representation of requirements specification . . . 5

2.2 BABOK requirements hierarchy 6

2.3 Our way to make requirements hierarchy 7

2.4 Analysis of the requirements traceability problem 8

2.5 Handling functional and non-functional requirements in differ-
ent environments . 10

2.6 Tracing non-functional requirements 10

2.6.1 Mapping requirements in Agile environments 11

2.7 Updating our model . 12

3 Existing solutions 15

3.1 IBM Rational . 15

3.2 CodeBeamer . 16

3.3 Visure . 16

3.4 Open-Source Requirements Management Tools 17

3.5 rmtoo . 17

3.6 Doorstop . 17

ix

x CONTENTS

3.7 StrictDoc . 18
3.8 Limitations of Existing Tools 18
3.9 Rationale for Developing Our Application 19
3.10 Primary Goals of the New Application 20

4 Development of the Application 23
4.1 Chosen toolset . 23
4.2 Data layer . 24
4.3 Integration capabilities . 25
4.4 Securing the user data . 26
4.5 Enhancing user experience . 26

5 Application Features and Capabilities 27

Conclusion 31

A Myproject source code 37

B Application requirements specification 39
B.1 Requirements . 39

List of Figures

1 Hierarchy Diagram . xii
2 Entity-Relationship Diagram xiii

xi

xii LIST OF FIGURES

Figure 1: Hierarchy Diagram

LIST OF FIGURES xiii

Figure 2: Entity-Relationship Diagram

Introduction

Gathering and compiling requirements is one of the most crucial and time-
consuming aspects of the software development process. To successfully
complete a project, it is necessary to consider the interests and constraints
of all project participants, from customers to testers. Over the decades, the
industry has developed standards and methodologies for business analysis
and requirements management, which are embodied in a variety of tools for
organizing development processes. These tools continually adapt to emerging
software development approaches and improve alongside them.

However, as practice shows, the problem of requirements traceability
remains a significant issue. It was found in comprehensive study [1] on
software project failure factors that 76% of failed projects did not reassess,
control or manage risks throughout the project, and 73% of delivery decisions
were made without adequate requirements information.

This work aims to develop a visual and flexible tool that will enable
FMFI UK students to understand the importance of requirements traceability
and familiarize them with various approaches to improve it under different
development conditions, such as waterfall and agile methodologies. To achieve
this, we have examined a range of existing tools performing similar tasks and
proposed our solution. For this purpose, we developed our own model for
documenting requirements, design artifacts, code, and tests as a graph with
semantic relationships. We have also fully documented the requirements for
the application using the application itself. The specification and its glossary

1

2 Introduction

can be found in Appendix 1.
The following chapters will elaborate on the challenges encountered in

different development approaches and the strategies to address them.

Chapter 1

Terminology

• Requirement: a feature, constraint, or other property that a system
must provide to satisfy the needs of stakeholders [2].

• Requirement specification (RS): the assignment of numerical values
or limits to a product’s design goals [3]

• Requirement traceability (RT): the identification and documen-
tation of the derivation path (upward) and allocation/flow-down path
(downward) of requirements in the requirements hierarchy [2].

• Pre-RS traceability: aspects of a requirement’s life prior to inclusion
in the requirements specification [4].

• Post-RS traceability: aspects of a requirement’s life that result from
inclusion in the requirements specification [4].

3

Chapter 2

Methodology

2.1 Pros of graph representation of requirements

specification

There are many approaches to requirements traceability. In our opinion, the
best way to work with requirements in our case is to represent requirements
in the form of a graph. On the one hand, graph representation is very visually
clear [5]. In addition, graph representation of requirements information and
other artifacts from other phases of the development process is well established
in business analysis and is considered one of the standard approaches to
ensure traceability. The graphical representation will facilitate an intuitive
understanding of how each requirement evolves from high-level business
objectives and is subsequently implemented in source code. This method
not only makes the entire lineage of a requirement easily traceable but also
includes its validation through testing. By visually depicting the lineage, the
application will offer a comprehensive and clear view of each requirement’s
lifecycle. Below we describe a widely recognized standard for organizing
requirements in business analysis from Business Analysis Body of Knowledge
(BABOK) [6], most widely globally recognized standard of practice for business

5

6 CHAPTER 2. METHODOLOGY

analysis, from which we derived our model of requirements hierarchy.

2.2 BABOK requirements hierarchy

Below we will describe briefly how requirements are classified and what are
the relations between them in the BABOK.
According to BABOK, we can divide requirements into several categories [6]:

• Business requirements: ”statements of goals, objectives, and outcomes
that describe why a change has been initiated. They can apply to the whole
of an enterprise, a business area, or a specific initiative” [6].

• Stakeholder requirements: ”describe the needs of stakeholders that
must be met in order to achieve the business requirements. They may serve
as a bridge between business and solution requirements” [6].

• Solution requirements: ”describe the capabilities and qualities of a
solution that meets the stakeholder requirements. They provide the appro-
priate level of detail to allow for the development and implementation of the
solution. Solution requirements can be divided into two sub-categories” [6]:

– functional requirements: ”describe the capabilities that a solution
must have in terms of the behaviour and information that the solution
will manage, and

– non-functional requirements or quality of service require-
ments: do not relate directly to the behaviour or functionality of the
solution, but rather describe conditions under which a solution must
remain effective or qualities that a solution must have”.

• Transition requirements: describe the capabilities that the solution
must have and the conditions the solution must meet to facilitate transition
from the current state to the future state, but which are not needed once

2.3. OUR WAY TO MAKE REQUIREMENTS HIERARCHY 7

the change is complete. They are differentiated from other requirements
types because they are of a temporary nature. Transition requirements
address topics such as data conversion, training, and business continuity.

BABOK also defines several types of relation between requirements:

• Derive: relationship between two requirements, used when a requirement is
derived from another requirement. This type of relationship is appropriate
to link the requirements on different levels of abstraction. For example, a
solution requirement derived from a business or a stakeholder requirement.

• Depends: relationship between two requirements, used when a require-
ment depends on another requirement. Types of dependency relationships
include:

– Necessity: when it only makes sense to implement a particular
requirement if a related requirement is also implemented.

– Effort: when a requirement is easier to implement if a related require-
ment is also implemented.

• Satisfy: relationship between an implementation element and the require-
ments it is satisfying. For example, the relationship between a functional
requirement and a solution component that is implementing it.

• Validate: relationship between a requirement and a test case or other
element that can determine whether a solution fulfills the requirement.

2.3 Our way to make requirements hierarchy

Our model for organizing requirements takes inspiration from the hierarchy
from BABOK. We needed modify our model in several ways to address some
limitations of BABOK model discussed in the next section.

8 CHAPTER 2. METHODOLOGY

In order to properly define the ultimate scope of our application and
the nature of future changes, we turn to the article ”An Analysis of the
Requirements Traceability Problem” [4]. This article provides a detailed com-
parison of approaches to achieving Requirement Traceability. An exhaustive
study of the effectiveness of traceability techniques involving over hundred
practitioners, several focus groups, with in-depth literature and tool reviews
conducted.

2.4 Analysis of the requirements traceability

problem

The authors [4] broadened the concept of requirements traceability by intro-
ducing the definitions of pre-RS traceability and post-RS traceability. The
researchers agreed that the vast majority of existing tools emphasized post-
RS traceability, yet non-compliance with pre-RS traceability was cited as a
major source of problems by the survey participants. The authors proposed
recommendations for establishing pre-RS traceability. According to the study,
the following factors contribute to ensuring pre-RS traceability:

• Reliable, centralized access to information;

• Historical versions of data would help regain context and reproduce the
required details;

• Introducing collaboration capabilities between tools and teams.

The authors also conducted an in-depth comparative analysis of many
tools from the domain of requirements engineering that provide in one way
or another requirements traceability. It was possible to define four categories
based on the purpose and architecture of the tool. Each category has a
number of characteristic disadvantages and advantages. Since providing and

2.4. ANALYSIS OF THE REQUIREMENTS TRACEABILITY PROBLEM9

visualizing the traceability hierarchy is our main goal, we can classify our tool
into category C - workbench, or RT (requirements traceability) workbench.

Based on the characteristics of each category of the reviewed tools, we can
put our tool in the workbench category, since visualization of requirement
traceability is our main goal.

We identified the critical areas of our application that require special
attention based on the shortcomings of this type of application described in
the article, namely:

• RT workbenches aim to be comprehensive, but none support all activ-
ities. They typically enforce a top-down approach, use classification
schemes, and assume a relatively static baseline without support for its
development. Since RT depends on correct usage, the primary concern
often becomes RT itself rather than RS production.

• RT workbenches have poor integration, making it difficult to support
RT for early problem definition work or to provide ongoing RT with
later changes, often requiring significant manual intervention.

Using these observations, we tried to adapt our application and the
hierarchy model in such a way as to

1. get rid of the typical drawbacks of workbench-type tools;

2. ensure the highest possible degree of Pre-RS traceability;

3. make the model more universal so that it can be used in different
development models - iterative-incremental, Agile and waterfall.

To begin with, let us describe the changes required to fulfill the require-
ments described above.

10 CHAPTER 2. METHODOLOGY

2.5 Handling functional and non-functional re-

quirements in different environments

If the non-functional requirements are stated separately from the functional
requirements, the relationships between them may be hard to understand [7].

Also, measuring the impact of requirement change requires an understand-
ing of the specific context in which the project is developing. Moreover, only
by understanding this context can the prioritization and feasibility of changes
be determined. For example, in the waterfall methodology, the compliance
with non-functional requirements (e.g., security) is critical throughout the
life of the project. Therefore, requirements specification and implementation
in waterfall are two distinct phases. At the same time, in less error-prone
planning environments such as iterative-incremental and Agile, changes to
requirements are welcomed, even late in development [8].

Therefore, there is a need to separate functional requirements from non-
functional requirements in our hierarchy. Below, we review approaches to
distinguish functional requirements from non-functional requirements and
describe the benefits they bring to traceability in the context of different
models. To make our hierarchy fit all development models, we must separately
consider the specifics of requirements tracing within each type of environment.

2.6 Tracing non-functional requirements

To analyze existing practices for tracing non-functional requirements, we will
use the work of Mahmoud et al. [9]. This work describes several approaches
to detecting, classifying and tracing non-functional software requirements.
Many of these approaches focus on semantic code analysis and establishing
connections with non-functional requirements using statistical methods. In
some of the reviewed works, models are proposed for the description of
requirements hierarchy. We will disscuss them in the next section and present

2.6. TRACING NON-FUNCTIONAL REQUIREMENTS 11

skeleton of our hierarchy model based on described techniques.
Peraldi-Frati et al. [10] suggested a method for representing and tracing

basic non-functional requirements in safety-critical systems. The authors
used formal models to demonstrate the satisfaction of a specific NFR in the
system through certain predefined relations. Such relations were then used
to establish traceability links between design artifacts and requirements and
link requirements to validation and verification elements (test cases) in the
system.

2.6.1 Mapping requirements in Agile environments

There is no single way to document requirements in Agile development.
The standard model distinguishes three types of requirements — business,
stakeholder, and solution requirements. Sommerville [7] identifies only two
lower levels of requirements — user requirements and system requirements.
Another widely used method of organizing requirements is the Big Picture
of Agile Requirements, where requirements are distributed at three levels —
team level, program level and portfolio level [11].

Rempel and Mäder [12] proposed a traceability information model (TIM)
for Agile requirements management. This model conceptualizes traceable
artifacts and trace links within the context of Agile software development.
The proposed model is effectively applied in tools for requirements engineering.
However, the source code in this model is considered a single artifact high-level
object, without visibility associated with the test case class. In large projects,
this can be a bottleneck when managing risks and change influence due to
requirement changes.

Firdaus et al. [13] proposed the Traceability Process Model (TPM) to
support the requirements traceability in Agile development. The proposed
model in the article integrates non-functional requirements with user stories
and validates them through test cases. This approach ensures that NFRs are
explicitly modeled and their relationships with functional requirements (FR)

12 CHAPTER 2. METHODOLOGY

are maintained throughout various development stages. By providing test
cases that test NFRs, the model facilitates tracking changes back to both FR
and NFR, thus supporting comprehensive traceability in Agile development.

2.7 Updating our model

Considering the practices described above, we have updated the BABOK
model to achieve our goals. The changes include:

• Distinguishing between functional requirements and non-functional
requirements.

• Ensuring traceability of non-functional requirements by introducing
relationships between:

– Functional requirements (FR) and non-functional requirements
(NFR)

– Design elements

– Code elements

– Test elements

• Providing the possibility to define custom levels of requirements. Ele-
ments of other types will also reside on their semantic levels (code level,
test level, design level).

• Adding items at sublevels within each level.

• Introducing an element of rigidity where relationships are distinguished
by type and strictly applied to specific types of requirements or elements
as follows:

– A Derives relationship is fixed between different levels of require-
ments to ensure traceability and rationale.

2.7. UPDATING OUR MODEL 13

– The Satisfy relationship is strictly applied between the code (or de-
sign elements) and the corresponding requirements to demonstrate
implementation fidelity.

– A Validate relationship connects each requirement with its respec-
tive test case or validation method to confirm the requirement’s
fulfillment.

• Adding the capability to create historical versions of the graph, enhanc-
ing pre-RS traceability. This feature allows us to track changes and
maintain a comprehensive history of requirement states over time. By
capturing historical versions, we ensure that the context and evolution
of requirements are preserved and easily accessible.

This allows us to utilize various frameworks for mapping requirements in
different environments and provides traceability for every item throughout
the entire development lifecycle.

The resulting diagram describing relationships between items in our trace-
ability hierarchy is provided as Figure 1.

Now that the foundation of our model has been built, we can analyze
existing tools from our domain that serve similar purposes. This will help us
to accurately define the objectives we need to achieve in our implementation
to fulfill the goals described above.

Chapter 3

Existing solutions

Now that the foundation of our model has been built, we can analyze existing
tools from our domain that serve similar purposes. This will help us to
accurately define the objectives we need to achieve in our implementation to
fulfill the goals described above.

We looked into a variety of requirement management tools, including both
paid proprietary solutions and free open-source options.
We chose three proprietary solutions — IBM Rational, CodeBeamer and
Visure — because are notable for their functionalities, particularly in source
code integration and parsing, and in designing hierarchies of requirements [14].
Below we focus on how exactly these applications help to achieve better
requirement traceability with these approaches.

3.1 IBM Rational

IBM Rational [15] provides a suite for requirements management suitable for
complex software and systems engineering projects. Key features include:

• Traceability, linking requirements with various project artifacts.

• Facilitation of collaboration across geographically dispersed teams.

15

16 CHAPTER 3. EXISTING SOLUTIONS

• Capability to handle large-scale projects.

• Integration with various software development tools.

3.2 CodeBeamer

CodeBeamer [16] is an Application Lifecycle Management (ALM) tool with
strong integration capabilities with Software Configuration Management
(SCM) systems. This tool provides several features for tracking requirements
fulfillment in source code, such as:

• Use of fuzzy parsers for languages like C/C++ and Java.

• Ability to extract and relate programming constructs such as classes,
methods, and variables.

• Accommodation of preprocessor directives for enhanced C/C++ parsing
accuracy.

3.3 Visure

Visure also provides enables teams to import source code from repositories
into the tool, providing:

• Creation of elements and items for each file or function.

• Facilitation of tracing requirements, tests, defects, and risks associated
with specific code parts.

• Support for over forty nine programming languages, including C, C++
and C#.

• Simplification of compliance audits by exporting source code tracing to
documentation formats [17].

3.4. OPEN-SOURCE REQUIREMENTS MANAGEMENT TOOLS 17

3.4 Open-Source Requirements Management

Tools

In the domain of open-source requirements management tools, three notable
options are rmtoo, Doorstop, and StrictDoc, each representing a unique ap-
proach to the integration of requirements into software development processes.

3.5 rmtoo

rmtoo [18], designed primarily for Unix-based systems, adopts a decentralized
approach by storing requirements as text files. This strategy provides easy
and reliable approach for creating requirement hierarchies, crucial for effective
project management. Predominantly operated via a command-line interface,
rmtoo includes features for creating dependency graphs. However, its lack of
a GUI and limited compatibility with Windows environments may present
hurdles, particularly for users less familiar with command-line tools.

3.6 Doorstop

Doorstop [19] builds upon the decentralized model introduced by rmtoo. It
organizes requirements management around the concept of storing textual
requirements alongside source code in a version control system. Each textual
file in Doorstop represents an individual requirement, forming the basis for a
linkable and reviewable set of requirements. The tool employs directories for
hierarchical structuring, assigning unique, sequentially numbered identifiers
to each requirement. Doorstop’s approach, as outlined in its foundational
papers [20], emphasizes the importance of integrating requirements directly
with source code, although it primarily offers a command-line interface and
lacks a comprehensive GUI, potentially limiting its accessibility to users not
familiar with specific technical tools like Git and Bash.

18 CHAPTER 3. EXISTING SOLUTIONS

3.7 StrictDoc

StrictDoc [21] emerges as a successor to Doorstop, maintaining the founda-
tional principle of text-based requirements management but enhancing it
with significant advancements. Unlike Doorstop, which stores requirements
in YAML files and assumes an implicitly-defined grammar encoded ad-hoc in
its parsing and validation rules, StrictDoc adopts a more explicit and flexible
approach. It utilizes textX, a tool for creating Domain-Specific Languages,
to define its grammar explicitly. This allows StrictDoc to encode a strict,
type-safe grammar in a single grammar file, which is then used to parse
documentation files. This design decision not only provides more flexibility
in defining the structure of requirements but also makes StrictDoc more
user-friendly. The addition of a server and a GUI in StrictDoc greatly extends
its accessibility, making it a suitable option for a broader audience, including
those who may not have technical expertise in command-line tools.

Overall, while rmtoo and Doorstop focus on command-line based, de-
centralized requirements management, StrictDoc is offering a more flexible,
user-friendly interface, and a robust approach to defining requirements struc-
tures, thereby broadening its appeal to a wider range of users.

3.8 Limitations of Existing Tools

Existing tools, both commercial and open-source, present several limitations
that hinder their alignment with our primary goals.

Commercial Tools

Commercial requirements management tools, while being feature-rich, are
not well-suited for academic purposes due to:

• Excessive functionalities that are unnecessary for demonstrative pur-
poses, leading to complexity and a steep learning curve.

3.9. RATIONALE FOR DEVELOPING OUR APPLICATION 19

• Proprietary nature, making them less suitable for academic environments
focused on demonstration rather than project management.

Open-Source Tools

Open-source tools like rmtoo and Doorstop also have limitations:

• rmtoo: Despite its capability to create a graph of requirements, rmtoo’s
display is not user-friendly and lacks comprehensive lineage tracking for
each requirement, making it difficult to track fulfillment in the code.

• Doorstop: Doorstop lacks a graphical representation of requirements
sets and offers limited traceability through source code due to non-
integrated changes between requirements and source code. Users must
manually map changes, although it does provide versioning of require-
ments through Version Control Systems (VCS).

In practice, keeping software code in sync with regulatory documentation
is a significant challenge. Doorstop offers a solution by keeping code and
documentation in Git, but this approach has its own problems. Deciding
when to document changes — before, during or after software modifications —
and managing draft documentation in Git, where content is either committed
or not, presents a complex scenario. These issues highlight the need for a
more integrated and user-friendly approach to requirements management,
particularly in an academic setting.

3.9 Rationale for Developing Our Application

The development of a new requirements management application is driven by
specific goals and the recognition of limitations in existing tools. This section
outlines the primary objectives for the new application and examines the
shortcomings of current commercial and open-source tools in meeting these
objectives.

20 CHAPTER 3. EXISTING SOLUTIONS

3.10 Primary Goals of the New Application

The new application aims to address several key objectives:

• Supporting the teaching of software design principles at FMFI UK by
providing a tool that clearly visualizes and explains the concept of
software requirements traceability.

• Enabling users to trace both backward and forward lineage of a require-
ment, including links to specific code fragments and other outputs of
the software development process.

• Accurately visualizing different versions of requirements and linked
items.

• Allowing users to create and validate requirements hierarchies for all
commonly used software development models/methodologies.

The development of our application is motivated by several key factors:

• Cost and Usability: Commercial tools are often expensive and have
a steep learning curve. They come with numerous features, many of
which may be unnecessary for our purposes.

• Graphical Representation: There is a lack of user-friendly, highly
interactive graphical representations in existing tools, which are crucial
for our educational objectives.

• Integration: Many existing tools suffer from poor integration capa-
bilities with other tools, limiting their effectiveness in a comprehensive
requirements management ecosystem.

Our application addresses these issues by offering:

• A lightweight, easy-to-use interface that reduces complexity.

3.10. PRIMARY GOALS OF THE NEW APPLICATION 21

• A highly interactive and visually appealing graph representation of
requirements.

• High modularity, allowing easy integration with other tools such as
Version Control Systems (VCS), such as Git or issue tracking systems,
e.g., JIRA.

Chapter 4

Development of the Application

In the initial stage of application development, key architectural decisions were
made that determine the structure and functionality of the future product.
One of the first and most significant decisions was the choice of the application
type and its technical stack. Considering the users’ need to work with a
highly interactive requirements graph, a decision in favor of a client-server
application was made.

4.1 Chosen toolset

Angular [22] was chosen for the frontend and StrictDoc for the backend.
Initially, it was envisioned that the client (in Angular) would interact with the
server side (StrictDoc), providing users with a flexible and dynamic interface
to display data.

However, integrating Angular with StrictDoc proved impossible due to
architectural differences. StrictDoc is based on Hotwire architecture [23],
where the server delivers ready-made HTML templates to the client in fillable
form. This approach relies on server-side HTML generation, which did not
meet the requirements of Angular. Angular requires a more flexible and
dynamic system for displaying data, where interface updates happen on the

23

24 CHAPTER 4. DEVELOPMENT OF THE APPLICATION

client side using JavaScript and DOM manipulation.
Thus, the difference in approaches to content generation and display be-

tween StrictDoc and Angular made it impossible to integrate them effectively,
which led to the need to revise the architecture and choose an alternative
backend.

After an unsuccessful attempt to integrate Angular with StrictDoc, it was
decided to create a new server side based on Spring Boot [24]. Framemork
was chosen for its ease of customization and rich set of features.

Compared to StrictDoc, Spring Boot supports the creation of a RESTful
API, which is ideal for interacting with the client in Angular. This allowed
the server side to provide data in JSON format, which can be easily processed
on the client side.

4.2 Data layer

For data storage it was decided to use Postgres relational database, which
provided reliable data storage and management. Postgres supports the JSON
data type, which proved convenient for storing dynamic data. This allowed
us to create a universal entity of an item in a graph, thereby simplifying the
application. JPA (Java Persistence API) was used to manage the data and
interact with the database.

We will briefly discuss important points regarding models for entities
within our app:

• JSON support in Postgres: Thanks to the capabilities of Postgres, a
data schema has been proposed that allows you to create a graph whose
vertices can be data of any type. Each vertex is represented by an Item
entity, which has a JSON attribute data to store dynamic information.

• Relationships between entities: Relationships in the graph are repre-
sented by the Relationship entity. This entity carries a payload in the

4.3. INTEGRATION CAPABILITIES 25

form of a type attribute that defines the nature of the relationship,
which adds a semantic layer to the data structure.

• Project Management: The main task of the application is to manage
software requirements within projects represented by the Project entity.
Projects interact with requirements and source code, and the key element
is the traceability graph. This graph includes several types of nodes:
requirements, source code, design elements, and tests.

• Release Management: To ensure traceability of changes in the graph,
the development of the graph is captured in the form of Release entities.
The Release entity captures the state of the project at a particular
point in time, including casts of the Item and Relationship entities with
attributes indicating historical changes.

Full entity-relation diagram is attached as Figure 2.

4.3 Integration capabilities

The application provides rich possibilities for integrating third-party tools.
Integration of our application with version control systems is realized through
the use of GitHub API. When creating a project, users set a personal access
token that gives the application access to their GitHub repository. This allows
our application to interact with the code storage infrastructure, providing
robust change management and monitoring.

The modularity of the application is achieved by clearly separating func-
tional components, each performing a different task. This approach simplifies
the application architecture, making it more flexible and easy to maintain
and develop. Using the GitHub API provides many possibilities for working
with code, such as cloning repositories, creating commits, managing branches,
etc. In the future, thanks to its modular architecture, we can easily extend
the application’s functionality by adding support for other version control

26 CHAPTER 4. DEVELOPMENT OF THE APPLICATION

systems such as GitLab or Bitbucket. It is also possible to connect to any
other servers storing code, which will require additional effort but will not
break the overall architecture of the system.

4.4 Securing the user data

The security of our application is ensured through several key mechanisms.
One of them is the use of JSON Web Tokens (JWT) for user authentication
and authorization. After successful authentication, the server generates a
token that contains information about the user and his access rights. This
token is passed to the client and is used to authenticate all subsequent
requests. Every request from the authorized user to the server includes this
token, thus avoiding the need for multiple authentication and ensuring secure
communication between the client and the server. Second aspect of security is
related to storing personal access tokens for third-party services such as e.g.,
GitHub API. We store them in our database in encrypted form using Jasypt
library. A more reliable way to do this can involve usage of some secure cloud
storage for user secrets, like, for example, Azure Key Vault.

4.5 Enhancing user experience

The user in our application will be working on data that has a hierarchical
structure and generates a large number of internal relationships. In addition,
our application should implement a number of multi-step user scenarios. In
such circumstances, the system can easily get into a situation where the user
is working with invalid (non-consistent) data. For this purpose, a number of
validations have been introduced, affecting work with graph elements and
links and work with creating historical versions of the data. Full description
of validations is provided in the requirements specification.

Chapter 5

Application Features and
Capabilities

Accomplished goals

This project aimed to enhance the understanding of requirements traceability
among FMFI UK students. Significant time was spent implementing the
client side due to the complexity of the visualization library and its poorly
documented features, which presented several challenges. Despite these
difficulties, the following objectives were successfully met:

• Basic user authentication system: We developed a fundamental
system for user authentication that ensures security and controls access.

• Visualization of hierarchies: The application provides a graphical
representation of hierarchical relationships, which are presented in a
format that is accessible and easy to understand.

• Interactive manipulation of hierarchies: Users have the ability to
dynamically interact with the hierarchical structure, enabling them to
add, remove, and modify elements as needed.

27

28 CHAPTER 5. APPLICATION FEATURES AND CAPABILITIES

• Export functionality: The application includes an export feature
that allows users to extract data from the hierarchical elements for
further use or analysis.

• Self-documentation of application: The application documents its
own requirements using the implemented model, although documenta-
tion of code and tests was not completed due to time constraints.

• Achievement of backward and forward lineage: The system
successfully implemented both backward and forward lineage, allowing
for comprehensive tracking of data provenance and dependencies within
the project framework.

Tasks not completed

Not all functionalities planned for the initial release were implemented:

• Comprehensive documentation: The application did not achieve
complete documentation of code hierarchies and testing procedures,
which was a key goal for demonstrating the application’s documentation
capabilities.

• Historical version viewing: The application failed to develop capa-
bilities for viewing historical versions of the project iterations, which
would have allowed for better tracking and understanding of the project’s
evolution.

• Partial validation operations: Not all validation operations over
the hierarchy elements were developed. We managed to implement only
the cycle creation check when adding relationships.

29

Infrastructure readiness

While not all parts of the application are fully operational, the server infras-
tructure for the unfinished sections is ready and only needs to be integrated
with the client-side components.

Limiting factors

The project faced several challenges that impacted the completion of all
planned tasks:

• Time restrictions: The limited time available adversely affected the
implementation of all intended functionalities.

• Underestimation of complexity: The complexity of integrating
various development methodologies was initially underestimated, leading
to project delays and task reprioritization.

• Infrastructure dependencies: Significant time was spent trying to
utilize the infrastructure of another application, which was ultimately
not as effective or economical as anticipated.

Future work recommendations

For future phases of the project, the following is recommended:

• Incorporating remaining features: Focus on integrating the func-
tionalities that were not completed in this phase, particularly those
related to documentation.

• Visual display of iteration histories: Further develop the function-
ality to visually depict the development history of projects in the form

30 CHAPTER 5. APPLICATION FEATURES AND CAPABILITIES

of iterations, which was not implemented in the initial phase but is
critical for tracking the evolution of project requirements.

Conclusions

Despite the challenges and unmet objectives, the project has established a
solid foundation for future development. The completed work demonstrates
the potential of the application to significantly enhance the educational
process by providing effective tools for understanding and managing software
development processes. The effort and progress made thus far indicate a
positive direction towards achieving the project’s ultimate educational goals.

Conclusion

In this work, we endeavored to create a new visualization tool that organizes
software development artifacts—such as requirements, code artifacts, tests,
and other items—into a clear and user-friendly hierarchical format. This
tool not only illustrates the application of some requirements traceability
techniques but also demonstrates its utility in teaching software engineering
principles. Despite facing challenges and not meeting all planned objectives,
the project has laid a solid foundation for future development. The completed
work underscores the tool’s potential to significantly enhance the educational
process by providing effective means for understanding and managing software
development processes. The effort and progress made thus far suggest a
promising trajectory towards achieving the project’s ultimate educational
goals.

31

Bibliography

[1] June Verner, Jennifer Sampson, and Narciso Cerpa. What factors lead
to software project failure? In 2008 Second International Conference on
Research Challenges in Information Science, pages 71–80, 2008.

[2] ISO/IEC/IEEE International Standard - Systems and software
engineering–Vocabulary. ISO/IEC/IEEE 24765:2017(E), 2017.

[3] Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. Guide
to the Software Engineering Body of Knowledge (SWEBOK(R)): Version
3.0. IEEE Computer Society Press, Washington, DC, USA, 3rd edition,
2014.

[4] O.C.Z. Gotel and C.W. Finkelstein. An analysis of the requirements
traceability problem. In Proceedings of IEEE International Conference
on Requirements Engineering, pages 94–101, 1994.

[5] Jana Katreniaková. Presentation of the Content Structure for E-learning.
PhD thesis, Comenius University in Bratislava, 2006.

[6] BABOK: A Guide to the Business Analysis Body of Knowledge. Number
v. 3. International Institute of Business Analysis, 2015.

[7] I. Sommerville. Software Engineering. Always learning. Pearson, 2016.

[8] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew

33

34 BIBLIOGRAPHY

Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto
for agile software development, 2001.

[9] Anas Mahmoud and Grant Williams. Detecting, classifying, and trac-
ing non-functional software requirements. Requirements Engineering,
21(3):357–381, Sep 2016.

[10] Marie-Agnès Peraldi-Frati and Arnaud Albinet. Requirement traceability
in safety critical systems. pages 11–14, Apr 2010.

[11] Dean Leffingwell. Agile Software Requirements: Lean Requirements
Practices for Teams, Programs, and the Enterprise. Addison-Wesley
Professional, 1st edition, 2011.

[12] Patrick Rempel and Patrick Mäder. Estimating the implementation risk
of requirements in agile software development projects with traceability
metrics. In Samuel A. Fricker and Kurt Schneider, editors, Requirements
Engineering: Foundation for Software Quality, pages 81–97, Cham, 2015.
Springer International Publishing.

[13] Adila Firdaus Binti Arbain, Imran Ghani, and Wan Mohd Nasir
Wan Kadir. Agile non functional requiremnents (NFR) traceability
metamodel. In 2014 8th. Malaysian Software Engineering Conference
(MySEC), pages 228–233, 2014.

[14] Olusola Olufemi Oduko. Comparison of requirement management soft-
ware. 2021.

[15] https://www.ibm.com/docs/en/rsm/7.5.0?topic=

modeler-introduction-rational-products. Accessed: 02.11.2023.

[16] codeBeamer ALM. https://codebeamer.com/cb/login.spr. Accessed:
02.11.2023.

https://www.ibm.com/docs/en/rsm/7.5.0?topic=modeler-introduction-rational-products
https://www.ibm.com/docs/en/rsm/7.5.0?topic=modeler-introduction-rational-products
https://codebeamer.com/cb/login.spr

BIBLIOGRAPHY 35

[17] Visure Solutions, Inc. Source Code Parser User Manual, 2022. https:
//visuresolutions.com.

[18] rmtoo. https://rmtoo.florath.net. Accessed: 13.11.2023.

[19] Doorstop. https://doorstop.readthedocs.io/en/latest/. Accessed:
04.11.2023.

[20] J. Browning and R. Adams. Doorstop: Text-based requirements man-
agement using version control. Journal of Software Engineering and
Applications, 7:187–194, 2014.

[21] StrictDoc. https://strictdoc.readthedocs.io/en/stable/

strictdoc_01_user_guide.html. Accessed: 11.11.2023.

[22] Nilesh Jain, Ashok Bhansali, and Deepak Mehta. AngularJS: A modern
MVC framework in JavaScript. Journal of Global Research in Computer
Science, 5(12):17–23, 2014.

[23] Hotwire: HTML Over The Wire. https://hotwired.dev/. Accessed:
11.04.2024.

[24] Spring Boot. https://spring.io/projects/spring-boot/. Accessed:
27.04.2024.

https://visuresolutions.com
https://visuresolutions.com
https://rmtoo.florath.net
https://doorstop.readthedocs.io/en/latest/
https://strictdoc.readthedocs.io/en/stable/strictdoc_01_user_guide.html
https://strictdoc.readthedocs.io/en/stable/strictdoc_01_user_guide.html
https://hotwired.dev/
https://spring.io/projects/spring-boot/

Appendix A

Myproject source code

Source code of our app is fully hosted on github: https://github.com/havr-
p/traceability-tutor

37

Appendix B

Application requirements
specification

B.1 Requirements

• REQ-001
Level: Business
Name: Quality Education on Software Design Principles
Statement: The system shall support the educational objectives by
providing examples of software design principles.
Status: OPEN
Relationships: REQ-006 (DERIVES), REQ-002 (DERIVES)

• REQ-002
Level: Business
Name: Quality Education on Software Analysis
Statement: The system shall include features that support teaching
software analysis.
Status: OPEN
Relationships: REQ-001 (DERIVES), REQ-003 (DERIVES)

39

40 APPENDIX B. APPLICATION REQUIREMENTS SPECIFICATION

• REQ-003
Level: Business
Name: Quality Education on Requirements Traceability
Statement: The system shall include features that support teaching
requirements traceability.
Status: OPEN
Relationships: REQ-002 (DERIVES), REQ-004 (DERIVES)

• REQ-004
Level: Business
Name: Visual Examples of Requirements Traceability
Statement: The system shall include visual representations of real-
world requirements traceability examples.
Status: OPEN
Relationships: REQ-003 (DERIVES), REQ-005 (DERIVES)

• REQ-005
Level: Business
Name: User-Friendly Tool for Requirements Traceability
Statement: The system shall be user-friendly and visually demonstrate
the principles of requirements traceability.
Status: OPEN
Relationships: REQ-004 (DERIVES), REQ-011 (DERIVES)

• REQ-006
Level: Stakeholder
Name: Support Common SW Development Models
Statement: The system shall support various software development
methodologies, including waterfall, iterative-incremental, and agile.
Status: OPEN
Relationships: REQ-001 (DERIVES), REQ-035 (DERIVES)

B.1. REQUIREMENTS 41

• REQ-007
Level: Stakeholder
Name: Custom Item Types
Statement: The system shall enable users to define custom item types.
Status: OPEN
Relationships: REQ-008 (DERIVES), REQ-016 (DERIVES), REQ-
035 (DERIVES)

• REQ-008
Level: Stakeholder
Name: Custom User Levels
Statement: The system shall enable users to define custom user levels.
Status: OPEN
Relationships: REQ-007 (DERIVES), REQ-009 (DERIVES)

• REQ-009
Level: Stakeholder
Name: Custom Levels for Requirements
Statement: The system shall allow users to define levels for require-
ments, each characterized by a color.
Status: OPEN
Relationships: REQ-008 (DERIVES), REQ-018 (DERIVES)

• REQ-010
Level: Solution
Name: Display Different Versions of Traceability Hierarchy
Statement: The system shall manage and display different versions of
the traceability hierarchy.
Status: OPEN
Relationships: REQ-011 (DERIVES), REQ-012 (DERIVES), REQ-
019 (DERIVES), REQ-017 (DERIVES)

42 APPENDIX B. APPLICATION REQUIREMENTS SPECIFICATION

• REQ-011
Level: Solution
Name: Inform User About Traceability Issues
Statement: The system shall provide warnings about potential issues
in the traceability hierarchy.
Status: OPEN
Relationships: REQ-005 (DERIVES), REQ-010 (DERIVES)

• REQ-012
Level: Solution
Name: Visual Management of Traceability Hierarchy
Statement: The system shall support visual adding, editing, and
removing of hierarchy items and their relationships.
Status: OPEN
Relationships: REQ-010 (DERIVES), REQ-013 (DERIVES), REQ-
019 (DERIVES), REQ-017 (DERIVES)

• REQ-013
Level: Solution
Name: Display Traceability Hierarchy
Statement: The system shall visually display the traceability hierarchy.
Status: OPEN
Relationships: REQ-012 (DERIVES)

• REQ-014
Level: Solution
Name: Display Lineage of Hierarchy Item
Statement: The system shall enable the user to see the backward and
forward lineage of any hierarchy item.
Status: OPEN

• REQ-015

B.1. REQUIREMENTS 43

Level: Solution
Name: Automatic Derivation of Relationships from Git Commits
Statement: The system shall automatically derive relationships from
git commits mentioning requirements IDs.
Status: OPEN

• REQ-016
Level: Solution
Name: Enforce Item Type Selection
Statement: The system shall enforce the selection of an item type for
each new hierarchy item.
Status: OPEN
Relationships: REQ-007 (DERIVES)

• REQ-017
Level: Solution
Name: Enforce User Level Selection
Statement: The system shall enforce the selection of a user level for
each new requirement.
Status: OPEN
Relationships: REQ-012 (DERIVES)

• REQ-018
Level: Solution
Name: Support Internal Levels Within User Level Hierarchy
Statement: The system shall support defining internal levels within a
user level hierarchy.
Status: OPEN
Relationships: REQ-009 (DERIVES)

• REQ-019
Level: Solution

44 APPENDIX B. APPLICATION REQUIREMENTS SPECIFICATION

Name: Arrange Nodes Within Traceability Hierarchy
Statement: The system shall enable rearranging nodes in the trace-
ability graph for better visualization.
Status: OPEN
Relationships: REQ-012 (DERIVES)

• REQ-020
Level: Solution
Name: Create a Project
Statement: The system shall enable users to create a project by
specifying the project name, repository URL, and access token.
Status: OPEN
Relationships: REQ-028 (DERIVES)

• REQ-021
Level: Solution
Name: Delete a Project
Statement: The system shall enable users to delete an existing project.
Status: OPEN

• REQ-022
Level: Solution
Name: Add a New Release to a Project
Statement: The system shall enable users to add a new release to an
existing project.
Status: OPEN

• REQ-023
Level: Solution
Name: Delete a Release from a Project
Statement: The system shall enable users to delete an existing release
from a project.

B.1. REQUIREMENTS 45

Status: OPEN

• REQ-024
Level: Solution
Name: View Archived Releases
Statement: The system shall enable users to view, but not edit,
archived releases.
Status: OPEN

• REQ-025
Level: Solution
Name: Add an Item to the Current Project
Statement: The system shall enable users to add new items to the
current project.
Status: OPEN

• REQ-026
Level: Solution
Name: Delete an Item from the Current Project
Statement: The system shall enable users to delete items from the
current project.
Status: OPEN

• REQ-027
Level: Solution
Name: Edit an Item in the Current Project
Statement: The system shall enable users to edit items in the current
project.
Status: OPEN

• REQ-028
Level: Solution
Name: Validate Repository During Project Creation

46 APPENDIX B. APPLICATION REQUIREMENTS SPECIFICATION

Statement: The system shall validate that the repository URL is valid
and accessible with the provided access token.
Status: OPEN
Relationships: REQ-020 (DERIVES)

• REQ-029
Level: Solution
Name: Validate Relationships to Avoid Cycles
Statement: The system shall prevent the creation of relationships that
would introduce cycles in the traceability graph.
Status: OPEN

• REQ-030
Level: Solution
Name: Validate Status Changes of Items
Statement: The system shall enforce specific conditions when changing
the status of items.
Status: OPEN

• REQ-031
Level: Solution
Name: Validate Item Edits and Provide Warnings
Statement: The system shall notify users of potential issues when
editing items.
Status: OPEN
Relationships: REQ-032 (DERIVES), REQ-033 (DERIVES), REQ-
034 (DERIVES)

• REQ-032
Level: Solution
Name: Warn on Editing Requirement with Child Items
Statement: The system shall warn users when editing a requirement

B.1. REQUIREMENTS 47

with child items without updating the child items.
Status: OPEN
Relationships: REQ-031 (DERIVES)

• REQ-033
Level: Solution
Name: Warn on Changing Status of Requirement with SourceArtifact
Children
Statement: The system shall warn users when changing the status of
a requirement with SourceArtifact children without updating the status
of the SourceArtifact items.
Status: OPEN
Relationships: REQ-031 (DERIVES)

• REQ-034
Level: Solution
Name: Suppress Warnings Option
Statement: The system shall provide an option to suppress warnings
when editing items or changing their status.
Status: OPEN
Relationships: REQ-031 (DERIVES)

• REQ-035
Level: Solution
Name: Handle Iterations/Increments
Statement: The system shall specify how to handle iterations and
increments.
Status: OPEN
Relationships: REQ-006 (DERIVES), REQ-007 (DERIVES)

• REQ-036
Level: Business

48 APPENDIX B. APPLICATION REQUIREMENTS SPECIFICATION

Name: Provide Real-World Examples
Statement: The system shall provide real-world examples of require-
ments traceability in a visual way.
Status: OPEN
Relationships: REQ-005 (DERIVES)

• REQ-037
Level: Business
Name: Employ User-Friendly SW Tool
Statement: The system shall employ an easy-to-use software tool that
demonstrates basic principles of requirements traceability.
Status: OPEN
Relationships: REQ-005 (DERIVES)

	Introduction
	Terminology
	Methodology
	Pros of graph representation of requirements specification
	BABOK requirements hierarchy
	Our way to make requirements hierarchy
	Analysis of the requirements traceability problem
	Handling functional and non-functional requirements in different environments
	Tracing non-functional requirements
	Mapping requirements in Agile environments

	Updating our model

	Existing solutions
	IBM Rational
	CodeBeamer
	Visure
	Open-Source Requirements Management Tools
	rmtoo
	Doorstop
	StrictDoc
	Limitations of Existing Tools
	Rationale for Developing Our Application
	Primary Goals of the New Application

	Development of the Application
	Chosen toolset
	Data layer
	Integration capabilities
	Securing the user data
	Enhancing user experience

	Application Features and Capabilities
	Conclusion
	Myproject source code
	Application requirements specification
	Requirements

