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Abstrakt

Dnešné kvantové počítače sa potýkajú s problémami ako chyby, šum a dekoherencia. V
súčasnosti kvantové algoritmy samy o sebe nedokážu spoľahlivo riešiť žiadne úlohy. Z
toho dôvodu bol uvedený hybridný kvantový algoritmus nazývaný variačný kvantový
eigensolver (VQE), ktorý sa snaží tieto problémy zmierniť odovzdaním časti práce
klasickým počítačom. V tomto prípade je dôležité zabezpečiť, aby klasické počítače
efektívne spolupracovali s kvantovými. Preto sme v našej práci testovali optimalizačné
algoritmy a rôzne konfigurácie kvantového počítača s cieľom dosiahnuť čo najlepšie
výsledky. Uvažovali sme ideálne kvantové počítače a ako problém, na ktorom sme
vykonali všetky naše experimenty, bolo nájdenie základného stavu molekuly vodíka.

Kľúčové slová: kvantové počítače, variačný kvantový eigensolver, ansatz, optimal-
izačné algoritmy, základný stav energie
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Abstract

Quantum computers of today’s world face problems such as errors, noise, and decoher-
ence. Currently, quantum algorithms themselves cannot reliably solve any tasks. For
this reason, there has been introduced a hybrid quantum algorithm called variational
quantum eigensolver (VQE) that attempts to mitigate these problems by delegating
part of the work to classical computers. In this case, it is important to ensure efficient
collaboration between classical and quantum computers. Hence, in our work, we tested
optimization algorithms and various configurations of a quantum computer to achieve
the best possible results. We considered ideal quantum computers, and the problem on
which we conducted all our experiments was finding the ground state of a hydrogen
molecule.

Keywords: quantum computers, variational quantum eigensolver, ansatz, optimiza-
tion algorithms, ground state energy
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Introduction

In contrast to classical computers, quantum computers are computers that abide by
the laws of quantum mechanics, which describes the behavior of particles. Quantum
computers promise to solve problems that are intractable for classical computers [1]
and make noticeable advancements in many areas. Nevertheless, this is a matter of the
future. In this day and age, we work with so-called noisy intermediate-scale quantum
(NISQ) computers [2]. NISQ computers are not that big to tackle difficult instances of
problems and they suffer from errors, noise, and decoherence.

In this thesis, we deal with a variational quantum eigensolver (VQE) algorithm [1, 3].
The VQE is a hybrid quantum algorithm that combines quantum and classical computing.
The quantum part aims to find the energy of a state, given the Hamiltonian (a matrix
that describes a quantum system). A classical computer runs an optimization algorithm
that attempts to find the best parameters for a parametrized quantum circuit, also
called ansatz, that defines the state. This algorithm has many applications, but the
most prominent one is finding a ground state energy (a state where electrons are closest
to the nucleus of an atom) of molecules.

More specifically, this thesis focuses on the performance of the VQE algorithm.
We are particularly interested in how various ansatzes and optimization algorithms
can affect the performance of the VQE. Hence, we benchmarked the performance of
18 ansatzes and 15 optimizers. For this purpose, we chose a 4-qubit (quantum bit)
representation of a hydrogen molecule. We used VQE from the Qiskit [4] library and
ran VQE on a classical computer with a quantum simulator that does not incorporate
noise and finite statistics.

The first three chapters primarily cover the theoretical basics of quantum computing
and the VQE algorithm. In the fourth chapter, we present observed results from
conducted experiments.
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Chapter 1

Preliminaries

In this chapter, we will introduce all the necessary concepts that will be used throughout
this thesis. It is important to understand these concepts before we proceed further. We
will begin with fundamental mathematical concepts, followed by quantum computing
principles. Next, we will introduce current quantum computers and the Qiskit library,
which can be used for programming quantum computers. Finally, we will discuss
Hamiltonians and ground state energy, which are somewhat intertwined with chemistry.

1.1 Mathematics of quantum computing

In the case of standard computers, boolean algebra is used. Quantum computing
leverages the power of linear algebra. In this section, we will introduce concepts from
linear algebra and some concepts that are more specific to physics. We heavily rely on
definitions from the book Mathematical Methods for Physicists by Arfken et al. [5].

1.1.1 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors are some of the most important concepts in linear algebra.
The problem of eigenvalues and eigenvectors can be defined by the following equation:

Av⃗ = λv⃗, (1.1)

where A is a square matrix, vector v⃗ and constant λ are unknown. If v⃗ ̸= 0⃗, v⃗
is an eigenvector of matrix A. Each eigenvector has a corresponding eigenvalue λ.
Equation 1.1 shows that the resulting vectors after multiplication with matrix A and
constant λ are equal. That necessarily means that an eigenvector of a matrix is a vector
that does not change its direction when multiplied by that matrix, only its length
changes. An eigenvalue is a scalar representing how much the eigenvector is stretched
or shrunk. This concept can be easily visually interpreted, see Figure 1.1.

3



4 CHAPTER 1. PRELIMINARIES

Figure 1.1: Geometric interpretation of eigenvectors and eigenvalues [6]

1.1.2 Complex conjugate

A complex number consists of real and imaginary parts, where the imaginary unit
satisfies the equation i2 = −1. If we have a complex number z = a+ bi, its complex
conjugate is the complex number z∗ = a− bi, where the sign of the imaginary part is
flipped.

zz∗ = (a+ bi)(a− bi) = a2 − (bi)2 = a2 + b2 (1.2)

Equation 1.2 reveals that zz∗ is a non-negative real number and it enables us to define
absolute value as

√
zz∗, which is denoted by |z|. A complex conjugate can be also

denoted as z̄.

1.1.3 Adjoint of a matrix

For matrices with complex elements, a complex conjugate of a matrix is obtained by
conjugating all elements of the original matrix. The notation for the complex conjugate
of A is A∗. The adjoint of a matrix A, denoted A† (A dagger), is obtained by both
complex conjugating and transposing it. The adjoint of real matrices is just equal to
their transpose.

1.1.4 Unitary matrices

Unitary matrices are matrices that satisfy the property U † = U−1, meaning their adjoint
equals their inverse. The relationship can be also expressed as follows:

UU † = U †U . (1.3)

Also, provided that U and V are both unitary, then UV and V U will be unitary as
well.

1.1.5 Hermitian matrices

The definition of Hermitian matrices builds upon the previous definitions. Hermitian
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matrices are square matrices that are equal to their adjoint, therefore H = H†. These
matrices are also referred to as self-adjoint matrices. All real symmetric matrices are
Hermitian. It is important to note that if two matrices A and B are Hermitian, AB
or BA will not necessarily be Hermitian. However, it is guaranteed that Hermitian
matrices have real eigenvalues.

1.1.6 Pauli matrices

By Pauli matrices, we mean the set of three 2× 2 complex matrices. They are defined
as follows:

σX =

(
0 1

1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0

0 −1

)
. (1.4)

These matrices are both Hermitian and unitary. Some literature also includes the
identity matrix in the set of Pauli matrices.

1.1.7 Tensor product

The tensor product is a widely used operation in quantum computing. This operation
applies to several mathematical objects, but in this case, we will restrict ourselves to
matrices. The version that works for matrices can be referred to as the Kronecker
product. Sometimes are these operations used interchangeably since they use the same
notation ⊗. Essentially, it is a binary operation that combines two matrices into one
larger matrix. Each element of the first matrix is multiplied by the entire second matrix.
Mathematically, it is defined as follows:

A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

... . . . ...
am1B am2B . . . amnB

 . (1.5)

1.1.8 Bra-ket notation

Bra-ket notation, also known as Dirac notation, plays an important role in quantum
mechanics. It is a notation for vectors used to describe a quantum state. A ket is a
standard column vector whereas a bra is an adjoint of a ket.

⟨α| =
(
a∗1 a∗2 . . . a∗n

)
|β⟩ =


b1

b2
...
bn


Bra Ket
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The advantage of this notation is that it facilitates the expression vector operations
such as inner product:

⟨α|β⟩ =
(
a∗1 a∗2 . . . a∗n

)

b1

b2
...
bn

 =
n∑

i=1

a∗i bi, (1.6)

outer product:

|β⟩⟨α| =


b1

b2
...
bn


(
a∗1 a∗2 . . . a∗n

)
=


b1a

∗
1 b1a

∗
2 . . . b1a

∗
n

b2a
∗
1 b2a

∗
2 . . . b2a

∗
n

...
... . . . ...

bna
∗
1 bna

∗
2 . . . bna

∗
n

 , (1.7)

and tensor product:
|α⟩ ⊗ |β⟩ = |α⟩|β⟩ = |αβ⟩. (1.8)

1.1.9 Hilbert space

In simple terms, it is a finite-dimensional complex vector space equipped with an inner
product as defined in equation 1.6. Although there are more detailed definitions of
Hilbert space that extend to infinite-dimensional vector spaces, we will adhere to this
simple definition since our work deals exclusively with finite-dimensional vector spaces.

1.2 Introduction to quantum computing

The standard computers, as we know them, for their functioning use laws of standard
mechanics. Quantum computers, on the other hand, use laws of quantum mechanics.
Quantum mechanics describes the behavior of particles at the microscopic level, whereas
standard mechanics deals with macroscopic objects. The objective of this section is
to highlight the most important concepts and provide at least a brief idea of quantum
computing. The main source of information for this section is the book Quantum
Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang [7].

1.2.1 Qubit

A qubit is an abbreviation of a quantum bit. It is a bit counterpart in quantum
computing, thus a basic unit of information in quantum computers. Classical bits can
hold only two values, either 0 or 1. However, qubits are more complex.

Mathematically, a qubit is represented by a vector in a two-dimensional Hilbert
space. Basis vectors of this vector space:

|0⟩ =

(
1

0

)
and |1⟩ =

(
0

1

)
, (1.9)
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are also known as computational basis states and they are analogous to classical bits 0
and 1. In addition, qubits can be in a so-called superposition of states. This means
that a state of a qubit can be a linear combination of states |0⟩ and |1⟩:

|ψ⟩ = α|0⟩+ β|1⟩, where α, β ∈ C and |α|2 + |β|2 = 1, (1.10)

therefore there are infinitely many states that a qubit can be in. In case we consider
two qubits, the basis vectors of this four-dimensional Hilbert space are |00⟩, |01⟩, |10⟩,
and |11⟩. Then the superposition looks as follows:

|ψ⟩ = α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩, (1.11)

where the sum of the squared coefficients is equal to 1 as well.
All these vectors and complex numbers may be difficult to understand and imagine.

For simplification, we can leverage the Bloch sphere to visualize the state of a qubit.
It is a unit sphere named after physicist Felix Bloch. For the sake of simplicity, we
will not go into the details, but if we use the properties of a quantum state, there is
a possibility to rewrite it cleverly, such that a quantum state can be visualized as a
vector in the Bloch sphere.

Figure 1.2: Bloch sphere [8]

In the real world, physical qubits can be implemented in different ways. There
is a plethora of options but the most prominent ones used by leading companies are
superconductors and trapped ions (an atom that is not neutral). Also, we cannot omit
photon-based qubits that can succeed as well.
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1.2.2 Measurements

A measurement is an operation that enables us to determine the state of a qubit.
However, this operation does not work as most of us would expect. When a qubit is
measured, it yields either outcome |0⟩, with a probability of |α|2, or outcome |1⟩, with
a probability of |β|2. We are working with probabilities, so the normalization condition,
|α|2 + |β|2 = 1, should make more sense now. A measurement is a destructive operation.
Upon the first measurement, the state of a qubit is collapsed to either |0⟩ or |1⟩ and
any subsequent measurements will yield the same result. The original state cannot be
recovered after the measurement. Table 1.1 shows canonical measurements on the x, y,
and z axes, however, there are infinitely many ways to measure a qubit, depending on
how we rotate it.

Measurement axis States
x-axis |+⟩ and |−⟩
y-axis |−i⟩ and |+i⟩
z-axis |0⟩ and |1⟩

Table 1.1: Measurements and their respective states

Most (if not all) contemporary quantum computers perform measurements only on
the z-axis (computational basis) [9]. Table 1.2 demonstrates how measurements on the
x and y axes can be converted to the z-axis measurement.

Measurement axis Conversion
x-axis rotation of a state around y-axis by -90 degrees
y-axis rotation of a state around x-axis by 90 degrees

Table 1.2: Measurements and their conversion to computational basis

1.2.3 Quantum gates

Thus far, our focus has been on examining the properties of qubits, leaving the question of
qubit manipulation unanswered. This section delves into the fundamental quantum gates,
accompanied by visual representations to enhance comprehension. All visualizations
were produced using the Qiskit [4] and QuTiP [10] libraries.

Quantum gates are the quantum equivalent of classical logic gates. In contrast to
logic gates in classical computing, quantum gates are represented by matrices. The only
property that a matrix must adhere to is unitarity. There are infinitely many unitary
matrices, therefore we have infinitely many quantum gates.

Another specialty of quantum computation is its reversibility. This means that
from the output of a gate, we can always determine the input. This is not the case for
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logic gates. For instance, the AND gate is not reversible. From the output, we cannot
determine the input.
X, Y, Z gates

Gates X, Y, and Z are the most fundamental single-qubit gates. All three gates perform
rotation of a state by 180 degrees, the X gate around the x-axis, the Y gate around the
y-axis, and the Z gate around the z-axis. They are also known as bit-flip, phase-flip,
and bit-phase-flip gates, respectively. Parametrized equivalents of these gates are called
RX, RY, and RZ. These gates are used to rotate the state of a qubit by a given angle.

X-gate Y-gate Z-gate

(
0 1

1 0

) (
0 −i
i 0

) (
1 0

0 −1

)

q X q Y q Z

x

y

|0

|1

x

y

|0

|1

x

y

|0

|1

Table 1.3: X, Y, and Z gates and their representations

Note that the initial state of the Z-gate differs from the initial state of the X and Y
gates. If we had started from the state |0⟩, we would have not seen any change.

Hadamard gate

The Hadamard operation can be thought of as a two-step process. It is a rotation of a
state around the y-axis by 90 degrees and then subsequent rotation around the x-axis
by 180 degrees. If we apply the Hadamard gate on a qubit in the state |0⟩, we get a
qubit in an equal superposition of states |0⟩ and |1⟩.
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(
1√
2

1√
2

1√
2

− 1√
2

)
q H

Figure 1.3: Hadamard gate representation

Controlled-NOT gate

The controlled-NOT (CNOT) gate operates on two input qubits, known as the control
qubit and the target qubit. The action of the gate may be described as follows. If the
control qubit is set to state |0⟩, then the target qubit remains untouched. Conversely, if
the control qubit is set to state |1⟩, then the target qubit is flipped.


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


q0

q1

Figure 1.4: CNOT gate representation

1.2.4 Quantum entanglement

Apart from the superposition, quantum entanglement is another quantum phenomenon
that gives us an advantage over classical computers. When qubits are entangled, we
mean that they are somehow bound together and they are dependent. Altering the
state of one qubit will immediately alter the state of the other qubit predictably. In the
below example, we will demonstrate the simplest entangled state, also known as the
Bell state.

q0

q1

H

Figure 1.5: Bell state circuit

|00⟩ = |0⟩ ⊗ |0⟩ (1.12)
1√
2
(|0⟩+ |1⟩)⊗ |0⟩ (1.13)

1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |0⟩) (1.14)

1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) (1.15)

1√
2
(|00⟩+ |11⟩) (1.16)

In the following lines, we explain individual steps of the computation.
(1.12) Initial state of the circuit.
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(1.13) Hadamard gate applied, the first qubit is equally likely to be in state |0⟩ or |1⟩.
(1.14) Expanded bracket.
(1.15) CNOT gate applied, the first qubit is |1⟩, state of the second qubit will be flipped.
(1.16) Final state of the circuit.

From the above example, we can see that the qubits are correlated. This particular
state is a superposition only of two states |00⟩ and |11⟩, without the entanglement we
would have to consider a superposition of four states |00⟩, |01⟩, |10⟩, and |11⟩. If the
first qubit is measured to be in state |0⟩, then the second one will also be in state |0⟩.
The same applies to state |1⟩.

1.2.5 Quantum simulation

The introduction above does not explicitly highlight the capabilities of quantum com-
puters. We will try to illustrate the advantage of quantum computers in this simple
example from Quantum Computation and Quantum Information book by Michael A.
Nielsen and Isaac L. Chuang [7].

Suppose we have a system containing 50 qubits. To describe a state of such a
system requires 250 ≈ 1015 complex amplitudes. If the amplitudes are stored in 128
bits of precision, then it requires 256 bits or 32 bytes to store each amplitude. In total
32 × 1015 is about 32 thousand terabytes and this amount hits the limits of current
supercomputers. It is important to realize that with each additional qubit, the memory
requirements are doubled. Basically, in quantum computers, we can represent states
more efficiently.

1.3 Noisy Intermediate-Scale Quantum computers

So far, we have covered the very fundamentals of quantum computing and briefly
outlined its advantages. However, in today’s world, quantum computers still suffer from
several problems, namely the following ones.

Scalability

The more qubits we have, the bigger instances of problems we can solve. However, with
an increasing number of qubits and number of gates we introduce errors into quantum
computation. The gates themselves, especially the entangling ones, possess a certain
probability that the outcome of the gate will result in an error. Also, qubit connectivity
goes hand in hand with the scalability. It is not very rational to have many qubits if
they are not connected and we cannot use multiqubit gates on them.
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Quantum decoherence

Qubits are very sensitive and their state can be easily influenced by the noise from the
environment. By noise we mean magnetic fields, radio waves, vibrations, light, and
more. To minimize this effect, quantum processing units (QPUs) are accompanied
by other components that are used to shield the qubits from the environment and
keep them at temperatures close to absolute zero (0K = −273.15◦C). Thanks to that,
quantum computers are large in size and they often resemble chandeliers even though
QPUs are in size comparable to processors in standard computers.

Lack of error correction

Theoretically, we always consider so-called logical qubits that do not have any problems
and work seamlessly. In reality, we use physical qubits that suffer from noise and
decoherence and it hinders us from executing quantum algorithms reliably. To mitigate
this problem, we can use quantum error correction. The idea is that we can use multiple
physical qubits, from tens even to thousands, to create a single reliable logical qubit.
By doing so, we run into a problem with scalability.

Quantum computers that match these characteristics are called noisy intermediate-
scale quantum (NISQ) computers. These characteristics and the term NISQ were
introduced by John Preskill [2] and its meaning is the following. The term “noisy”
refers to all the noise that quantum computers currently suffer from. The noise will
significantly constrain the capabilities of quantum computers in the foreseeable future.
“Intermediate-scale” denotes quantum computers expected to emerge in the coming
years, featuring a qubit count ranging from 50 to a few hundred.

1.4 Qiskit

This section describes the solution that we use for working with quantum simulators
and quantum algorithms.

Do not confuse programming a quantum computer with standard high-level program-
ming as we know it from classical computers, we are not there yet. The programming
of quantum computers is more like programming in assembly language. A thorough
knowledge of computer’s hardware and architecture is crucial in assembly language
programming, as it involves the manipulation of hardware through the use of low-level
instructions. A similar principle is applied here, qubits are manipulated using quantum
gates. For this purpose, we decided to go with the open-source Qiskit (Quantum
Information Science Kit) [4] library for Python backed by IBM.
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There are also other alternatives like Cirq (by Google) [11], Pennylane (by Xanadu) [12],
Q# (by Microsoft) [13], Sliq (by ETH Zürich) [14], and many more. The reason why
we decided on Qiskit is that it serves our purpose and is far ahead of its competitors.
Competitors offer nowhere near what Qiskit offers. It is the most popular quantum
computing library. It provides plenty of learning resources, tutorials, videos, and as it
is open-source, there is a big community around it. IBM has built an entire ecosystem
around it [15] with libraries for quantum machine learning, chemistry, finance, and
many more. The 7-year work of IBM culminated in the middle of February 2024, when
they released version 1.0.0 of Qiskit. Even though Qiskit is mainly developed by IBM,
it is not limited to IBM’s quantum computers. It can support the hardware of other
companies through additional packages.

1.5 Ground state energy

This section draws inspiration from the book Chemistry: The Central Science by Brown
et al. [16]. Before delving into the ground state energy, let’s revisit an atom first. Atoms
are the smallest building blocks of matter. They are composed of 3 subatomic particles,
protons, neutrons, and electrons. Protons and neutrons are located within the nucleus
of the atom. As their names suggest, protons have a positive electrical charge, while
neutrons are electrically neutral. Electrons have a negative electrical charge. Atoms
themselves are neutral, so the number of protons must be equal to the number of
electrons. Electrons are attracted to the protons in the nucleus by the electrostatic
force that exists between particles of the opposite electrical charge.

Electrons are organized into orbitals, each with its own characteristic shape and
energy level. An electron has the ability to transition between orbitals by either
absorbing or emitting photons with energy precisely matching the difference in energy
between the two orbits. In order for the electron to transition to a higher-energy state,
it must absorb energy. Conversely, energy is emitted when the electron transitions
to a lower-energy state. The lowest-energy state is also known as the ground state
and higher-energy states are called excited states. We will measure this energy in the
Hartree (Ha) units. Hartree is a unit of energy in the atomic units system [17].
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Figure 1.6: Absorption and emission of a photon by an electron [18]

1.6 Hamiltonian

The Hamiltonian defines the total energy of a physical system. Many different forms
of Hamiltonians exist in physics and chemistry, but for us, it is just a matrix. Once a
Hamiltonian is constructed, it must be translated into operators that can be directly
measured on a quantum computer. The representation for quantum computers looks as
follows [19]:

Ĥ =
m∑
i=1

ciσi, σi ∈ {I,X, Y, Z}⊗n, ci ∈ R, (1.17)

where I is an identity matrix and X, Y , Z are Pauli matrices which we discussed in
section 1.1.

The Pauli matrices represent measurements. For instance, the expression c1Z0X1Y2

means that we measure qubit zero on the z-axis, qubit one on the x-axis, qubit two
on the y-axis, and then we will multiply the results together with the coefficient c1.
Sometimes this Hamiltonian representation is referred to as a sum of Pauli strings. A
ground state energy is a real number, therefore this Hamiltonian representation has
real eigenvalues. This fact concludes that the Hamiltonian is a Hermitian matrix.



Chapter 2

Ansatz

Before we delve into details, let us preface this section with an etymology of the word
ansatz. An ansatz is a term borrowed from German (plural ansätze), referring to an
educated guess, an initial point, or an additional assumption made to facilitate solving
a problem, which may later be verified based on the results obtained [20].

In the context of quantum computing, an ansatz refers to a parametrized quantum
circuit, which is comprised of quantum gates and some of them are parametrized.
Ansatzes are often used in variational algorithms where the circuit parameters are
optimized by classical computers.

In this chapter, we will discuss the role of the ansatz, its properties, types, and
introduce several commonly used ansatzes. Moreover, we will address the challenges
that can impede the design of an ansatz.

2.1 Expressibility

The notion of expressibility can be very helpful to get an understanding what is the
role of an ansatz. Expressibility tells how much of the Hilbert space can be covered by
the ansatz. The following figures should provide a clear explanation of this idea.

q H RZ RX

x

y

|0

|1

Figure 2.1: Ansatz expressibility, 1000 parameters sampled uniformly randomly
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Provided we know that our solution is a real number, we can use a simpler ansatz
that covers only the real part of the Hilbert space. Additional gates would introduce
more noise into a circuit and the more parameters we have, the more difficult it is to
optimize them.

q RY

x

y

|0

|1

Figure 2.2: Ansatz expressibility, 200 parameters sampled uniformly randomly

2.2 Trainability

The trainability of an ansatz denotes its ability to efficiently optimize its parameters,
typically through iterative processes. The major hurdle that can impede the trainability
of an ansatz is a barren plateau problem (vast planes in cost function) which we
will introduce in the following chapter. Holmes et al. [21] claim that trainability and
expressibility are inversely related. Furthermore, they claim that highly expressive
ansatzes are more prone to barren plateaus and therefore are harder to train, however,
that does not necessarily mean that inexpressive ansatzes cannot have trainability issues.
The priority should be to span only the relevant part of the Hilbert space, ideally only
where the solution lies and minimize the number of parameters and gates that can
introduce noise. Designing an efficient ansatz involves finding an optimal trade-off
between expressibility and trainability [21].

2.3 Circuit depth

The depth of a circuit is a measure that expresses how many “levels” of gates a quantum
circuit contains. Alternatively, it is the longest path in a circuit. It is a way to increase
expressibility but at the same time a way how to introduce more noise into a circuit.
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Figure 2.3: Circuit depth

2.4 Hardware efficient ansatz

An ansatz designed with hardware constraints in mind. The goal is to minimize a
circuit depth, the number of gates, and the number of entangling gates in such a way it
can be easily implemented on real hardware and thereby tries to minimize error, noise,
and decoherence. The fact that an ansatz is hardware efficient also depends on the
hardware used. This aspect will be briefly addressed in the following subsection.

The structure of hardware efficient ansatz (HEA) consists of layers, each layer
consists of rotation gates and entangling gates. A single layer can contain multiple
levels of rotations with various gates. The final layer does not contain any entangling
gates, only rotation gates.

Figure 2.4: Hardware efficient ansatz structure [22]

The main drawback of hardware efficient ansatzes is that they can span a substantial
portion of the Hilbert space, often exceeding what is necessary [21] and that can lead
to undesirable problems with trainability. There is ongoing research about ansatzes and
also there is an article that claims to have trainability guarantees for hardware efficient
ansatzes that possess specific properties [23]. Nevertheless, we cannot be certain about
that. Other research endeavors attempted to disrupt this theory by introducing a new
source of untrainability [24].
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Qubit topology and transpilation

To deepen understanding and foster motivation of hardware efficient ansatzes, we will
explore specifics of IBM hardware in more detail. IBM has many quantum computers
with various qubit counts, topologies, and native gate sets. A qubit topology shows
qubit connectivity. Upon observation of the qubit topology depicted in Figure 2.5,
it becomes apparent that certain qubits are disconnected and situated far from one
another. One might ask how to implement a two-qubit gate between these qubits. The
process is outlined in the IBQ documentation [25, 26], but in brief, it can be summarized
as follows.

To apply a 2-qubit gate to a quantum circuit between qubits that are not directly
connected on a quantum computer, it is necessary to incorporate one or more swap
gates into a circuit. These swap gates facilitate the rearrangement of qubit states until
they are positioned adjacent to each other on a device gate map. Each swap gate is
both a noisy and expensive operation to perform. Determining the minimum number
of swap gates needed to align a circuit with a device is crucial. However, finding the
optimal swap mapping is challenging as this problem belongs to the NP-hard problems,
making it expensive to compute for larger quantum devices. Qiskit defaults to using a
stochastic heuristic algorithm to compute a satisfactory swap mapping.

Moreover, besides connectivity issues, compatibility with the hardware’s native gate
set must be addressed. Each processor family operates with its own set of native gates.
By default, these systems only support operations within their respective gate sets.
Consequently, every gate in the circuit needs to be translated into elements of this set.
This process is called circuit transpilation and Qiskit provides multiple optimization
levels. The higher the level is, the more difficult it is to compute that and it may result
in a more optimal circuit. Fortunately, it is handled automatically by Qiskit so users
do not have to worry about it.

Figure 2.5: Example qubit topology of IBM quantum computers [27]
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Alternatives

There are multiple types of ansatzes and broadly can be classified into two categories,
problem-inspired and hardware-inspired. In addition to that, if ansatz leverages a
structure of a particular problem, is said to be problem-specific/problem-derived,
otherwise, it is problem-agnostic/general.

One such example of a problem-inspired ansatz is the Unitary Coupled Cluster
(UCC) ansatz proposed for finding the ground state energy of molecules. A circuit depth
of this ansatz grows O(n4), where n is the number of qubits [28]. This is not viable
for larger problems and current NISQ devices. Therefore, problem-agnostic hardware
efficient approaches are typically employed.

2.4.1 Commonly used ansatzes

This section will introduce several commonly used hardware efficient ansatzes categorized
by type of entanglement. All the ansatzes come from IBM Quantum documentation [29].

Linear entanglement

In this ansatz, each qubit is entangled with the next qubit.
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Figure 2.6: Linear entanglement ansatz, 2 layers, RY rotation gates

Reverse linear entanglement

As the name suggests, this is the linear ansatz with a reversed order of entangling gates.
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Figure 2.7: Reverse linear entanglement ansatz, 2 layers, RY rotation gates

Pairwise entanglement

The entanglement layer consists of two “levels”. In the first level, qubit i is entangled
with qubit i+1 for all even values of i, and then in the second level qubit i is entangled
with qubit i+ 1 for all odd values of i.
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Figure 2.8: Pairwise entanglement ansatz, 2 layers, RY rotation gates

Circular entanglement

This is an extension of the linear entanglement where the last qubit is also entangled
with the first qubit. In case physical qubits are arranged into a circle, it is easy to
implement.
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Figure 2.9: Circular entanglement ansatz, 2 layers, RY rotation gates
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Shifted circular alternating (SCA) entanglement

SCA entanglement ansatz consists of circular entanglement where the entangling gate
connecting the first with the last qubit is shifted by one in every layer. Furthermore,
the role of control and target qubits are swapped in every layer (therefore alternating).
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Figure 2.10: Shifted circular alternating entanglement ansatz, 2 layers, RY rotation
gates

Full entanglement

This ansatz entangles each qubit with every other qubit. At first glance it may seem that
this ansatz cannot be hardware efficient due to the amount of CNOT gates, however,
conceptually it is still considered hardware efficient. In fact, the CNOT gates have
minimal impact on the resulting state since there are no rotation gates interleaved
with the entangling gates. A block containing only CNOT gates is not particularly
useful. Moreover, the circuit depth remains manageable. Provided that the reverse
linear ansatz uses CNOT gates as entangling gates, this ansatz has the same unitary
matrix as the reverse linear ansatz but with more CNOT gates.
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Figure 2.11: Full entanglement ansatz, 2 layers, RY rotation gates





Chapter 3

Variational quantum eigensolver

At first glance, the term variational quantum eigensolver may seem complicated and it
does not say anything to people outside of quantum computing. Thus, the objective of
this chapter is to provide a clear explanation of the variational quantum eigensolver and
clarify why it is termed as it is. For the rest of this thesis, we will use the abbreviation
VQE.

The VQE is a hybrid algorithm that attempts to find eigenvalues of a Hamiltonian.
The term “hybrid” refers to a scenario where part of the algorithm runs on a quantum
computer and part of the algorithm runs on a classical computer. Essentially, it is
a loop where quantum and classical computers alternate, until a result is found or a
maximum number of iterations is reached.

Figure 3.1: Hybrid algorithm that runs on both quantum and classical computers [30]

Apart from the VQE, there are other algorithms that can solve for eigenvalues.
One of them is the quantum phase estimation algorithm (QPE). The QPE is purely a
quantum algorithm that imposes significant requirements on quantum hardware and

23
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that will not be feasible in the near future [2]. This problem led to the introduction of
the VQE. The VQE tries to reduce the demand on resources, by shifting part of the
work to standard computers [3].

In this thesis, we deal with finding the ground state energy of a molecule. Arguably,
this is the most prominent use case, but this is not the only application of the VQE.
It can be used for any problem that can be mapped to Hamiltonian expression. For
instance, in the area of finance, it can be a portfolio optimization problem [31].

3.1 Variational principle

In quantum mechanics, there is the famous Schrödinger equation (ĤΨ = EΨ), which
is a partial differential equation that describes how the quantum state of a physical
system behaves. Solving this equation analytically is very hard, in most cases, we must
resort to computers to determine the solutions [32]. This imposes very high time and
memory requirements on computers, therefore we rely on the variational method which
gives us an approximation of the ground state energy of a quantum system and enables
us to solve the problem much more efficiently.

3.2 Eigensolver

As we indicated above, this algorithm solves for eigenvalues of a given Hamiltonian.
Specifically, we are interested in the lowest eigenvalue because that eigenvalue corre-
sponds to the ground state energy of a given molecular Hamiltonian.

Let Ĥ be our Hamiltonian, U denotes a unitary matrix of our ansatz with parameters
θ, and |0⟩ is the initial state. The goal of the VQE algorithm is to find the best set
of parameters θ that will minimize the cost function. The ground state energy can be
computed using the following formula [3]:

E = minθ
⟨0|U(θ)†ĤU(θ)|0⟩
⟨0|U(θ)†U(θ)|0⟩

. (3.1)

VQEHamiltonian
ansatz

the lowest eigenvalue

Figure 3.2: VQE input and output scheme

One might question why there is a need for a quantum computer to solve for
eigenvalues when a classical computer can do it in polynomial time. The advantage of
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the VQE follows from the fact that if Hamiltonian is defined on n qubits, that is still
O(n) space complexity for quantum computers. For classical computers, it is O(exp(n))

space complexity and that can be infeasible.

3.3 Optimization algorithms

Optimization algorithms, in short known as optimizers, are algorithms that take a
function as an input and try to find the parameters that can lead to a minimal/maximal
value of the function. In our scenario, an optimizer tries to find angles to function 3.1
defined in the previous section. There is a plethora of optimizers and broadly can be
divided into two types, gradient-based and gradient-free.

3.3.1 Gradient-based and gradient-free optimization algorithms

Mathematics provides us with a valuable tool called derivatives. In this particular case,
we use partial derivatives. Partial derivatives are just derivatives of a multivariable
function. We always differentiate just by one variable and we treat other variables
as constants. A gradient is a vector of partial derivatives [5]. Suppose we have a
multivariable function f(x1, x2, . . . , xn), then the gradient of this function is defined as
follows:

∇f(x1, x2, . . . , xn) =


∂f
∂x1

∂f
∂x2...
∂f
∂xn

 . (3.2)

The idea of gradient-based algorithms is to leverage the gradient to make a step in the
direction of the steepest descent. However, some optimization algorithms go beyond
the gradient and also use a Hessian matrix. The Hessian matrix is a square matrix of
second-order partial derivatives. This method is called Newton’s method [33]. If the
Hessian matrix is expensive to compute and instead it is approximated, we are talking
about the so-called quasi-Newton method [34]. Conversely, algorithms that do not use
the gradient are called gradient-free and they use some other methods to make a step
in the direction of the steepest descent. Gradient-free algorithms may be useful when
the gradient is not available or is expensive to compute.

3.3.2 Barren plateau

Simply put, a barren plateau is a vast flat landscape of a cost function. This leads
to the issue with trainability as optimization algorithms have difficulties escaping this
area. A common driver of barren plateaus is ansatz expressibility [21]. When using a



26 CHAPTER 3. VARIATIONAL QUANTUM EIGENSOLVER

hardware efficient ansatz there are many parameters and some of the parameters do
not have any impact on the final result. Even upon changing the parameters, the result
remains the same and this is how the barren plateau problem arises. However, this is
not the only source of a barren plateau, there are other sources like system size, random
initialization, noise, degree of entanglement, and others [3]. Several strategies have
been proposed to avoid or alleviate barren plateaus including customizing an ansatz,
employing highly sophisticated parameter initialization techniques, and other advanced
methods [3].



Chapter 4

Results

This chapter covers the most important experiments and obtained results for ansatzes
and optimizers. Additionally, we provide insights on how we proceeded, on technical
aspects, and also some thought processes that influenced our decisions.

Before proceeding further, it is essential to clarify the following terms that will
frequently appear in this chapter.

An iteration is a single run of the VQE encompassing both quantum and classical
parts. The number of iterations determines how many times an ansatz will obtain a
new set of optimized parameters.

When an optimization algorithm attempts to find the best parameters for an ansatz,
it evaluates a cost function. Cost function evaluations count how many times the cost
function was evaluated.

4.1 Benchmark setup

Our objective was to find the ground state energy of a hydrogen molecule and figure
out some optimizations concerning ansatzes and optimizers. Initially, we started by
trying to run the VQE with few different optimizers and ansatzes. Even though the
ground state is just a real number, we wanted to know how the energy convergence
progresses. We did that by plotting an energy convergence graph similar to that in
Figure 4.1. For illustration purposes, we chose two optimizers, COBYLA and Gradient
Descent, and six ansatzes we mentioned in section 2.4.1.

27
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Figure 4.1: Examples of energy convergence for various optimizers

From the above figure, we can observe that not only convergence to the ground
state energy but also cost function evaluations differ a lot. Some optimizers have a
fixed number of cost function evaluations for each iteration, an amount of cost function
evaluations in a single iteration depends on an optimizer’s strategy. Another thing
worth pointing out is that we benchmarked six ansatzes, however, we can see only
five of them. The reverse linear ansatz is overlapped by the full ansatz since a matrix
representation of the reverse linear ansatz is the same as the full ansatz. Observation of
such big differences led us to the idea of benchmarking multiple ansatzes and optimizers
and doing a further analysis of that. In the following subsections, we describe details of
our benchmarking.

4.1.1 Ansatzes

In our benchmark, we used the same ansatzes as introduced in section 2.4.1, namely
linear, reverse linear, full, circular, pairwise, and SCA. Additionally, from each ansatz,
we created 3 variations, 1-layer, 2-layer, and 3-layer ansatzes. This yields a total of 18
parametrized quantum circuits that were tested with the VQE algorithm.
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4.1.2 Hamiltonian

For all experiments, we used a 4-qubit Hamiltonian of a hydrogen molecule. We took it
from a paper produced by Miháliková et al. [35] and it is defined as follows:

Ĥ4−qubit
H2

= c01 + c1Z0 + c2Z1Z0 + c1Z2 + c2Z3Z2Z1 + c3Z1 + c4Z2Z0

+ c5X2Z1X0 + c6Z3X2X0 + c6X2X0 + c5Z3X2Z1X0

+ c7Z3Z2Z1Z0 + c7Z2Z1Z0 + c8Z3Z2Z0 + c3Z3Z1,

where coefficients are:

c0 = −0.80718, c1 = 0.17374, c2 = −0.23047,

c3 = 0.12149, c4 = 0.16940, c5 = −0.04509,

c6 = 0.04509, c7 = 0.16658, c8 = 0.17511.

This Hamiltonian can be further simplified to 2 qubits, however, we retained this
form to increase the complexity of the problem. The ground state energy of a hydrogen
molecule is −1.8671050114542505, we calculated that using the NumPyMinimumEigen-
solver algorithm provided by Qiskit and we will use this value as a reference value
for our experiments. Plotting energy convergence graphs for multiple optimizers and
ansatzes does not show well the proximity of the resulting energy to the ground state
energy. Additionally, interpreting such a vast amount of data is challenging, making it
difficult to draw conclusions or present findings effectively on paper. Hence, we will
consider the probability of reaching a chemical precision. Chemical precision refers to
how closely individual measurements agree with the correct value [16]. The standard
chemical precision is 0.0016 Ha, a familiar value among chemists.

4.1.3 Optimizers

After browsing some scientific articles, we did not find any definite answer to which
optimizers work the best. This was also one of the reasons why we decided to test
almost all optimizers that Qiskit offers. Furthermore, optimizers have a plethora of
parameters and configuring them would be a nightmare, so we went with the default
ones, except for the number of iterations. We set the number of iterations to 100 for
each optimizer. Below are concise descriptions of all the tested optimizers, along with
the summary table categorizing them by type.
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AQGD (Analytical Quantum Gradient Descent) [36]:
• The algorithm proposed specifically for quantum problems.

• It tries to compute a gradient using a quantum circuit and also features variable
step size.

• Despite its name including “gradient descent”, it remains gradient-free since the
gradient is not computed in a standard analytical way.

NFT (Nakanishi-Fujii-Todo) [37]:

• The algorithm designed specifically for quantum-classical hybrid algorithms.

• It leverages the properties of quantum circuits and splits a problem into smaller
subproblems by considering only a certain subset of parameters.

SPSA (Simultaneous Perturbation Stochastic Approximation) [38]:

• This algorithm approximates gradient hence, it cannot be considered as a true
gradient-based algorithm.

• Each iteration requires only two cost function evaluations.

QNSPSA (Quantum Natural SPSA) [39]:

• This algorithm is tailored for quantum optimization problems, it builds upon
standard SPSA algorithm and also leverages some properties of quantum circuits.

COBYLA (Constrained Optimization By Linear Approximation) [40]:

• Gradient-free and derivative-free method that examines a so-called “trusted region”
of the current point and attempts to find the next point by linear approximation
of a cost function.

Nelder Mead [41]:

• Derivative-free algorithm based on a simplex method which will evaluate n+ 1

points that form simplex and gradually try to replace the worst point with a
better one.

Powell [42]:

• Powell’s method does not require derivatives and ignores bounds and constraints.

• It iteratively examines orthogonal directions and performs one-dimensional mini-
mization along each direction.
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UMDA (Continuous Univariate Marginal Distribution Algorithm) [43]:

• The algorithm belongs to a family of evolutionary algorithms.

• It constructs a probabilistic model from the possible candidates and based on a
previous iteration samples new candidates to reach better results.

Gradient Descent [44]:

• The standard gradient descent algorithm that moves by a specified step size in
the direction of the steepest descent based on a calculated gradient.

CG (Conjugate Gradient) [45]:

• Unlike Gradient Descent which moves in the direction of the steepest descent,
Conjugate Gradient picks a set of orthogonal directions and moves in each direction
exactly once.

ADAM (Adaptive Moment Estimation) [46]:

• Gradient-based algorithm whose main feature is that it can adaptively adjust
learning rates for each parameter during training, enabling efficient convergence.

AMSGRAD [47]:

• The variant of the ADAM algorithm that incorporates past gradients into the
decision-making process, which also results in a higher memory consumption.

L_BFGS_B (Limited-memory BFGS Bound) [48]:

• BFGS algorithm is the quasi-Newton method.

• This memory-limited version approximates the original BFGS algorithm with a
limited amount of memory and also enables us to define constraints for variables.

SLSQP (Sequential Least SQuares Programming) [49]:

• The quasi-Newton method that also incorporates techniques from quadratic
programming.

TNC (Truncated Newton) [50]:

• It is also called Newton conjugate gradient because it uses the Conjugate gradient
algorithm as an inner routine and also allows to set bounds for each variable.
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Optimizer Type
AQGD (Analytical Quantum Gradient Descent) gradient-free
NFT (Nakanishi-Fujii-Todo) gradient-free
QNSPSA (Quantum Natural SPSA) gradient-free
SPSA (Simultaneous Perturbation Stochastic Approximation) gradient-free
COBYLA (Constrained Optimization By Linear Approximation) gradient-free
Nelder Mead gradient-free
Powell gradient-free
UMDA (Continuous Univariate Marginal Distribution Algorithm) gradient-free
Gradient Descent gradient-based
CG (Conjugate Gradient) gradient-based
ADAM (Adaptive Moment Estimation) gradient-based
AMSGRAD gradient-based
L_BFGS_B (Limited-memory BFGS Bound) gradient-based
SLSQP (Sequential Least SQuares Programming) gradient-based
TNC (Truncated Newton) gradient-based

Table 4.1: Categorized optimizers

4.1.4 Implementation and data exploration

In all the experiments we used the Qiskit [4] library, therefore all our code was written
in Python programming language. We had to execute the VQE algorithm many times,
and it imposed considerable time and computational requirements. To speed up our
computations we created multiple processes and each process was responsible for a
single optimizer. These processes were automatically distributed to available CPU
cores.

All the data that we collected from the VQE runs we saved into a CSV file. This
allowed us to later load the data into Pandas [51] data frame and perform data
exploration. For data exploration, we primarily leveraged the Plotly [52] library, which
has an easy-to-use API and creates nice interactive visualizations with few lines of
code. However, all the visualizations included in this thesis were created using the
Seaborn [53] library, which is built on top of Matplotlib [53].

It is important to mention that all computations we are considering here are ideal,
meaning that we are not taking into account any noise. In total, we have 15 optimizers
and 18 ansatzes, resulting in 270 possible combinations of the VQE execution. Each
combination was executed 50 times with distinct initial points provided to an ansatz.
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4.2 Ansatzes
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Figure 4.2: Achieving the chemical precision is unattainable using 1-layer ansatzes.
Gradient-free optimizers reach better results with 2-layer ansatzes, while gradient-based
optimizers perform better with 3-layer ansatzes.

An important finding we have made is the impossibility of achieving chemical precision
using 1-layer ansatzes regardless of the optimizer. As depicted in Figure 4.2, the
probability of achieving chemical precision remains consistently zero across all optimizers
for 1-layer ansatzes. Consequently, in all subsequent analyses, we excluded 1-layer
ansatzes and focused exclusively on 2-layer and 3-layer ansatzes. Additionally, we
observed an intriguing trend that gradient-based optimizers tend to perform better with
3-layer ansatzes, whereas gradient-free optimizers achieve better results with 2-layer
ansatzes. We attribute this finding to the number of parameters that need to be
optimized. We guess that gradient-free algorithms can get lost more easily in bigger
spaces and gradient-based optimizers can better navigate the space thanks to gradients.
However, we have not taken further steps to verify this hypothesis.
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Figure 4.3: A more detailed version of the previous figure showing also types of ansatzes
with a different number of layers. Gradient-based optimizers either achieve success
across all tested ansatzes or completely fail. The choice of ansatz seems to have a
greater impact with gradient-free optimizers.

In Figure 4.2, we were interested in ansatz layers. Figure 4.3 is very similar, but in
addition to that, it also considers types of ansatzes. The figure may seem somewhat
unclear because of the amount of overlapping data points. In general, it is not possible
to say which ansatz is the best, but if we split our results into gradient-based and
gradient-free optimizers we can observe some trends. When it comes to gradient-based
optimizers, there are not any significant differences between the ansatzes. Either an
optimization algorithm works and can reach a good result with any tested ansatz or does
not work at all. On the other hand, the performance of the ansatzes with gradient-free
optimizers is more fragmented. The SCA and full ansatzes seem to be the worst in
combination with gradient-free optimizers. The best results are achieved with the
pairwise, linear, and circular ansatzes. Surprisingly, there is a single combination of
ansatz and optimizer that was able to reach a chemical precision in all 50 runs. The
combination is constituted by the 3-layer full ansatz and Conjugate gradient (CG)
optimizer.
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4.3 Optimizers

The previous section indicated something about optimizers, but it was more geared
towards the performance of ansatzes. In this section, we will try to discuss the
performance of individual optimization algorithms in more detail by presenting the
results in two distinct manners.
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Figure 4.4: The relationship between the number of cost function evaluations and the
probability of achieving chemical precision for various optimizers. The performance of
some optimizers appears to be constrained by a fixed cost function evaluation count.
However, there are some exceptions that achieved very good results, despite having
fewer cost function evaluations.

Figure 4.4 depicts a visualization where the left y-axis shows the number of cost
function evaluations, while the right y-axis shows the probability of reaching the chemical
precision. The straight lines we can see on NFT, QNSPSA, SPSA, COBYLA, ADAM,
and AMSGRAD mean that these optimizers have a fixed number of cost function
evaluations. It seems that a fixed number of cost function evaluations can have a
limiting impact on the optimizers. Multiple optimizers that have a smaller number of
cost function evaluations are not very likely to reach the chemical precision, however,
L_BFGS_B and SLSQP achieved very good results, despite the lower number of cost
function evaluations. The Conjugate gradient has the best probability overall, however,
it necessitates a considerable number of cost function evaluations. On the other hand,
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Gradient descent and TNC algorithms do not work at all even though the number of
cost function evaluations is not so low.
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Figure 4.5: Another point of view on the data shown in the previous figure. This view
favors fast optimizers and they can reach solid results despite the lower probability of
reaching the chemical precision.

In Figure 4.5, we can see the average number of times the chemical precision is
reached in an hour (on our hardware). This gives us a different view of the results.
For instance, the NFT optimizer does not even have a 50% probability of reaching
a chemical precision, however, due to its low amount of cost function evaluations,
execution of the algorithm is fast and therefore we can reach the chemical precision
more times in an hour than with other optimizers. On the other hand, the AQGD
with a high number of cost function evaluations and with the probability of reaching
chemical precision over 70% can yield correct results on average only nearly 5 times in
an hour. This view of the data favors optimizers that are fast, they can achieve good
results even though the probability of achieving chemical precision is low.

Initially, after running all the experiments, we did not consider the chemical precision
and we thought that gradient-free optimizers perform better because of their faster
energy convergence. However, after introducing the chemical precision, it turned out
that the opposite is true. Gradient-free optimizers have difficulties getting close enough
to the ground state energy.

As a clear winner seems the SLSQP algorithm that leads in both graphs. It has
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a very high probability of reaching the chemical precision, a smaller number of cost
function evaluations, and it was able to reach the chemical precision with all tested
ansatzes without any significant differences in results. Nevertheless, the best optimizer
can vary from the situation. Sometimes, we strive to minimize the number of cost
function evaluations since at the end of the day, it can be what we pay for. Around half
of the optimizers have the probability of reaching the chemical precision of 0% or close
to 0%, they were unable to tackle this problem. There may be a chance to enhance
the results by increasing the number of iterations and fine-tuning the parameters
of optimizers, particularly those utilizing gradients, as some of those gradient-based
optimizers exhibit good performance. However, we have not taken any steps in that
direction.





Conclusion

In this bachelor’s thesis, we focused on a variational quantum eigensolver algorithm
that was used to find the ground state energy of a hydrogen molecule. However, the
performance of the VQE varies based on a chosen ansatz and optimization algorithm.
We evaluated the performance of various ansatzes and optimization algorithms under
ideal conditions on a 4-qubit representation of a hydrogen molecule.

The main outcome of our work is that gradient-based optimizers have a higher
chance of yielding correct results than gradient-free optimizers. The gradient-based
optimizers reached either very good results or completely failed regardless of the chosen
ansatz. We assume that this notable difference in performance was primarily due to
a fixed number of cost function evaluations. There could be a chance to enhance the
performance of bad-performing optimizers, at least the gradient-based, by increasing the
number of iterations and adjusting their parameters. On the other hand, gradient-free
optimizers can operate faster, however, at a cost of a lower probability of reaching the
chemical precision. Also, the choice of ansatz seems to have a greater impact than in
gradient-based optimizers. Another intriguing finding is that gradient-free optimizers
reach better results with 2-layer ansatzes and gradient-based with 3-layer ansatzes, 1-
layer ansatzes do not work at all. The SLSQP (Sequential Least SQuares Programming)
algorithm appears to be the best optimizer in terms of speed and probability of reaching
the chemical precision. Overall, we think that a choice of optimizer is more important
than a choice of ansatz, at least in ideal conditions where noise and errors are not
present.

There are many ways how to advance our work. It would be interesting to try our
benchmark with a broader set of problems or on a problem of a larger scale than just
a hydrogen molecule and see whether our results can be transferred there. Moreover,
we could hand-pick some optimizers, thoroughly investigate their characteristics, and
adjust their parameters to maximize their effectiveness. Furthermore, experimenting
with this benchmark on a simulator incorporating noise and errors would provide a more
realistic assessment of the optimizers’ capabilities. Another option is to execute this
benchmark on a real quantum computer. However, this would be a costly approach.
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Appendix A

Source code

All source files for this project are publicly available in this GitHub repository: https:
//github.com/misosvec/optimization-of-variational-quantum-eigensolvers.
Files ansatzes.py and optimizers.py handle an initialization of ansatzes and
optimizers. File benchmark.py runs the VQE in a multiprocessing manner and saves
produced data to a CSV file. Juptyer notebook visualizations.ipynb contains all
visualizations of circuits, qubits, and gates used in our thesis. Plots representing results
are located in file results.ipynb.
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