
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Extending MIDI encoding with metadata
from harmonic analysis of classical

music
Bachelor Thesis

2024
Jakub Tarhovický

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Extending MIDI encoding with metadata
from harmonic analysis of classical

music
Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: RNDr. Andrej Ferko, PhD

Bratislava, 2024
Jakub Tarhovický

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Jakub Tarhovický
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Extending MIDI encoding with metadata from harmonic analysis of classical
music
Rozšírenie kódovania MIDI o metadáta z harmonickej analýzy klasickej hudby

Anotácia: Textové výstupy automatickej analýzy klasických diel vo forme časových radov
na báze MIDI vyžadujú transformáciu kvôli enharmonickým tónom a iným
problémom. Práca porovnáva publikované transkripčné kódovania, navrhuje
efektívnu modifikáciu a implementáciu.

Cieľ: Prehľad problematiky. Špecifikácia riešenia. Implementácia a vyhodnotenie
výsledkov.

Literatúra: SELFRIDGE-FIELD, E. Beyond MIDI. The Handbook of Musical Codes. MIT
Press. ISBN: 9780262193948.
FERKOVÁ, E. - ADAMOVÁ, S. - ŠUKOLA, M. - URBANCOVÁ, H. 2021.
Computer search tool for harmonic structures and progressions in MIDI files
and possible applications. Clavibus Unitis 2020, Vol. 9. No. 3. [online] https://
acecs.cz/media/cu_2020_09_03_ferkova.pdf.

Kľúčové
slová:

Kódovanie hudby, MIDI, harmonická analýza, rozšírenie MIDI, hudba,
kódovanie

Vedúci: doc. RNDr. Andrej Ferko, PhD.
Katedra: FMFI.KAG - Katedra algebry a geometrie
Vedúci katedry: doc. RNDr. Pavel Chalmovianský, PhD.

Dátum zadania: 14.09.2022

Dátum schválenia: 18.10.2023 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Jakub Tarhovický
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Extending MIDI encoding with metadata from harmonic analysis of classical
music

Annotation: The text outputs of the automatic analysis of classical works in the form
of MIDI-based time series require transformation due to enharmonic tones
and other phenomena. The project compares published transcription encodings
beyond MIDI, proposes an effective modification and implementation.

Aim: Previous work overview. Software specification. Implementation and
evaluation of the results.

Literature: SELFRIDGE-FIELD, E. Beyond MIDI. The Handbook of Musical Codes. MIT
Press. ISBN: 9780262193948.
FERKOVÁ, E. - ADAMOVÁ, S. - ŠUKOLA, M. - URBANCOVÁ, H. 2021.
Computer search tool for harmonic structures and progressions in MIDI files
and possible applications. Clavibus Unitis 2020, Vol. 9. No. 3. [online] https://
acecs.cz/media/cu_2020_09_03_ferkova.pdf.

Keywords: Musical encoding, MIDI, harmonic analysis, MIDI extension, music, encoding

Supervisor: doc. RNDr. Andrej Ferko, PhD.
Department: FMFI.KAG - Department of Algebra and Geometry
Head of
department:

doc. RNDr. Pavel Chalmovianský, PhD.

Assigned: 14.09.2022

Approved: 18.10.2023 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor

Acknowledgments: I would like to thank my supervisor Doc. Andrej Ferko for
introducing me to the topic of this thesis and for guiding and inspiring me during the
writing and research process. My gratitude also goes to Michal Šukola, who answered
any question I had concerning his algorithmic harmonic analysis and provided me with
the source code of the algorithm; and prof. Eva Ferková, who has reviewed parts of
my work and helped me discover issues within it. I thank my family and friends, who
have always supported me throughout my studies.

v

Abstrakt

Práca analyzuje rôzne digitálne kódovania hudby a porovnáva ich silné a slabé stránky.
Predstavuje nové rozšírenie pre Standard MIDI File formát, ktoré umožnuje ku prehrá-
vacím dátam MIDI súboru pridať ich harmonicku analýzu. Navyše, sme vytvorili pro-
gram v jazyku Java, ktorý rozširuje .mid súbor o výsledky algoritmickej harmonickej
analýzy.

Kľúčové slová: hudobné kódovanie, MIDI, MIDI rozšírenie, harmonická analýza,
hudba, kódovanie

vi

Abstract

This thesis examines numerous digital encodings of music and compares their unique
strengths and weaknesses. We introduce an extension to the Standard MIDI File
format which allows the coupling of the MIDI playback data with its harmonic analysis.
Additionally, we have created a proof-of-concept Java program which extends a .mid
file with the results of an algorithmic harmonic analysis.

Keywords: musical encoding, MIDI, MIDI extension, harmonic analysis, music, en-
coding

vii

viii

Contents

Introduction 1

1 Encoding music 3
1.1 Sound-related codes . 3
1.2 Notation-related codes . 5

1.2.1 DARMS . 5
1.2.2 MusiXTeX and PMX . 5
1.2.3 XML-based codes . 7

1.3 Summary . 13

2 MIDI 15
2.1 The Standard MIDI File Format . 15

2.1.1 The Header chunk . 15
2.1.2 The Track chunk . 16

2.2 SMF Extensions . 18
2.2.1 NoTAMIDI . 18
2.2.2 MIDIPlus . 19
2.2.3 Expressive MIDI . 20

2.3 Summary . 22

3 Harmonic analysis 23
3.1 Harmony . 23

3.1.1 Chords and their Harmonic function 23
3.2 Algorithmic Harmonic analysis . 24

3.2.1 The Algorithm . 24
3.2.2 Algorithm output . 25

4 HarmonicMIDI extension 27
4.1 HarmonicMIDI definition . 27

4.1.1 Extension Tag Meta-Event . 28
4.1.2 Enharmonic Pitch Meta-Event 28

ix

4.1.3 Chord Section Meta-Event . 28
4.1.4 Chord Type Declaration Meta-Event 30
4.1.5 Harmonic Function Meta-Event 30
4.1.6 HMIDI Key Signature Meta-Event 31
4.1.7 Scale Declaration Meta-Event 31
4.1.8 Scale-Key Meta-Event . 32

4.2 Implementation . 32

Conclusion 33

Appendix A 37

x

List of Figures

1.1 The output of the MusiXTeX and PMX encoding above. The first two
bars of Sonata K545 by W.A. Mozart [19]. 6

1.2 A representation of the MusicXML coding above in standard notation . 9

2.1 Meta-event types [21] . 17
2.2 NoTAMIDI Meta-events [22] . 19
2.3 MIDIPlus Enharmonic pitch values [22] 20
2.4 Expressive MIDI encoding-table 0 [22] 21
2.5 Expressive MIDI bit-flags for isolated symbols [22] 21

3.1 A IV-V-I chord progression in C . 24

4.1 The "Ode-to-Napoleon" hexachord set at C 30
4.2 Modern C Phrygian mode . 32

xi

xii

Introduction

Encoding music in a digital form is an arduous task. Firstly, there are many tech-
nical pitfalls to overcome: the size of the resulting file, processing efficiency or the
development of the necessary software tools to facilitate the writing and reading of the
format. The structure of the encoding itself needs to be general enough to accommo-
date diverse forms of musical expression, but simple enough to be easy to encode in
and parse-through.

A musical piece has numerous aspects. To name a few: the sound, the graphical
representation of the piece, performance-related information or higher analytical in-
formation, such as harmonic analysis [22]. To create a truly all-encompassing musical
code would be an impossible and ultimately impractical effort. The starting point of
the design process behind each musical encoding should be determining which musical
aspects are to be its focus.

The primary focus of the XML-based musical encodings — MusicXML and MEI
— is notation. MusicXML was designed as an interchange format between different
scorewriting software [20]. As a result, its syntax is relatively simple. On the other
hand, MEI has a more complex structure which can encode many more aspects of the
musical piece [16].

MIDI’s purpose is to facilitate music recording and playback, but is lacking in
other domains. In an effort to broaden its capability, numerous MIDI extensions were
developed — extensions for encoding analytical, performance or notational data beyond
the scope of the original file format [22].

This thesis aims to define a new extension to the Standard MIDI File (SMF) format
which would allow the coupling of the MIDI playback data with its harmonic analysis.
This aim is an original approach to the problem of storing harmonic data for the
subsequent statistical and musicological study of the works.

As a proof-of-concept, we have also developed two programs in the Java program-
ming language which allow the user to add harmonic analysis data to a .mid file and
subsequently read and process this data. We have used an algorithmic harmonic analy-
sis program developed by Mgr. Michal Šukola in collaboration with prof. Eva Ferková
for the analysis of the MIDI files [12].

1

2 Introduction

Chapter 1

Encoding music

Attempts at encoding music are known from remote times. The earliest evidence of a
musical code was unearthed in the Babylonian city of Nippur [18], dating as far back
as 1400 BC. The ancient Greeks had a notation system of their own [5], as so did the
ancient Hindus [15]. The standard Western notation system first appeared in its most
rudimentary form in the 9th century, increasingly becoming more complex and ornate
as time went on [8]. However, notations written by hand are fundamentally limited in
their scope.

The introduction of the computer, with its power and memory, has provided us
with great possibilities to transcribe musical pieces more completely and in far greater
quantity. A total representation of music, to encode every bit of a musical composition,
has been a goal pursued in the past. However, in practice, this has proven cumbersome
[22]. A musical code has to make some sacrifices, prioritize certain aspects over others.

We distinguish three kinds of musical codes based on their application. Codes
designed for graphical or notational purposes, codes designed for the playing of sound
and codes designed for analysis [22]. In practice, there’s a great difference between the
notational codes and the latter two and the conversion between these formats is never
as straightforward as it would appear.

This thesis is focused primarily on the MIDI file format. We devoted an entire
chapter to it and its extensions. However, it is important to be acquainted with some
of its many alternatives as well.

1.1 Sound-related codes

Csound is a sound and computing system, originally developed by Barry Vercoe of
MIT in 1985 [1]. It’s a programming language of sorts, with conditions, IF statements
and variables. The user composes a musical piece much like he would write any other
programming code.

3

4 CHAPTER 1. ENCODING MUSIC

A similar project currently in early development is Dflat [2] of Martin Ilčík, a
researcher based in TU Wien. The syntax of the code is derived from C#.

Dflat code example

func t i on Main () {
@harmonies = new [] { 1 , 4 , 5 , 3 } ;
@degrees = new [] { −7, −1, 2 , 4 , 7 } ;
@v e l o c i t i e s = new [] { 0 . 75 , 0 . 65 , 0 . 5 , 0 .55 } ;
@phrases = 4 ;
@bars = 4 ;
@ve loc i ty = 0 . 7 5 ;
@degree = 0 ;
@span = @phrases ∗ @bars ∗ 4/3 ;
@Spl it (@phrases) . Then(idx => {

@min = idx . Index ∗ 4 ;
@max = @min + 8 ;
@ve loc i ty = @ve l o c i t i e s [idx . Index] ;

}) ;
@Spl it (@bars) . Then(idx => {

@harmony += @harmonies [idx . Index] ;
}) ;
@Spl it (@degrees . Length) . Then(idx => {

@degree += @degrees [idx . Index] ;
@time −= idx . Index ∗ @span + (idx . Index ∗ 0 .1 ∗ @span) ;
@span ∗= @degrees . Length ;

}) ;
}

It would be very difficult and tedious to encode already existing longer works, such
as symphonies, in this way. However, it is interesting to hear complex and pleasant-
sounding compositions encoded in such compact files. Music in general follows rules
and algorithms — its structure is in many ways predictable. We can take advantage of
this fact when designing future digital musical encodings. These musical programming
languages also offer a creative new way to compose music through the syntax and
process of standard computer programming, leading to unique and interesting results.

1.2. NOTATION-RELATED CODES 5

1.2 Notation-related codes

1.2.1 DARMS

One of the earliest attempts at digitally encoding music with the goal of notation is
DARMS, short for Digital-Alternate Representation of Musical Scores. Its development
was begun by Stefan Bauer-Mengelberg and Melvin Ferentz in 1961 [10], the motivation
being the rising cost of musical engraving. The task of encoding musical scores was
soon discovered to be an arduous one, since standard musical notation is rife with
exceptions and irregularities [11].

Originally developed with punch cards in mind, the DARMS encoding language
has survived and developed decades after its creation, spawning many dialects with
diverse application [22]. Today, DARMS sees no practical use. However, as the pioneer
project in its field, which first had to wrestle with the issues of usability, irregularity
and completeness, it deserves special inquiry. To learn more about DARMS and its
dialects see the Beyond MIDI book starting at Chapter 11 [22].

1.2.2 MusiXTeX and PMX

MusiXTeX is set of music typesetting macros for TeX, based on the earlier MusicTeX
[9]. It allows users to create detailed musical scores within TeX documents. Since its
syntax is archaic and difficult to use, it is recommended to use the PMX preprocessor
which compiles an easier PMX input language into MusiXTeX macros.

MusiXTeX example, see figure below

\ input musixtex
\parindent10mm
\setname1{Piano}
\ s e t s t a f f s 1 2
\ genera lmeter {\ meter f rac44 }
\nobarnumbers
\ s t a r t e x t r a c t
\Notes\ ibu0 f0 \qb0{ cge }\ tbu0\qb0g | \ h l j \en
\Notes\ ibu0 f0 \qb0{ cge }\ tbu0\qb0g | \ q l l \ sk\ q l n\en
\bar
\Notes\ ibu0 f0 \qb0{dgf } | \ qlp i \en
\ notes \ tbu0\qb0g | \ i b b l 1 j 3 \ qb1j \ tb l 1 \qb1k\en
\Notes\ ibu0 f0 \qb0{ cge }\ tbu0\qb0g | \ h l j \en
\ endextract
\end

6 CHAPTER 1. ENCODING MUSIC

PMX example

2 1 4 4 4 4 0 0
1 1 20 0 .12
Piano
t t
. /
% Bars 1−2
c8 g+ e g c− g+ e g | d g f g c− g+ e g Rb /
c2+ e4 g | bd4− c1 d c2 /

Figure 1.1: The output of the MusiXTeX and PMX encoding above. The first two bars
of Sonata K545 by W.A. Mozart [19].

A PMX code consists of two parts: the preamble and the body [19]. Lines beginning
with % are comments and are disregarded by the processor. The preamble contains
musical and typographical specifications for the score. The first part of the preamble
must contain 12 numerical parameters separated by one or more whitespaces. Their
meaning are as follows:

The first two numbers specify the number of staves and the number of musical
instruments respectively. The following four numbers are related to the meter. The
first two represent the logical meter PMX uses to calculate the length of the bar — the
first number representing the nominator and the second the denominator of the meter.
The second pair merely define the appearance of the meter in the printed output. The
7th parameter specifies the number of pickup bars in the piece — a pickup bar refers
to bar whose number of beats doesn’t align with the ones set by the meter.

What follows is the key signature — positive integers specify the number of sharps
and negative integers the number of flats. The last four numbers are related to the
layout of the score: the number of pages, the number of systems, the height of a staff
and the indentation of the first system from the left margin.

After the base characteristic parameters are defined, the preamble follows with a
new line for every system, relating the name appearing in the indentation before the
system. In the example above, the only system defined in the PMX code is named

1.2. NOTATION-RELATED CODES 7

"Piano". The next line is a string specifying the clef for each stave of the composition.
The preamble ends with the path name of the directory the user wants the files written
to.

The rest of the PMX file is the body [19]. It may begin with a couple of lines setting
global options for the piece — this is referred to as the body’s header. What follows
is the code of the music input itself. The basic unit of this encoding is called a block,
each consisting of 1 to 15 bars and relates to a particular staff. Staves are referenced
sequentially, beginning with the lowest staff. Bars within blocks may be separated by
a | symbol — this is not required, but helps with the human-readability of the code.
Distinct voices within a staff are demarcated by a //, while a block ends with the /
symbol.

The two main features of a PMX note are its pitch and duration. The pitch is
determined by the note name and octave. The note name is encoded as a lowercase
letter of the natural with the possible accidental following it — s and ss for sharp and
double sharp, f and ff for flat and double flat and n for natural. The octave can be
encoded in numerous ways: explicitly — a second (after the duration number) unsigned
digit specifying the pitch; implicitly — inherited from the previous note; and relatively
— one or more octaves higher or lower from the previous note indicated by one or
more + or - signs. The basic duration without elongating dots is indicated by the first
number following the note name — either 9 — double-whole note, 0 — whole note, 2
— half note, 4 — quarter note, 8 — eigth note, 1 — sixteenth note, 3 — thirty-second
note, 6 — sixty-fourth note. Many more aspects of a note can be encoded, such as
dots, ornaments and so on [19].

Some features of MusiXTeX are not directly accessible through the PMX program-
ming language. However, PMX preprocessor supports the insertion of MusiXTeX code
in the PMX file to alleviate this problem [19].

In conclusion, MusiXTeX and PMX is sufficient for encoding the notation of most
western classical works. The PMX code is very human-readable and especially easy
to write in without the need for any external editors — a consequence of its bare-
bones and simple syntax. However, beyond the purpose of notation, the codes lack
standardized features and structures to allow coupling the musical data with metadata
for the analysis of the encoded musical works.

1.2.3 XML-based codes

Extensible Markup Language, or XML for short, is a file format and markup language
designed for storing and exchanging data in a platform-independent way [24]. The base
syntax of the XML file format is simple and flexible, consisting of tags, their attributes

8 CHAPTER 1. ENCODING MUSIC

and the data itself. In contrast to some other markup languages, such as HTML or
Markdown, it does not have any predefined tags and its up to the user to introduce
their own. XML schemas are descriptions of structural and data-related constraints
which define an XML document type. Documents that adhere to the basic syntax of
XML are called well-formed and if they also adhere to their schema, they are referred
to as valid [24].

Considering the qualities of the format, it is not hard to imagine XML would lend
itself well as the groundwork for notation-focused encoding of music. We provide an
overview of two such codes — the MusicXML format and MEI.

MusicXML

MusicXML is a XML-based format for encoding musical scores. Developed by the
W3C Music Notation Community Group, its purpose is to facilitate the interchange of
musical information among different music-related software [20], thought it may also
be used as a standalone sheet music distribution format [13]. Its first version was
released in January 2004. Today, it’s supported by 271 different programs, including
scorewriting software, like Musescore and Sibelius, as well as digital audio workstations
(DAWs), such as Cubase and Logic Pro [23]. Below is a simple example of a MusicXML
document:

MusicXML 4.0 example [13]

<?xml ve r s i on ="1.0" encoding="UTF−8" standa lone="no"?>
<!DOCTYPE score−partwi se PUBLIC

"−//Recordare //DTD MusicXML 4.0 Partwise //EN"
"http ://www. musicxml . org /dtds / partwi se . dtd">

<score−partwi se v e r s i on ="4.0">
<part−l i s t >

<score−part id="P1">
<part−name>Music</part−name>

</score−part>
</part−l i s t >
<part id="P1">

<measure number="1">
<at t r i bu t e s >

<d i v i s i o n s >1</d i v i s i o n s >
<key>

<f i f t h s >0</ f i f t h s >
</key>
<time>

1.2. NOTATION-RELATED CODES 9

<beats >4</beats>
<beat−type>4</beat−type>

</time>
<c l e f >

<sign>G</sign>
<l in e >2</l i n e >

</c l e f >
</a t t r i bu t e s >
<note>

<pitch>
<step>C</step>
<octave >4</octave>

</pitch>
<duration >4</durat ion>
<type>whole</type>

</note>
</measure>

</part>
</score−partwise>

Figure 1.2: A representation of the MusicXML coding above in standard notation

The root element type of this particular MusicXML document is <score-partwise>.
This means the document is divided into musical parts with each part being further
divided by measures. This is in contrast with the <score-timewise> element, which
divides the document into measures made up of parts. Every MusicXML document
begins with the <part-list> header which lists off all the parts of the score and assigns
them a unique ID.

Since this a <score-partwise> document, what follows are the parts themselves
made up of their measures. The <attributes> element of a measure contains informa-
tion required to interpret its musical content, such as the key, time signature, clef and
so on. This particular measure includes one other element — <note>. The pitch of
the note is encoded in Scientific pitch notation (SPN), specifying the note name and
the octave separately. The division value is 1 per quarter note, hence the the duration
value of a whole note is 4. Besides pitch and duration information, we can also express

10 CHAPTER 1. ENCODING MUSIC

many other qualities of a note, including the beam, note-head or playback information.
The document may contain many other elements. Of interest to us are the ones

related to harmonic analysis. The <harmony> element assigns a chord to a musical
section [13]. The chord is identified by the kind of chord, e.g. major, half-diminished,
etc., and its root note. The root note is to be encoded in two ways, either by the
root note name or the its position within the scale. Borrowed chords may be encode
as a sequence of chords, each with their own <kind> element. For an example, a V
to II chord would be represented by chord with a 5 numeral and second one with a 2
numeral.

MusicXML <harmony> element example

<harmony>
<root>

<root−step>C</root−step>
</root>
<kind use−symbols="yes">major−seventh </kind>

</harmony>

The <grouping> element allows for diverse forms of analysis [13]. Its parent at-
tribute is a measure in the partwise format, or a part in the timewise format. Its only,
but syntactically required attribute is @type, specifying the scope of the element —
the possible values are: start, stop and single.

The <grouping> element may contain one or more <feature> elements, which
hold the analysis information itself. The @type attribute may be used to differentiate
between the kinds of analysis. Apart from what has already been described, MusicXML
currently defines no further specification on the structure of the values contained in
the <grouping> element — though the authors do mention the possibility of such
specification in future MusicXML versions [13].

MusicXML <grouping> element example

<grouping type="s t a r t ">
<f e a tu r e type="moti f">

Fate knocking at the door
</fea ture >

</grouping>
. . .

<grouping type="stop"/>

A regular MusicXML file can be quite large — much larger than its MIDI or
application-specific file counterparts. To alleviate this issue a zip-based compressed

1.2. NOTATION-RELATED CODES 11

MusicXML file format was introduced, reducing the standard MusicXML file roughly
to the size of a corresponding MIDI file [13].

MEI

The Musical Encoding Initiative (MEI) is an organization leading a community-driven
effort to define an open-source, versatile and platform-independent musical encoding
with a machine-readable structure [16]. The term MEI also describes the XML-based
file format developed by the organization. The following MEI example relates the same
information as the previous MusicXML example:

MEI 5 example

<mei xmlns="http ://www. music−encoding . org /ns/mei">
<meiHead>

<f i l eDe s c >
<t i t l eS tmt >

<t i t l e />
</t i t l eS tmt >
<pubStmt/>

</f i l eDe s c >
</meiHead>

<music>
<body>

<mdiv>
<score>

<scoreDef meter . count = "4" meter . un i t ="4">
<staf fGrp>

<s t a f fD e f c l e f . shape="G" c l e f . l i n e ="2" n="1" l i n e s ="5"/>
</sta f fGrp>

</scoreDef>
<sec t i on >

<measure>
<s t a f f n="1">

<layer>
<note pname="c" oct="4" dur="1"/>

</layer>
</s t a f f >

</measure>
</sec t i on >

</score>

12 CHAPTER 1. ENCODING MUSIC

</mdiv>
</body>

</music>
</mei>

The code example above uses <mei> as its root element. This element must begin
with the <meiHead> header, which may include meta-data related to the encoding,
such as its title, the author of the encoding, the composer of the music, the publisher
and so on. It’s followed by the <music> element, containing the musical text itself.
The musical text can describe anything from a simple piano prelude to complex forms
of music, such as operas, or entire anthologies of a composer’s life work [17].

The <score> elements contains an entire score. It begins with the <scoreDef>
element, which holds important meta-data for the score. In this particular example,
the meter, staff and clef is encoded.

MEI provides elements and attributes for the systematic encoding of different forms
of musical analysis. It offers many attributes to describe relationships between musi-
cal elements. For example the @sameas attribute, denoting the sameness of musical
elements, or the @next and @previous attributes, which allow the user to define a se-
quence of musical elements [17]. The @inth attribute may be used to encode harmonic
intervals between pitches occurring at the same time.

MEI separates the definition of harmonic labels and their assignment to musical sec-
tions. The <chordTable> element holds the chord definitions. It may contain multiple
<chordDef> elements, which describe the chords themselves. Within the <chordDef>
element, each pitch belonging to the chord is represented by a <chordMember> ele-
ment. The <chordDef> element should include an @xml:id attribute, assigning the
chord definition a unique ID with which it is to be referenced in following <harm>
element declarations within the score using the @chordref attribute [17].

<chordDef> element example

<!−− Chord de f ined in scoreDef −−>
<chordDef xml : id="harmonychordA">
<chordMember oct="2" pname="a"/>
<chordMember oct="3" pname="e"/>
<chordMember acc id . ges="s " oct="4" pname="c"/>
<chordMember oct="4" pname="e"/>
<chordMember oct="4" pname="a"/>
</chordDef>
<!−− Later in musica l t ex t −−>
<harm chord r e f="#harmonychordA" tstamp="1">A</harm>

1.3. SUMMARY 13

The MEI encoding distinguishes itself from the more widespread MusicXML by its
expressive power. MusicXML’s primary goal is to be an interchange format between
different notational software. MEI can also serve this purpose, but beyond this can
encode very diverse and elaborate notational information coupled with its intellectual
content and interpretation in a structured and systematic manner. As an example of its
expressivity, the MEI format supports notation systems beyond the Common Western
Notation, such as medieval and renaissance-era notations [16].

This is possible by a complex, abstractive and versatile schema definition which
grants the user great freedom in what they are able to encode. As a result, the MEI
encoding is well suited for many academic purposes or as a standalone musical encoding
format for digital libraries and repositories.

1.3 Summary

Each of the musical encodings mentioned have their unique strengths and weaknesses
stemming from their intended use case. The musical programming languages, like
Csound and Dflat, introduce the option of encoding music through the language of
algorithms. This approach can be used to significantly reduce the size of the files
and opens up the possibility to place harmonic concepts, such as chord progressions,
at the lowest level of the musical encoding — to build the musical piece with all its
particularities around a set harmonic structure rather than the inverse of assembling
the harmonic concepts post hoc from an unstructured stream of notes. However, it’s
difficult to encode already existing works in this manner.

The PMX preprocessor for the MusiXTeX encoding offers simple and very human-
readable notational code, but lacks other features. The two XML-based codes —
MusicXML and MEI — are excellent notation-focused musical encodings. The MEI
encoding in particular offers many features for all kinds of complex musicological anal-
ysis. However, the formats are too verbose for cases when notational data is not
important.

14 CHAPTER 1. ENCODING MUSIC

Chapter 2

MIDI

MIDI is an acronym for Musical Instrument Digital Interface. It’s a technical standard
that facilitates transmission, recording and storage of musical data [22].

It was originally developed as a real-time protocol to enable communication be-
tween separate hardware (e.g. an electronic keyboard connected to a computer) in
the 1980s [6]. Before the widespread adoption of MIDI, each manufacturer had their
own proprietary standard to synchronize instruments, which proved cumbersome and
limiting to the growth of the electronic music industry.

The Standard MIDI File (SMF), which it describes, holds no audio information.
Instead it contains a sequence of MIDI (and non-MIDI) events such as note on, note off
and so on. It is the responsibility of the software which plays the MIDI file to translate
these events into sound. [6].

The SMF file contains 2 kinds of sections or chunks [22].

2.1 The Standard MIDI File Format

2.1.1 The Header chunk

A SMF file begins with a 14 byte long Header chunk. It includes information that
pertains to the whole composition. [22] The syntax of the Header chunk is as follows
[14]:

Header chunk syntax

Header Chunk := "MThd" + <Header Length> + <Format> +
+ <Number o f Tracks> + <Time Div i s ion>

The "MThd" string (4 bytes) specifies that this is a Header chunk. Header length
(4 bytes) is always 6, referring to the 6 bytes that follow. The format (2 bytes) can be
one of three values: 0 - the MIDI file has exactly one track; 1 - the MIDI file contains
multiple tracks forming one sequence; 2 - the file has multiple tracks but each one

15

16 CHAPTER 2. MIDI

represents an independent sequence e.g. with their own tempo. The number following
the format value refers to the number of tracks contained in the file (2 bytes). The
time division (2 bytes) specifies how to convert MIDI ticks to real time: either "ticks
per beat" or "frames per second".

The Header file is followed by one or more Track chunks.

2.1.2 The Track chunk

A Track chunk contains the data of a single MIDI Track. Below is its syntax [14]:

Track chunk syntax

Track Chunk := "MTrk" + <Track Length> + <MTrk Event> + . . . +
+ <MTrk Event> + <End o f Track Meta−event>

The "MTrk" string (4 bytes) specifies this is a Track chunk. Track length (4 bytes)
describes the length of the Track in question. What follows is a sequence of Track
chunk events, always ending with the End-of-track Meta-event. The syntax of a MTrk
event is as follows [14]:

MTrk event structure

MTrk Event := <Delta Time> +
+ <MIDI Event> OR <SysEx Event> OR <Meta−event>

Delta time refers to the time passed after the previous event in units specified in
the Header chunk. Its byte-length can vary. There are three types of events: MIDI
events, Meta-events and System-exclusive events.

A) MIDI Events

A MIDI event is any Channel MIDI message. It begins with a status byte — the
first 4 bits specify event type, the last 4 the channel (instrument output). The status
byte may be omitted if the previous event was a MIDI channel message with the same
status, this is known as the running status.

Two MIDI events are of particular importance to us — the Note On and Note Off
events. Their syntax is outlined below:

Note On and Note Off event syntax

Note On Event := 1001nnnn 0kkkkkkk 0vvvvvvv
Note Off Event := 1000nnnn 0kkkkkkk 0vvvvvvv

The first byte of the event is the status byte. What follows are 2 data bytes: the
first specifying the key of the note, the second the velocity with which its to be played.

2.1. THE STANDARD MIDI FILE FORMAT 17

B) Meta-events

Meta-events are used to relate information such as key signature, tempo, instrument
name, copyright notice etc. [22].

Meta-events are distinguished from other events by their status byte, which has a
value of 0xFF. This is followed by a type byte, variable length value byte and the data
of the message itself [21].

Meta-event syntax

Meta−event := 0xFF + <Meta−event Type> +
+ <Length Byte> + <Message Bytes>

Currently, the standard MIDI file format defines 15 different Meta-event types:

Figure 2.1: Meta-event types [21]

Two Meta-events express information that is especially important for the purpose
of harmonic analysis:

First, the Time signature Meta-event which holds information of the current time
signature of the composition. Its syntax is as follows [14]:

Time signature Meta-event syntax

TimeSIG := 0xFF 0x58 0x04 0xNN 0xDD 0xYY 0xZZ

The first three bytes specify that this is a Meta-event of the Time signature type
with 4 data bytes. The following two bytes represent the nominator and denominator
of the time signature. The denominator is encoded as a negative power of two. The
0xYY parameter represents the number of MIDI ticks in a metronome tick, while 0xZZ
specifies the number of notated 32nd-notes in a MIDI quarter-note.

The second Meta-event is the Key signature:

Key signature Meta-event syntax

KeySIG := 0xFF 0x59 0x02 0xYY 0xZZ

18 CHAPTER 2. MIDI

Here the 0xYY byte expresses the number of flats (when the number is negative)
or sharps (when the number is positive) in the specified key. The last byte represents
if the key is major or minor, 0 or 1 respectively. For examples if 0xYY was to hold the
value -1 and 0xZZ a 0, the specified key would be F major.

MIDI processing programs should be able to ignore Meta-events which are not
defined in the table above, as more Meta-events may be introduced in the future [14].
Syntax requires Meta-events to be stored within individual Track chunks, even if they
describe events pertaining to all tracks of the MIDI sequence.

C) System-exclusive Events

System-exclusive or SysEx events pertain to a particular hardware system and man-
ufacturer of the receiving MIDI device. Their lengths are variable and can be quite
extensive [22].

They begin with the status byte of 0xF0 followed by a manufacturer ID byte as-
signed to them by the International MIDI Association. If a developer does not have
an assigned ID, they can either use someone else’s — with permission from the manu-
facturer and on the condition that they respect the format of the SysEx messages - or
use the ID 0x7D, which is reserved for non-commercial use and has no defined message
formats [4].

2.2 SMF Extensions

The standard MIDI file format, designed primarily for the recording and playing of
music, lacks many features necessary for notation or harmonic analysis [22]. For ex-
ample, the MIDI doesn’t differentiate between enharmonic notes (notes of the same
pitch, but with different names e.g. Fb and E). To alleviate these issues, many MIDI
extensions were defined, adding to or modifying events of the original MIDI standard.

These extensions differ in their purpose and degree of compatibility with the stan-
dard MIDI file format. We will examine a few existing ones which are described in the
Beyond MIDI book [22] and, in the chapter four, introduce a new extension designed
for the purpose of harmonic analysis.

2.2.1 NoTAMIDI

The NoTAMIDI file extension was developed at Oslo University in the late 1980s [22].
It was presented to the International MIDI Association and the MIDI’s Manufacturers’
Association, but neither took action. The specifications are now in public domain.

2.2. SMF EXTENSIONS 19

The extension adds 7 new Meta-events and modifies 2 existing ones. The figure
below shows all Meta-event defined in the extension.

Figure 2.2: NoTAMIDI Meta-events [22]

A notable feature of the NoTAMIDI extension is the introduction of a track (chan-
nel) byte for Meta-events [22]. The extension modifies the original Meta-events of Time
signature and Key signature to specify the track they are assigned to. The extension
also defines ways to add notation-related information such as clef signs, accents, dy-
namics and enharmonic pitch to the MIDI file. The value of type bytes of the new
Meta-events are not defined.

The enharmonic pitch is expressed by the Enharmonic Pitch Meta-event which may
precede a note [22]. It doesn’t change the pitch of the note, rather expresses how it is
to be notated. The Meta-event contains one data byte. The proposed codes are: 0 —
sharp sign, 1 — flat sign, 2 — double sharp sign, 3 — double flat sign and 4 — natural.
The current key signature should be taken into account when adding Meta-events of
this type, e.g. a F sharp note does not require a sharp sign in the G Major. Pairs
of notes and Meta-events which are impossible, such as a D note expressed with one
sharp in C Major, are to be ignored.

2.2.2 MIDIPlus

MIDIPlus is a proposed MIDI extension designed for the purpose of musical notation
[22]. It encodes extra-musical information within the velocity bytes of Note On and
Note Off events.

The enharmonic spelling of notes is to be stored in the last two low-order bits of
the Note On event. Every MIDI note can be spelled 3 different ways using 2 or fewer
accidentals. Figure 2.3 shows the proposed values of the spellings.

Spellings with more than two accidentals can not be encoded in this way, however
they are exceptionally rare in musical notation. The resulting MIDI files will still
sound relatively unchanged as the differences in velocities are negligible for the listener.

20 CHAPTER 2. MIDI

Figure 2.3: MIDIPlus Enharmonic pitch values [22]

Similarly, the extension also proposes slurs to be encoded using 4 bits of a velocity
byte through "Slur On" and "Slur Off" flags, though it can not encode more than 3
concurrent slurs.

The authors of the extension noted that the Note Off event velocity offers lots of
room for encoding information, like stem direction, without encroaching on the stan-
dard uses of MIDI files as most MIDI players ignore the value of this byte altogether.

2.2.3 Expressive MIDI

The extension introduces a new System-exclusive event. Its ID is set at 0x7D (the
reserved number for non-commercial uses) and allows the user to store multitude of
notation-related data. The expEvent is placed immediately after the Note Off event of
the related note. Symbols which are not related to notes, such as bar lines or clefs, can
be placed freely [22].

The syntax of an expEvent is:

expEvent syntax

expEvent := 0xF0 0x7D 0XXYYYYY 0ZZZZZZZ 0xF7

The two data-bytes encode one symbol. If multiple symbols were to relate to
one note, the expEvent may contain multiple data-bytes. The variable XX is the
encoding-table number. YYYYY specifies symbol-specific parameters. The last data-
byte encodes the symbol number within the encoding-table.

The extension defines three encoding-tables. The first two contain isolated symbols,
meaning their shapes are invariable. The third contains extensible symbols, such as
slurs or pedal markings [22].

2.2. SMF EXTENSIONS 21

Figure 2.4: Expressive MIDI encoding-table 0 [22]

Figure 2.5: Expressive MIDI bit-flags for isolated symbols [22]

22 CHAPTER 2. MIDI

2.3 Summary

Although the Standard MIDI File format was created for the purpose of sound recording
and playback, it can serve as a stable foundation for other purposes, such as musical
notation or analysis. The format is quite versatile and offers many ways to extend it
beyond its original use case.

Despite this, we struggled to find MIDI extensions other than the four described
in the Beyond Midi book. Of these four MIDI extensions1, none were designed for the
purpose of harmonic analysis. At best they offered a few features useful for analysis,
such as enharmonic spelling, but all lacked ways to encode information crucial in the
domain of harmonic analysis, such as chords.

1The one MIDI extension present in the Beyond MIDI book but not described in this thesis is
Augmented MIDI, designed to include performance-related information [22].

Chapter 3

Harmonic analysis

3.1 Harmony

The main characteristic of tonal music is the alternation of an increasing tension and
its subsequent resolution [12]. Though there are many aspects one can observe in a
musical composition, such as melody, tempo or timbre, this ebbing movement is the
domain of harmony.

3.1.1 Chords and their Harmonic function

Harmony is the simultaneous sounding of different tones. Three or more tones playing
together is known as a chord, though we also recognize broken chords as chords in
most melodic contexts. Chords are the fundamental elements of inquiry in harmonic
analysis, the bearers of tension and resolution [12], and in turn the most important
elements in the expressive and emotional force of a musical piece. Harmonic analysis
focuses on three chords relative to the key of the musical section. These are the Tonic,
the Subdominant and the Dominant [12]:

• The Tonic’s root note is the beginning of the scale. Its function is stability,
resolution, the feeling of home. It serves as the centre of the piece. Musical
sections usually start and end in the Tonic.

• The Subdominant chord begins at the fourth note of the scale. Its function is
centrifugal, stepping away from the stability of the Tonic. It is usually, but not
always, followed by the Dominant.

• The Dominant provides the most amount of tension in the piece. It begins in
the fifth note of the scale. Its function is in turn centripetal: the listener feels a
subjective desire for its resolution in the Tonic.

23

24 CHAPTER 3. HARMONIC ANALYSIS

There are other chords which can be assembled from the notes of the scale. In
harmonic analysis, these chords are said to serve one of the three fundamental chord
functions, depending on the notes they are made of and the musical context they are
surrounded by [12]. For example, the chord beginning in the 6th degree of the scale
can alternately serve the function of the Tonic, if preceded by the Dominant; or the
Subdominant, if it’s to resolve in to the Dominant. Similarly the chord of second degree
can substitute for the Subdominant [12].

A harmonic cadence is the progression of two or more chords that concludes a
musical section [7]. It may be compared to rhyme at the end of a line in a work of poetry.
The frequency of certain cadence cycles combined with the uses of particular tonal keys
and chord class structures may be statistically significant in the differentiation between
musical styles and genres [12].

Figure 3.1: A IV-V-I chord progression in C

3.2 Algorithmic Harmonic analysis

To analyze large repositories of musical works by hand is implausible. Putting aside
the great amount of time and effort it would take, the results of such harmonic analysis
would be prone to mistakes and subjectivity. For this reason, many harmonic analysis
algorithms were developed.

The algorithm we will use was created by Mgr. Michal Šukola in collaboration with
prof. Eva Ferková [12]. The algorithm takes in a MIDI file as its input. It detects
chord classes, keys and harmonic functions of discrete musical sections. The result is a
Harmonic analysis of the composition viewable in the Sibelius program. Implemented
in Java, it works in three phases [12].

3.2.1 The Algorithm

First phase: Chord-class analysis

In the first phase, the algorithm transforms the MIDI file format, to allow it to work
with higher structures such as measures, measure sections, beats, key signatures and

3.2. ALGORITHMIC HARMONIC ANALYSIS 25

time signatures. Each measure is divided in to smaller sections for better chord detec-
tion.

Each measure section is read and searched for possible occurrences of chords, includ-
ing chords in arpeggiated form (a chord played as a series of ascending or descending
notes). They are compared against each other, taking into consideration probability
and the weight of chord tones. Melodic tones are eliminated through the examination
of prevailing length of tones in a measure and whether they are not at a distance of a
third from other tones.

Second phase: Key analysis

This phase uses the results collected by the first phase with additional information
from the score, such as key signatures.

For a known key signature from the beginning of a processed section, the major
and minor key pair is found and either confirmed or rejected, depending on the cor-
responding major or minor chord. It reads tones and detected chords and determines
key depending on the current state. If no key is detected, the algorithm skips to the
next section succeeding the already processed part of the score.

Some chord classes identify the key/scale directly. If the key is known during score
processing, the algorithm assigns the same key up to the moment a tone outside of
the key is found in the measure section. It then seeks its confirmation and applies the
same process for chords that determine the key.

If it is unable to find a key after this processes, it tries to detect the scale structure
by examining the closest group of seven tones to see if they form a major or minor
scale.

Third phase: Harmonic functions identification

The third phase uses the data from the previous two phases. The harmonic functions
are determined according to the scale degree of the root key belonging to the detected
chord.

3.2.2 Algorithm output

The results of the algorithm can be saved in the form of a CSV text file. Here is the
output file describing the first five measures of the Turkish March by W.A. Mozart:

Turkish March harmonic analysis

1 : 4 . 0 : nu l l : nu l l :A MOLL: nu l l : nu l l :m. mid
2 : 4 . 0 : nu l l : nu l l :A MOLL: nu l l : nu l l :m. mid

26 CHAPTER 3. HARMONIC ANALYSIS

3 : 1 . 7 5 : A MINOR_MAJOR_SEVENTH:TERZQUART(3 ,4) :A MOLL:T (I) : [T(I) , I I
, D (V) ,T (I)] :m. mid

3 : 3 . 5 : B DIMINISHED_TRIAD:ROOT(5) :A MOLL: I I : [T (I) , I I , D (V−) , T (
I)] :m. mid

3 : 4 . 0 : nu l l : nu l l :A MOLL: nu l l : [T (I) , I I , D (V) , T (I)] :m. mid
4 : 0 . 7 5 : E MAJOR_TRIAD:ROOT(5) :A MOLL:D (V) : [T (I) , I I , D (V) , T (I)

] :m. mid
4 : 3 . 7 5 : A MINOR_MAJOR_SEVENTH:TERZQUART(3 ,4) :A MOLL:T (I) : [T (I) ,

I I , D (V) , T (I)] :m. mid
4 : 4 . 0 : E MINOR_TRIAD:ROOT(5) :A MOLL:D (V) : nu l l :m. mid
5 : 1 . 5 : nu l l : nu l l :A MOLL: nu l l : nu l l :m. mid
5 : 1 . 7 5 : E MINOR_TRIAD:ROOT(5) :A MOLL:D (V) : nu l l :m. mid
5 : 3 . 2 5 : nu l l : nu l l :A MOLL: nu l l : nu l l :m. mid
5 : 3 . 5 : E MINOR_TRIAD:ROOT(5) :A MOLL:D (V) : nu l l :m. mid
5 : 4 . 0 : nu l l : nu l l :A MOLL: nu l l : nu l l :m. mid

Every line corresponds to a distinct harmonic section. The first column specifies
the measure. The second expresses the end of the section within the measure in quarter
notes. The third and fourth column specify the chord class and the inversion of the
chord respectively. The fifth column assigns a key to the section, while the sixth col-
umn specifies the section’s harmonic function. The next column relates the particular
cadence the section is a part of. Finally, the last column references the name of the
analyzed MIDI file.

Chapter 4

HarmonicMIDI extension

In this chapter we introduce a new MIDI extension facilitating the storage of harmonic
analysis data. Of the current available options for musical encoding, we believe the
SMF is the best choice for this purpose.

Firstly, the SMF is an industry standard. Nearly all DAWs and scorewriting pro-
grams offer the option of exporting the musical compositions to a .mid file. There are
many large repositories of classical (and non-classical) works available on the internet,
such as kunstderfuge.com [3]. In turn, many software tools and libraries were developed
for manipulating MIDI files.

Secondly, the syntax of the format itself has many advantages, being compact, easily
parsable and extendable. The Note On and Off events combined with their timing
information are ideal atomic elements on which harmonic analysis can be performed
and higher musicological concepts can be defined.

4.1 HarmonicMIDI definition

The HarmonicMIDI is a SMF extension designed for the purpose of harmonic analysis.
Three technical aims influenced our design process: firstly, to ensure total compatibility
with SMF; secondly, to not in any way hinder the playback of the files; finally, for the
extension to be easily applicable and removable for any existing SMF file.

Our extension defines new Meta-Events. Apart from their versatility, the advantage
of using Meta-Events is that, unlike SysEx events, they are not sent over ports to the
MIDI players. As in the SMF, our Meta-Events begin with the 0xFF status-byte, a
type-byte and a length-byte. Only 15 type-byte values are defined in the SMF, though
more may be introduced in the future.

All our Meta-Events begin with the same type-byte specified in the Extension Tag
Meta-Event. To differentiate in-between our Meta-Events, the first data-byte is used
as a second HarmonicMIDI type-byte. There are thus 256 Meta-Events, which can

27

28 CHAPTER 4. HARMONICMIDI EXTENSION

be defined in this way. This format also leaves space to include multiple different
extensions in the MIDI file, all beginning with a different unreserved type-byte. Unless
specified otherwise, all HarmonicMIDI Meta-Events are to be placed in the first track
of the MIDI file.

4.1.1 Extension Tag Meta-Event

We encourage this Meta-Event and the aforementioned format to be used in future
Meta-Event-based MIDI extensions. It specifies the particular Meta-Event extension
included in the MIDI file, as well as its designated type-byte. The Meta-Event is to be
placed at time 0 in the MIDI file, beginning with an unreserved type-byte. The format
of the Meta-Event is as follows:

Extension tag Meta-Event syntax

0xFF + <Type−byte> + <Length−byte> + 0x00 + ASCII STRING BYTES

The ASCII String-bytes convey the name of the MIDI extension in question. In the
case of the HarmonicMIDI extension, the code would be "hmidi". All subsequent Meta-
Events of the extension are to begin with the same type-byte as the initial Extension
Tag Meta-Event.

4.1.2 Enharmonic Pitch Meta-Event

The Enharmonic Pitch Meta-Event expresses the enharmonic spelling of a particular
note. It applies to the first Note On event following its declaration. Its syntax is:

Enharmonic pitch Meta-Event syntax

0xFF + <Type−byte> + <Length−byte> + 0x03 + <Accidenta l−byte>

Its HarmonicMIDI type-byte value is 0x03. What follows is one accidental-byte,
which specifies the kind and the amount of accidentals the note is to be written with.
Negative numbers represent the number of flats, positive numbers — sharps and zero
relates that the note is spelled with no accidentals. Combinations of notes and ac-
cidentals which are impossible are to be ignored. Not all Note On events require an
Enharmonic Pitch Meta-Event. Most of the time the spelling of the note is straight-
forward and relates to the current key signature.

4.1.3 Chord Section Meta-Event

This Meta-Event declares a beginning of a chord section. The syntax of a non-empty
Chord Section Meta-Event is:

4.1. HARMONICMIDI DEFINITION 29

Chord section Meta-Event

0xFF + <Type−byte> + <Length−byte> + 0x01
+ <Note−byte> + <Chord Type−byte> +
+ (<Inver s ion−byte >)

Its special type-byte value is 0x01. The next byte encodes the note of the chord — the
first 4 bits the accidental: 0x0 for none, 0x1 for one sharp and 0x2 for a flat; the last
4 bits the natural: 0x0 for C, 0x1 for D and so on. The next byte specifies the chord
type. The HarmonicMIDI extension defines 17 different chord types. Their names and
associated values are written below:

0x00 MAJOR TRIAD
0x01 MINOR TRIAD
0x02 AUGMENTED TRIAD
0x03 DIMINISHED TRIAD
0x04 DOMINANT SEVENTH
0x05 DIMINISHED SEVENTH
0x06 DIMINISHED MINOR SEVENTH
0x07 MAJOR SEVENTH
0x08 MINOR SEVENTH
0x09 AUGMENTED SEVENTH
0x0A MINOR MAJOR SEVENTH
0x0B DOMINANT SEVENTH INCOMPLETE
0x0C DOMINANT SEVENTH ALT INCOMPLETE
0x0D MAJOR SEVENTH INCOMPLETE
0x0E DIMINISHED SEVENTH INCOMPLETE
0x0F DIMINISHED MINOR SEVENTH INCOMPLETE
0x0G MINOR MAJOR SEVENTH INCOMPLETE

The user can also define their own chord types using the Chord Type Declaration
Meta-Event. We will describe its syntax in the next subsection. The last byte is
optional and specifies the inversion of the chord, e.g. it holds the value 0x00 for the
root position, 0x01 for the first inversion, 0x02 for the second and so on.

This Meta-Event is to be place at the time of the chord section’s beginning. The
next Chord Section Meta-Event declares the end of the previous section and the start
of a new one. The Chord Section also ends with the end of the track. An empty
Chord Section Meta-Event is used to declare an unassigned chord section. The syntax
of the message is similar to the one above, except it only contains one data-byte — the
HarmonicMIDI type-byte with the value of 0x01.

30 CHAPTER 4. HARMONICMIDI EXTENSION

4.1.4 Chord Type Declaration Meta-Event

This Meta-Event is used to define a chord type not present in the 17 basic chord types
defined in the HarmonicMIDI extension. Its syntax is:

Chord Type Declaration Meta-Event

0xFF + <Type−byte> + <Length−byte> + 0x54 + <ID−byte> +
+ <Postion−byte> + <Postion−byte> + . . . +
+ <Postion−byte> + 0xFF + (ASCII STRING BYTES)

The ID byte defines the value the chord type is to be referenced with in the Chord
Section Meta-Event. Values 0-16 are already occupied by the basic 17 chord types
defined in the extension. What follows are multiple position bytes which specify the
number of half-steps between the notes of the chord in its root position. This sequence
is terminated by a 0xFF byte. Optionally, a number of bytes may follow, allowing the
user to assign a name to the chord.

For example, the Chord Type Declaration Meta-event defining the "Ode-to-Napoleon"
hexachord would be:

"Ode-to-Napoleon" hexachord definition

0xFF + <Type−byte> + 0x05 + 0x54 + <ID−byte> + 0x01 + 0x02
+ 0x01 + 0x03 + 0x01 + 0xFF

Figure 4.1: The "Ode-to-Napoleon" hexachord set at C

The Chord Type Declaration Meta-Event is to be placed at the time zero in the
first track of the MIDI file, before any Chord Section Meta-Event instances.

4.1.5 Harmonic Function Meta-Event

This is an optional and complementary Meta-Event to the Chord Section Meta-Event.
It is to be placed at the same time as the beginning of the chord section and its scope
ends with the end of the section. Its syntax is:

Harmonic Function Meta-Event

0xFF + <Type−byte> + <Length−byte> + 0x02
+ <Harmonic Function−byte>

4.1. HARMONICMIDI DEFINITION 31

The HarmonicMIDI type-byte is set at 0x02. The next data-byte specifies its posi-
tion within the current key, beginning with 0, and, in turn, its harmonic function, e.g.
0x00 for the tonic (I), 0x03 for the subdominant (IV) and 0x04 for the dominant (V).

4.1.6 HMIDI Key Signature Meta-Event

This Meta-Event declares the same information as the original Key Signature Meta-
Event. The key itself is encoded in the same way — with one byte signifying the
amount and type of the accidental and the other — if the scale is major or minor. The
syntax of a non-empty HMIDI Key Signature Meta-Event is as follows:

HMIDI Key Signature Meta-Event

0xFF + <Type−byte> + <Length−Byte> + 0x04 +
+ <Accidneta l−Byte> + <Major/Minor−byte>

A non-empty HMIDI Key Signature Meta-Event differs from the the standard in
its type-byte and an extra data-byte relating its HarmonicMIDI type-byte, which is set
at 0x04. As in the Chord Section Meta-Event, the scope of the Meta-Event ends at
with the declaration of a new HMIDI Key-Signature. An empty HMIDI Key Signature,
relating an unassigned key signature section, contains the HarmonicMIDI type-byte as
its only data-byte.

Apart from allowing the definition of an unassigned key, the rationale behind using
the HMIDI Key Signature rather than the standard Key Meta-Event defined in the
SMF is to not change the original key signature definitions of a MIDI file in order to
keep the Meta-Events of the harmonic analysis distinct.

4.1.7 Scale Declaration Meta-Event

Though beyond the scope of functional harmonic analysis, which only deals with the
major and minor scales, we thought it to be useful to be able to declare other scales.
We introduce the Scale Declaration and the Scale-Key Meta-Events for this purpose.

The Scale Declaration Meta-Event defines a scale and assigns it a unique ID to be
used by the Scale-Key Meta-Event. The syntax of the Scale Declaration Meta-event is
as follows:

Scale Declaration Meta-Event

0xFF + <Type−byte> + <Length−byte> + 0x64 + <ID−byte> +
+ <Step−byte> + <Step−byte> + . . . + <Step−byte> +
0xFF + (ASCII STRING BYTES)

The HarmonicMIDI type-byte is set at 0x64. The next byte is the ID-byte. What
follows are a sequence of up to 7 step-bytes specifying the number of half steps between

32 CHAPTER 4. HARMONICMIDI EXTENSION

the notes of the scale, ending with a 0xFF byte. The user may also assign a name to the
declared scale. For example, the Scale Declaration Meta-Event declaring the modern
Phrygian mode would be:

Phrygian Scale Declaration Meta-Event

0xFF + <Type−byte> + 0x07 + 0x64 + <ID−byte> + 0x01 + 0x02 +
+ 0x02 + 0x02 + 0x01 + 0x02 + 0x02 + 0xFF

Figure 4.2: Modern C Phrygian mode

The Meta-Event should be placed at time zero in the very first track of the MIDI
file, before any Scale-Key Meta-Events.

4.1.8 Scale-Key Meta-Event

The Scale-Key Meta-Event declares what note the scale with the specified ID begins
at. Its syntax is:

Scale-Key Meta-Event

0xFF + <Type−byte> + <Length−byte> + 0x65 + <Note−byte> +
+ <ID−byte>

HarmonicMIDI type-byte is set at 0x65. The note byte encodes a note in the same
manner as in the Chord Section Meta-Event, with the first four bytes specifying the
accidental and the last four the natural of the note. The ID-byte references a scale
declared by a Scale Declaration Meta-Event. As in the HMIDI Key Signature Meta-
Event, an empty Scale-Key Meta-Event can be declared, conveying an unassigned key.

4.2 Implementation

We have implemented the HarmonicMIDI Meta-Events as classes in the Java program-
ming language. In addition, we have developed two command line programs in Java
as a proof-of-concept of the encoding. The first one uses the results of the harmonic
analysis algorithm described in the previous chapter to extend the related MIDI file
with the corresponding HarmonicMIDI Meta-Events. The second program reads an
extended MIDI file and decodes the harmonic information it contains.

Conclusion

We have analyzed and compared numerous musical codes — assessing their strengths
and weaknesses. Doing so, we have come to the conclusion that the Standard MIDI
File format suits our needs best. We introduce the HarmonicMIDI extension, which
allows the user to encode harmonic analysis data within .mid files. It retains complete
compatibility with the Standard MIDI File format. The extended .mid files remain
compact and easily parseable. We have developed two Java programs to verify the
viability of the new encoding.

However, before the HarmonicMIDI extension can enjoy practical use, more work
is required in developing software tools for writing and reading the extended format.
As an example, a plug-in for a scorewriting program, such as Sibelius or MuseScore,
which would allow users to add harmonic information to the their compositions and
read the harmonic data present in extended .mid files in a user-friendly way.

If need be, the HarmonicMIDI extension can be easily expanded with more Meta-
Events in the future; however, we believe the current form of the standard is more than
sufficient for the purpose of storing harmonic analysis data.

33

34 Conclusion

Bibliography

[1] Csound site. https://csound.com/. Accessed: 2023-12-17.

[2] Dflat site. https://dflat.procedural.design/. Accessed: 2023-12-18.

[3] kunstderfuge.com. https://www.kunstderfuge.com/. Accessed: 2024-04-25.

[4] MIDI 1.0 Detailed Specification. The MIDI Manufacturers Association, 1996.

[5] J. Murray Barbour. The Principles of Greek Notation. Journal of the American
Musicological Society, 13(1):1–17, 1960.

[6] Indiana University Bloomington. Introduction to the MIDI Standard. https:

//cecm.indiana.edu/361/midi.html. Accessed: 2024-03-04.

[7] Encylopedia Britannica. Cadence. https://www.britannica.com/art/

cadence-music. Accessed: 2024-05-01.

[8] Encylopedia Britannica. Evolution of Western staff nota-
tion. https://www.britannica.com/art/musical-notation/

Evolution-of-Western-staff-notation. Accessed: 2023-12-18.

[9] CTAN. MusiXTeX. https://ctan.org/pkg/musixtex. Accessed: 2024-03-26.

[10] Raymond Erickson. "The Darms Project": A Status Report. Computers and the
Humanities, 17(9):291–298, 1975.

[11] Raymond Erickson. Musicomp 76 and the State of DARMS. College Music Sym-
posium, 17(1):90–101, 1977.

[12] Eva Ferková, Silvia Adamová, Michal Šukola, and Hana Urbancová. Computer
search tool for harmonic structures and progressions in MIDI files and possible
applications. Clavibus unitis, 9(3):1–14, 2020.

[13] W3C Music Notation Community Group. Final Community Group Report 1 June
2021. https://www.w3.org/2021/06/musicxml40/. Accessed: 2024-03-26.

35

https://csound.com/
https://dflat.procedural.design/
https://www.kunstderfuge.com/
https://cecm.indiana.edu/361/midi.html
https://cecm.indiana.edu/361/midi.html
https://www.britannica.com/art/cadence-music
https://www.britannica.com/art/cadence-music
https://www.britannica.com/art/musical-notation/Evolution-of-Western-staff-notation
https://www.britannica.com/art/musical-notation/Evolution-of-Western-staff-notation
https://ctan.org/pkg/musixtex
https://www.w3.org/2021/06/musicxml40/

36 BIBLIOGRAPHY

[14] Goffredo Haus. Notes About MIDI Specifications. https://www.lim.di.unimi.
it/IEEE/MIDI/INDEX.HTM. Accessed: 2024-03-17.

[15] Wayne Howard. Music and Accentuation in Vedic Literature. The World of Music,
24(3):23–34, 1982.

[16] Music Encoding Initiative. An introduction to MEI. https://music-encoding.
org/about/#. Accessed: 2024-05-04.

[17] Music Encoding Initiative. MEI guidelines (5.0). https://music-encoding.org/
guidelines/v5/content/. Accessed: 2024-05-06.

[18] A. D. Kilmer and M. Civil. Old Babylonian Musical Instructions Relating to
Hymnody. Journal of Cuneiform Studies, 38(1):94–98, 1986.

[19] Cornelius C. Noack. Typesetting music with PMX. http://

icking-music-archive.org/software/pmx/pmxccn.pdf. Accessed: 2024-
05-09.

[20] Library of Congress. The Sustainability of Digital Formats — MusicXML, Version
3.1. https://www.loc.gov/preservation/digital/formats/fdd/fdd000499.

shtml. Accessed: 2024-03-26.

[21] Craig Stuart Sapp. Standard MIDI File Structure. https://ccrma.stanford.

edu/~craig/14q/midifile/MidiFileFormat.html. Accessed: 2024-03-19.

[22] Eleanor Selfridge-Field. Beyond MIDI: The Handbook of Musical Codes. 1997.

[23] MusicXML Site. Software support. https://www.musicxml.com/software/. Ac-
cessed: 2024-03-26.

[24] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). https://www.

w3.org/TR/REC-xml/. Accessed: 2024-05-04.

https://www.lim.di.unimi.it/IEEE/MIDI/INDEX.HTM
https://www.lim.di.unimi.it/IEEE/MIDI/INDEX.HTM
https://music-encoding.org/about/#
https://music-encoding.org/about/#
https://music-encoding.org/guidelines/v5/content/
https://music-encoding.org/guidelines/v5/content/
http://icking-music-archive.org/software/pmx/pmxccn.pdf
http://icking-music-archive.org/software/pmx/pmxccn.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000499.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000499.shtml
https://ccrma.stanford.edu/~craig/14q/midifile/MidiFileFormat.html
https://ccrma.stanford.edu/~craig/14q/midifile/MidiFileFormat.html
https://www.musicxml.com/software/
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/

Appendix A: Digital material

All programs mentioned in the thesis, along with the other supplementary mate-
rial, is included in the electronic attachment. The latest version of the programs
can be found here: https://github.com/tfakult35/HarmonicMIDIExtension. A
demo of the algorithmic harmonic analysis program can be found on this site: https:
//analysisofharmony.sk/demo.php.

37

https://github.com/tfakult35/HarmonicMIDIExtension
https://analysisofharmony.sk/demo.php
https://analysisofharmony.sk/demo.php

	Introduction
	Encoding music
	Sound-related codes
	Notation-related codes
	DARMS
	MusiXTeX and PMX
	XML-based codes

	Summary

	MIDI
	The Standard MIDI File Format
	The Header chunk
	The Track chunk

	SMF Extensions
	NoTAMIDI
	MIDIPlus
	Expressive MIDI

	Summary

	Harmonic analysis
	Harmony
	Chords and their Harmonic function

	Algorithmic Harmonic analysis
	The Algorithm
	Algorithm output

	HarmonicMIDI extension
	HarmonicMIDI definition
	Extension Tag Meta-Event
	Enharmonic Pitch Meta-Event
	Chord Section Meta-Event
	Chord Type Declaration Meta-Event
	Harmonic Function Meta-Event
	HMIDI Key Signature Meta-Event
	Scale Declaration Meta-Event
	Scale-Key Meta-Event

	Implementation

	Conclusion
	Appendix A

