
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Similarity of domain names
Bachelor’s Thesis

2024
Lukáš Horňáček





Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Similarity of domain names
Bachelor’s Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: doc. RNDr. Martin Stanek, PhD.

Bratislava, 2024
Lukáš Horňáček





Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Lukáš Horňáček
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Similarity of domain names
Podobnosť doménových mien

Anotácia: Vizuálna, sémantická a iné podobnosti doménových mien sú zneužívané pri tzv.
phishingových útokoch, typosquattingu a iných zlomyseľných aktivitách.
Bakalárska práca preskúma metriky používané na hodnotenie podobnosti
doménových mien. Tieto metriky budú porovnané a ilustrované na vhodnom
súbore, spolu s popisom ich silných a slabých vlastností. V druhej časti práce
má byť navrhnutý algoritmus na generovanie najpodobnejších doménových
mien podľa zvolených kritérií. Implementácia bude porovnaná s analogickými
nástrojmi.

Vedúci: doc. RNDr. Martin Stanek, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 21.10.2023

Dátum schválenia: 26.10.2023 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce



Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Lukáš Horňáček
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Similarity of domain names

Annotation: Visual, semantic and other similarity of domain names is abused in phishing
attacks, typosquatting, and other malicious activities. The thesis will explore
metrics used for evaluating similarity of domain names. The metrics are
compared and demonstrated on suitable dataset, describing their strong and
weak properties. The second part of the thesis should propose and implement an
algorithm for generating the most similar domain names, according to chosen
criteria. The implementation will be compared with analogous tools.

Supervisor: doc. RNDr. Martin Stanek, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 21.10.2023

Approved: 26.10.2023 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor



v

Acknowledgments: I would like to thank my supervisor doc. RNDr. Martin Stanek,
PhD. for his guidance and helpful remarks. I would also like to thank Terézia Kabátová
for her advice and for always supporting and encouraging me. This thesis would not
exist without her.



vi

Abstrakt

Phishing je útok využívajúci metódy sociálneho inžinierstva, pri ktorom útočník navedie
ich obeť, aby navštívila a interagovala so škodlivou webovou stránkou tým, že imituje
dôveryhodný podnik, inštitúciu alebo osobu. Útočníci si môžu registrovať domény, ktoré
sa podobajú na doménu webovej stránky, ktorú imitujú, aby ich webová stránka vyzerala
dôveryhodnejšie. Typosquatting je prax registrovania domén, ktoré sa podobajú na
imitovanú doménu, ale obsahujú jednu alebo viac typografických chýb. Keď neskôr
typosquatterova obeť spraví chybu pri zadávaní originálneho doménového mena, dostane
sa na typosquatterovu webovú stránku, namiesto stránky, ktorú plánoval navštíviť. Táto
práca preskúmava využitie podobnosti doménových mien na detekciu phishingových a
typosquattingových domén. Popisujeme a porovnávame niekoľko existujúcich funkcií,
ktoré merajú podobnosť dvoch domén, a navrhujeme dve nové funkcie. Ďalej navrhujeme
a implementujeme nástroj na generovanie domén, ktoré sú podobné zadanej doméne.
Taktiež tento nástroj porovnávame s inými podobnými nástrojmi.

Kľúčové slová: phishing, typosquatting, podobnosť, domény
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Abstract

Phishing is a social engineering attack, in which the attacker tricks their victim to visit
and interact with a malicious website by imitating a legitimate business, institution
or person. Attackers may register domains that look similar to domain of the website
they are imitating, in order to make their website more convincing. Typosquatting is
the practice of registering domains that are similar to the imitated domain but contain
one or more typographical errors. Later, when the typosquatter’s victim makes an
error when typing the original domain name, they will be directed to the typosquatter’s
website instead of the website they intended to visit. This thesis explores how similarity
between domain names can be used to detect phishing and typosquatting domains. We
describe and compare various existing functions that measure similarity between two
domains, and also propose two novel functions. Afterwards, we propose and implement
a tool for generating domains that are similar to a given domain. We compare the tool
with other similar tools.

Keywords: phishing, typosquatting, similarity, domains
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Introduction

Phishing is a social engineering attack, in which an attacker attempts to prompt
the victim to perform a certain action, such as revealing personal information or
downloading malicious software, using a website, in which the attacker imposes as a
legitimate business, institution or a reputable person.

For the phishing attack to be successful, the attacker first needs their victim to visit
the phishing website. In order to accomplish this goal, the attacker often distributes a
link to the website via email or social media. It is then in the attackers interest to make
the link look as convincing as possible. For this purpose, the attacker may register do-
mains that look similar to the domain name of the imitated website. For example, if the
attacker wants to imitate the domain ‘example.com’, they might try to register domains
such as ‘exaample.com’, ‘exarnple.com’, ‘example.sk’ or ‘example.foundhere.com’.

This practice is closely related to another practice called typosquatting. Typosquat-
ting is the practice of registering a domain name that is a variant of the imitated
domain name, which contains one or more typographical errors. Later, when a user
makes such error while typing the URL of the original website, they will be directed
to the attacker’s website instead. For example, the attacker may register the domain
‘exsmple.com’, because the letter ‘s’ is adjacent to the letter ‘a’ on a QWERTY keyboard
layout. Afterwards, anytime a user wants to visit ‘example.com’ but types ‘s’ instead of
‘a’ by mistake, they will be directed to the typosquatting website instead of the website
they intended to visit. Typosquatting domains can be a part of a phishing attack, but
they can also be used in other ways. They can also be registered solely for the purpose
of selling them to the owner of the original domain for a higher price.

The term phishing first appeared in 1996 [1] and since then, phishing became one of
the most common cyberattacks. According to Verizon 2023 Data Breach Investigations
Report [2], phishing is one of the three primary ways in which attackers access an
organization. Anti-Phishing Working Group observed over one million phishing attacks
in the second quarter of 2023 [3]. It is therefore not surprising that the problem of
detecting phishing or typosquatting websites has been extensively studied and a variety
of approaches have been proposed, see for example a literature survey by Zieni et al.
[4].

One of the most widely used approaches is to use blocklists. Blocklists are lists
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2 Introduction

of URLs, domain names or IP addresses of websites, that had been confirmed to be
malicious. An example of a regularly updated blocklist is Google Safe Browsing [5].
Both Google Chrome and Mozilla Firefox make use of Google Safe Browsing in order
to display warnings to users when they attempt to visit a known malicious website, see
Figure 1.

Figure 1: Warning displayed by Mozilla Firefox when user attempts to visit a URL that
is present in the blocklist

Blocklists, however, cannot protect users from websites that were not previously seen
and added to the list. To mitigate this vulnerability, there have been many heuristic
approaches that attempted to detect phishing websites based on various characteristics
that are often present in phishing websites, while not being typical for legitimate
websites [6, 7].

One of the characteristics of phishing or typosquatting websites is the similarity
between their domain and the domain of the legitimate website they are imitating.
There have been multiple attempts to use existing functions for quantifying the similarity
between two strings, such as the Levenshtein distance or the Jaro-Winkler similarity.
Below we describe two different uses for this approach.

When a Google Chrome user attempts to visit a website, Google Chrome first checks
whether the URL is in the Google Safe Browsing blocklist, as mentioned above. In
addition to that, however, the browser also compares the domain name in the URL to
a list of domain names that are either popular or were recently visited by the user [8].
If the domain is similar to any of the compared domains, Google Chrome warns the
user that the website might be malicious, see Figure 2.

Moore et al. [9] used the similarity between domain names in a somewhat opposite
way. Instead of comparing the domains when a user attempts to visit a website, they
constructed a list of 3264 popular domains and for each of them enumerated the most
similar domains. More specifically, they enumerated all strings with the Damerau-
Levenshtein distance and the fat-finger distance from the domain of at most 2 and
discarded any strings that were not a registered domain. The result of this process was
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Figure 2: Warning displayed by Google Chrome when user visits a URL that is similar
to another popular or previously visited URL

a list of almost 2 million registered domains. They manually checked over 2 thousand of
them and found that majority of domains with either distance of 1 were typosquatting
domains.

This demonstrates another use case of measuring similarity between domain names.
By generating domain names, that are similar to domain names of legitimate websites,
it is possible to detect phishing or typosquatting websites even before any user visits
them. This process of generating domain names and verifying their maliciousness
can be performed by any business or institution that wishes to prevent attackers from
imitating their website. The business or institution may take action against any detected
malicious website. It can also register some of the most similar domains that are not
yet registered, in order to prevent their potential misuse in the future.

In the first part of this thesis we first explore existing functions for measuring
similarity between two strings and then propose two novel functions for measuring
similarity. We measure their effectiveness in detecting phishing and typosquatting
websites, based on the similarity between their domain name and a domain name of
another website. Our experiments show that one of the novel functions performs better
than any of the existing functions, however, the results are not conclusive.

In the second part of the thesis we propose and implement a tool for generating
domain names that are similar to a specified domain name. We also compare it with
existing similar solutions and demonstrate its effectiveness. The tool is slower than the
existing tools, however, it is capable of generating significantly more similar domains
than other existing tools.





Chapter 1

Measuring Similarity

In this chapter we first define approximate string matching and multiple functions
for measuring similarity between strings, based on existing literature. Afterwards, we
propose two novel functions for measuring similarity between two domain names that
are designed to be used specifically for detection of phishing and typosquatting websites.
Finally, we compare the effectiveness of the described functions in detection of phishing
and typosquatting domain names.

Most of the described existing functions are designed to measure similarity between
two arbitrary strings and are not designed with phishing or typosquatting domain names
in mind. While we describe only two functions that are designed to detect phishing or
typosquatting domains, there are multiple existing functions we chose not to include,
such as the patterns used in TypoGard [10], a tool for detecting typosquatting packages.

Throughout this chapter we use variables x and y to represent arbitrary strings. We
define |x| as the length of string x. For i, j ∈ {1, . . . , n} we define xi as the i-th symbol
of x and xi..j as substring xi . . . xj. For technical reasons, xi..j is defined as an empty
string for j < i.

1.1 Approximate String Matching

Approximate string matching is the problem of deciding whether any two given strings
are similar to each other according to a specified function [11]. There are two distinct
categories of functions used in approximate string matching. Similarity functions
measure how similar two strings are to each other by giving them a value between 0
and 1, with more similar pairs having greater values. Similarity of any pair of identical
strings is 1. Edit distance functions, on the other hand, measure how far apart any
two strings are, with more similar pairs having smaller values. The distance between
identical strings is 0. Edit distance between strings x and y is defined as the length of the
shortest sequence of edit operations, such that applying the sequence on x transforms it

5



6 CHAPTER 1. MEASURING SIMILARITY

into y [11]. Edit operation is any function e(a) = b, where a is a string to be transformed
and b is the result of the transformation. This definition can be generalized to allow for
different costs for different operations and operation arguments.

1.1.1 Hamming Distance

The first function considered is the Hamming distance, named after its creator Richard
Hamming. It is an edit distance function that allows only one type of operation —
substitution. The Hamming distance between two strings of equal length is therefore
the number of positions at which the strings differ. For example, the Hamming
distance between strings ‘example.com’ and ‘exemple.com’ is 1 and the distance between
‘example.com’ and ‘example.org’ is 3.

Since the Hamming distance has no operation that can change the length of x or y,
we define the distance between strings of different length to be ∞. The full definition
of the Hamming distance is then as follows.

d(x, y) =

∞, if |x| ≠ |y|∣∣{i | i ∈ {1, . . . , |x|} ∧ xi ̸= yi}
∣∣ , if |x| = |y|

1.1.2 Longest Common Subsequence Distance

The Longest common subsequence (LCS) of strings x, y is the longest string s, such
that s is a subsequence of both x and y. The LCS distance between x and y is then
defined as d(x, y) = |x|+ |y| − 2 · |s|. The distance is equal to the number of characters
that need to be removed in order to transform both strings into s. For example, one
LCS of strings ‘example.com’ and ‘exemlpe.com’ is ‘exmpe.com’ and the LCS distance
between them is 4. There can be multiple common subsequences of same length.

As an edit distance function, the LCS distance allows only insertions and deletions.
It is not difficult to prove that insertion of a character into x to match a character in y

is equivalent to deletion of said character in y.

We also give an equivalent definition of the LCS distance as a recursive function.

d(x1..i, y1..j) = min



0, if i = j = 0

d(x1..i−1, y1..j) + 1, if i > 0

d(x1..i, y1..j−1) + 1, if j > 0

d(x1..i−1, y1..j−1), if i, j > 0 ∧ xi = yj
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1.1.3 Levenshtein Distance

The Levenshtein distance is an edit distance function that was first proposed by Vladimir
I. Levenshtein [12]. It permits three single character operations — substitution, insertion
and deletion. This means that the Levenshtein distance between any two strings is
always less than or equal to the Hamming distance and to the LCS distance. For
example, the Levenshtein distance between ‘exaamble.com’ and ‘example.com’ is 2 and
the shortest sequence of edit operations consists of deleting the extra character ‘a’ and
substituting ‘b’ for ‘p’. On the other hand, the Hamming distance between the strings
is ∞, since it is not possible to delete the extra ‘a’. The LCS distance between the
strings is 3, since the substitution of character ‘b’ for ‘p’ must be performed in two
steps — first, the character ‘b’ is deleted and then the character ‘p’ is inserted.

Below we give a recursive definition of the Levenshtein distance.

d(x1..i, y1..j) = min



0, if i = j = 0

d(x1..i−1, y1..j) + 1, if i > 0

d(x1..i, y1..j−1) + 1, if j > 0

d(x1..i−1, y1..j−1), if i, j > 0 ∧ xi = yj

d(x1..i−1, y1..j−1) + 1, if i, j > 0 ∧ xi ̸= yj

The Levenshtein distance can be normalized by dividing the result by the length of
the longer of the two strings. The normalized Levenshtein distance dn is then defined
as follows.

dn(x, y) =
d(x, y)

max{|x|, |y|}
The normalized Levenshtein distance of two identical strings is 0, same as with the
Levenshtein distance, and the normalized distance of two strings that have nothing in
common is 1. Normalizing the distance allows for longer pairs of strings to have the
same distance as a shorter pair, even if the distance before normalization was larger.

1.1.4 Damerau-Levenshtein Distance

The Damerau-Levenshtein distance is an edit distance function that was proposed
by Fred J. Damerau [13]. It is similar to the Levenshtein distance but supports one
additional operation — transposition of two adjacent characters. This means that the
Damerau-Levenshtein distance between any two strings is less than or equal to the
Levenshtein distance between them. For example, the Damerau-Levenshtein distance
between strings ‘examlpe.com’ and ‘example.com’ is 1, since the only operation required
to transform the first string into the second is the transposition of the characters ‘lp’.
On the other hand, the Levenshtein distance between these two strings is 2, since both
‘l’ and ‘p’ must be changed by substitution.
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There are two different variants of the Damerau-Levenshtein distance. In the
restricted Damerau-Levenshtein distance, also called Optimal string alignment, if a
character or two characters, in case of transposition, are transformed, the resulting char-
acter or characters cannot be modified again. The unrestricted Damerau-Levenshtein
distance, on the other hand, has no such restriction. This most notably means that when
constructing the sequence of edit operations for the unrestricted Damerau-Levenshtein
distance, it is possible to insert characters between symbols that were previously trans-
posed, while the restricted variant prohibits it. There are other sequences of operations
that are prohibited in the restricted Damerau-Levenshtein distance and permitted in the
unrestricted variant, however, these do not change the final distance between any two
strings. For example, the unrestricted Damerau-Levenshtein distance between strings
‘examlape.com’ and ‘example.com’ is 2, while the restricted Damerau-Levenshtein
distance between them is 3.

Below we give a recursive definition for the restricted Damerau-Levenshtein distance.

d(x1..i, y1..j) = min



0, if i = j = 0

d(x1..i−1, y1..j) + 1, if i > 0

d(x1..i, y1..j−1) + 1, if j > 0

d(x1..i−1, y1..j−1), if i, j > 0 ∧ xi = yj

d(x1..i−1, y1..j−1) + 1, if i, j > 0 ∧ xi ̸= yj

d(x1..i−2, y1..j−2) + 1, if i, j > 1 ∧ xi = yj−1 ∧ xi−1 = yj

The Damerau-Levenshtein distance can be normalized analogically to the Levenshtein
distance.

1.1.5 Jaro-Winkler Similarity

The Jaro-Winkler similarity is a similarity function that was proposed by William E.
Winkler [14] and is a modification of the Jaro similarity function proposed by Matthew
A. Jaro [15].

For i ∈ {1, . . . , |x|}, j ∈ {1, . . . , |y|}, characters xi, yj are considered to be matching
characters if xi = yj and |i− j| ≤

⌊
max{|x|,|y|}

2

⌋
− 1.1 Each character xi can be matched

with only one character yj and analogically, each character yj can be matched with only
one character xi. We let m denote the number of matching characters in strings x and
y. Next, we consider the number of transpositions, denoted as t. Two pairs of matching
characters are considered to be a transposition, if they are not in the same order in
both strings. Formally, characters xi, xj and their respective matching characters yi′ ,

1⌊x⌋ = max{y ∈ Z | y ≤ x}
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yj′ are considered to be a transposition, if i < j and i′ > j′. With these terms defined
we can define the Jaro similarity by the following formula.

sj(x, y) =

0, if m = 0

1
3

(
m
|x| +

m
|y| +

m−t
m

)
, if m > 0

The Jaro-Winkler similarity modifies the Jaro similarity to give higher values to
strings that have a shared prefix. We define l as the length of the shared prefix, capped
at 4. Formally, l is the largest number not greater than 4, such that x1..l = y1..l. The
importance of having a shared prefix can be adjusted by changing a scaling constant
p. Higher values of p correspond to greater importance of having a shared prefix. The
value, however, cannot exceed 0.25. If p was greater than 0.25, the similarity value
could exceed 1. Finally, we give a definition of the Jaro-Winkler similarity.

sw(x, y) = sj(x, y) + lp(1− sj(x, y))

For example, the Jaro similarity between strings ‘exampel.co.uk’ and ‘example.com’ is
roughly 0.86, while the Jaro-Winkler similarity2 between them is around 0.92, because
the differences between the two strings do not occur in the beginning of the strings.

1.1.6 Gestalt Pattern Matching

The Gestalt pattern matching algorithm, also called the Ratcliff-Obershelp algorithm,
is a similarity function that was developed by John W. Ratcliff and John A. Obershelp
[16]. The similarity value of strings x and y is the number of matching characters,3

denoted as m, multiplied by 2 and divided by |x|+ |y|.

s(x, y) =
2m

|x|+ |y|

The number of matching characters is computed by recursively finding the longest string
s, such that s is a substring of both x and y. First, the algorithm finds the longest
common substring s and adds |s| to the number of matching characters. Next, the
algorithm is recursively called on unmatched substrings to the left and right of s. In
case more than one string s exists, or s has more than one occurrence in x or y, it is
not specified which should be chosen.

We demonstrate the algorithm by calculating the similarity between strings ‘exa-
malpe.com’ and ‘example.com’. The algorithm first identifies ‘e.com’ as the longest
common substring. Next, the algorithm is recursively called on the remainder of both
strings and the longest common substring of these remainders is identified as ‘exam’.

2With p set to 0.1.
3Not related to matching characters defined in the Jaro-Winkler similarity subsection.
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Afterwards, the only parts remaining are ‘alp’ and ‘pl’. The longest common substring
of these can be either ‘p’ or ‘l’. Either way, the total number of matching characters is
10 and the similarity is calculated as 2 · 10 divided by 12 + 11, which is roughly equal
to 0.87.

1.1.7 Modified Levenshtein Distance

Liu et al. [17] proposed a modification of the Levenshtein distance for the purpose of
detecting typosquatting domains. Their proposal is based on three observations. Firstly,
users usually pay more attention to the beginning of the domain, compared to the rest.
Secondly, not all substitutions are equally confusing. For example, substituting ‘l’ for
‘1’ is more likely to confuse the user, than for example substituting ‘l’ for ‘m’. Lastly,
different operations cause different levels of confusion.

The proposed Modified Levenshtein distance can be defined by the following recur-
sion.

d(x1..i, y1..j) = min



0, if i = j = 0

d(x1..i−1, y1..j) + αmin(i,j), if i > 0

d(x1..i, y1..j−1) + αmin(i,j), if j > 0

d(x1..i−1, y1..j−1), if i, j > 0 ∧ xi = yj

d(x1..i−1, y1..j−1) + αmin(i,j) · M[xi, yj], if i, j > 0 ∧ xi ̸= yj

The value α is a constant that is greater than 0 and is less than or equal to 1. The
constant represents how important are operations at earlier positions in the strings,
compared to later positions. When α is equal to 1, each position has the same importance.
Liu et al. experimented with different values of α, but for the purpose of demonstrating
the results of their experiments, value 0.99997 was chosen. M is a symmetric matrix,
where rows and columns are indexed by characters, and each value M[a, b] represents
the base cost of substituting character a for character b.

Since all the values in the matrix M are less than or equal to 1, the Modified
Levenshtein distance between any two strings is always less than or equal to the
Levenshtein distance between them. For example, the Levenshtein distance between
strings ‘exemple.com’ and ‘example.com’ is 1, while the Modified Levenshtein distance
between them is around 0.8, because ‘a’ and ‘e’ are considered to be somewhat similar
to each other.

1.1.8 Enhanced Levenshtein Distance

Paul E. Black designed an enhanced version of the Damerau-Levenshtein distance,
which we refer to as the Enhanced Levenshtein distance [18]. It allows all four op-
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erations of the Damerau-Levenshtein distance and modifies the cost of substitution
of certain pairs of similar characters, similarly to the Modified Levenshtein distance.
The Enhanced Levenshtein distance, however, also modifies the cost of transposition of
similar characters.

Additionally, the cost of insertion is reduced if the inserted character is identical to
the previous character, and further reduced if the character repeats more than once. The
cost of inserting character xi at the end of string x1..i−1 is calculated by the following
function.

insert(x1..i, y1..j) = min



1, if i > 0

0.9, if i > 1 ∧ j > 0 ∧ xi = xi−1 ∧ xi−1 = yj

0.5, if i > 2 ∧ j > 1 ∧ xi = xi−1 ∧ xi−2..i−1 = yj−1..j

0.1, if i > 3 ∧ j > 2 ∧ xi = xi−1 ∧ xi−3..i−1 = yj−2..j

0, if i > 4 ∧ j > 3 ∧ xi = xi−1 ∧ xi−4..i−1 = yj−3..j

Similarly to the Modified Levenshtein distance, we define a symmetric matrix S, where
each value S[a, b] represents the cost of substitution or transposition of characters a

and b. The Enhanced Levenshtein distance is then defined as follows.

d(x1..i, y1..j) = min



0, if i = j = 0

d(x1..i−1, y1..j) + insert(x1..i, y1..j), if i > 0

d(x1..i, y1..j−1) + insert(y1..j, x1..i), if j > 0

d(x1..i−1, y1..j−1), if i, j > 0 ∧ xi = yj

d(x1..i−1, y1..j−1) + S[xi, yj], if i, j > 0 ∧ xi ̸= yj

d(x1..i−2, y1..j−2) + S[xi−1, xi], if i, j > 1 ∧ xi = yj−1

∧ xi−1 = yj

For example, the Enhanced Levenshtein distance between ‘example.sk’ and ‘exaam-
ple.sk’ is 0.9 and the distance between ‘exaample.sk’ and ‘exaaample.sk’ is 0.5. For
another example, the Enhanced Levenshtein distance between strings ‘jigsaw.com’ and
‘ijgsaw.com’ is 0.5, since the transposed characters ‘j’ and ‘i’ are similar to each other,
while the distance between ‘jigsaw.com’ and ‘jisgaw.com’ is 1, since the transposed
characters are not similar to each other.

1.2 Modified Damerau-Levenshtein Distance

We begin this section by making a few observations about the functions described above,
which led us to proposing two novel functions. Afterwards, we describe and define the
two functions.



12 CHAPTER 1. MEASURING SIMILARITY

Firstly, we observed that distance functions are generally easier to describe and
analyze than similarity functions, since they are defined by sets of simple operations.
This also makes them easier to modify, since adding, removing or modifying an operation
does not affect the rest of operations. Furthermore, all operations of distance functions
described above can be mapped to common typographical mistakes a user can make
when typing a domain name. This makes distance functions arguably better suited
for detection of typosquatting domains. Even though this is the case, the Enhanced
Levenshtein distance is instead designed to detect visually similar phishing domains.
The Modified Levenshtein distance is claimed to be designed to detect typosquatting
domain, however, the modified costs in matrix M are in fact the same as costs used by
the Enhanced Levenshtein distance. Because of this, we propose the Vanilla distance
function, which is designed to detect typosquatting domains and uses different costs of
operations.

One limitation of distance functions we identified is that the cost of edit operations
is the same regardless of which part of a string they are applied to. In contrast, the
Jaro-Winkler similarity is higher if the compared strings share a common prefix, because
it may be less likely that users will notice differences further from the beginnings of the
strings. The Modified Levenshtein distance achieves a similar effect by decreasing the
cost of operations when they are applied further from the beginnings of the compared
strings. The second proposed function, called the Caramel distance, expands upon this
idea by using the fact that the compared strings are domains, and separating them into
multiple parts, which are then compared separately.

1.2.1 Vanilla Distance

The Vanilla distance modifies the restricted Damerau-Levenshtein distance similarly
to the Enhanced Levenshtein distance. The key difference is that while the Enhanced
Levenshtein distance is designed to detect visually similar phishing domains, the Vanilla
distance is designed to detect typosquatting domains.

The Vanilla distance is based on the fat-finger distance proposed by Moore et al. in
Measuring the Perpetrators and Funders of Typosquatting [9]. The fat-finger distance
between two strings is the minimum number of insertions, deletions, substitutions and
transpositions using letters adjacent on a QWERTY keyboard layout. The distance is
not defined for pairs of strings, for which it is not possible to transform one of them into
the other using only operations with adjacent characters. The Vanilla distance expands
on the fat-finger distance by including characters adjacent on a QWERTZ, AZERTY
and Dvorak keyboard layout in addition to the QWERTY layout. Additionally, instead
of not allowing operations with nonadjacent characters, the Vanilla distance allows
them with double the cost of an operation with adjacent characters. This means that
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the Vanilla distance is defined for any pair of strings.
Below we give a recursive definition of the Vanilla distance, where A is a set of pairs

of adjacent characters. For technical reasons, each character is adjacent with itself.

dV (x1..i, y1..j) = min



0, if i = j = 0

d(x1..i−1, y1..j) + 1, if i > 0

d(x1..i, y1..j−1) + 1, if j > 0

d(x1..i−1, y1..j) + 0.5, if i > 1 ∧ (xi, xi−1) ∈ A

d(x1..i, y1..j−1) + 0.5, if j > 1 ∧ (yj, yj−1) ∈ A

d(x1..i−1, y1..j−1) + 1, if i, j > 0

d(x1..i−1, y1..j−1) + 0.5, if i, j > 0 ∧ (xi, yj) ∈ A

d(x1..i−1, y1..j−1), if i, j > 0 ∧ xi = yj

d(x1..i−2, y1..j−2) + 1, if i, j > 1 ∧ xi = yj−1 ∧ xi−1 = yj

d(x1..i−2, y1..j−2) + 0.5, if i, j > 1 ∧ xi = yj−1 ∧ xi−1 = yj

∧ (xi, xi−1) ∈ A

For example, the Vanilla distance between ‘example.com’ and ‘examole.com’ is 0.5,
because the first string can be transformed into the second by substituting character ‘p’
for character ‘o’, which is adjacent to ‘p’ on the QWERTY keyboard layout. On the
other hand, the Vanilla distance between strings ‘example.com’ and ‘exaxple.com’ is 1,
because the substituted character ‘x’ is not adjacent to ‘m’ on any of the supported
keyboard layouts.

1.2.2 Caramel Distance

The Caramel distance was designed to capture a specific type of phishing domains that
were present in the phishing dataset PhishTank mentioned in the following section.
This means that while the Caramel distance might not be best suited to detecting
similar domains in general, it might perform better than other functions when detecting
a specific type of similar domains.

The Caramel distance modifies the Enhanced Levenshtein distance described in
the previous section by splitting domains into multiple parts in an attempt to identify
the most important part of each domain, which we call the core. The cores are then
compared separately from the rest of the domains, and the distance between the cores
has greater weight than the distance between the remaining parts of the domains. For
example, the Damerau-Levenshtein distance between domains ‘get-mcafee.tech’ and
‘mcafee.com’ is 8, however, the most important part of both domains is arguably ‘mcafee’
and the distance between the cores of the domains is therefore 0. This means that if we
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consider the distance between cores to be more important than the rest of the domains,
the domains themselves are similar to each other.

The Caramel distance attempts to identify the cores of the domains using the
following method. First, the public suffix of both domains is separated from the rest of
the domain. The public suffix, also called effective top-level domain, is a domain suffix
under which users can directly register domain names. This includes top-level domains,
such as ‘com’, or domains with more levels, such as ‘co.uk’. Domain suffixes, such that
the domain owner does not have control over their subdomains, such as ‘github.io’, are
also considered public suffixes. A list of public suffixes initially created by the Mozilla
Foundation [19] is publicly available at https://publicsuffix.org.

After removing the public suffix, the remainder of the legitimate domain is declared
to be the legitimate core. Identifying the core of the phishing domain is, however, more
complicated. After removing the public suffix, the remainder of the phishing domain is
further split into three disjoint parts — prefix, core and suffix.

The phishing core is chosen from multiple potential cores as the one with the
lowest Enhanced Levenshtein distance from the legitimate core. A potential core is any
substring c of the phishing remainder x, such that the following condition holds.

∃i, j ∈ N x = x1..i−1cxj+1..|x| ∧

(xi−1 = ‘-’ ∨ xi−1 = ‘.’ ∨ ∀k ∈ {1, . . . , i− 1} xk ∈ {‘1’, . . . , ‘9’, ‘.’, ‘-’}) ∧

(xj+1 = ‘-’ ∨ xj+1 = ‘.’ ∨ ∀k ∈ {j + 1, . . . , |x|} xk ∈ {‘1’, . . . , ‘9’, ‘.’, ‘-’})

The condition ensures that the prefix to any potential core consists of only digits,
dots and dashes, or ends with a dot or a dash, while the suffix consists of only digits,
dots and dashes, or begins with a dot or a dash. The reason for this is that we found
these to be the most common types of prefixes and suffixes of phishing domains present
in the PhishTank dataset.

For example, the core of legitimate domain ‘example.com’ is ‘example’ and the
public suffix is ‘.com’. The public suffix of phishing domain ‘not-example.sk’ is ‘.sk’
and the potential cores are ‘not’, ‘example’ and ‘not-example’. Since ‘example’ has the
lowest distance from the legitimate core, it is chosen as the phishing core, with ‘not-’ as
prefix, empty string as suffix and ‘.sk’ as public suffix.

The value that the prefix and suffix add to the final Caramel distance is determined
using a modified length function dL, which is defined as follows.

dL(x) = |x| − |{i | i ∈ {1, . . . , |x|} ∧ xi ∈ {‘0’, . . . , ‘9’, ‘.’, ‘-’}}|
2

The modified length counts digits, dots and dashes as only half of a character. Finally,
the Caramel distance is defined by the following function, where dE is the Enhanced

https://publicsuffix.org
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Levenshtein distance.

d(x, y) = dE(core(x), core(y)) +
dE(publicsuffix(x), publicsuffix(y))

3

+
dL(prefix(y)) + dL(suffix(y))

3

The constants used in the modified length function and the Caramel distance were
chosen based on intuition.

To give an example, we demonstrate the Caramel distance on domains ‘example.com’
and ‘12-examlpe.com’, where ‘12-examlpe.com’ is the phishing domain and ‘example.com’
is the legitimate domain. First, the legitimate domain is split into two parts — legitimate
core ‘example’ and public suffix ‘.com’. Next, the phishing domain is split into four
parts — phishing core ‘examlpe’, public suffix ‘.com’, prefix ‘12-’ and empty string as
suffix. The Enhanced Levenshtein distance between the cores is equal to 1 and the
modified length of the prefix is equal to 1.5. The Caramel distance between the two
domains is then equal to 1.5.

1.3 Experiments

In this section we compare the effectiveness of multiple existing functions, namely the
Levenshtein distance, Damerau-Levenshtein distance, Jaro-Winkler similarity, Gestalt
pattern matching, Modified Levenshtein distance, Enhanced Levenshtein distance and
the two novel functions — Vanilla distance and Caramel distance. The Hamming
Distance and the LCS distance were excluded, because both of them are edit distance
functions whose sets of operations are a strict subset of the set of operations of the
Levenshtein distance.

For the Levenshtein distance, Damerau-Levenshtein distance, Jaro similarity and
Jaro-Winkler similarity we used implementations available in a Python library named
jellyfish [20]. The implementation of the Gestalt pattern matching algorithm was
available in a built-in Python library difflib [21]. We implemented the rest of the
functions in Python. Implementations of the Vanilla distance and the Caramel distance
are included in Appendix A.

We conducted two separate experiments. First, we compared the selected functions
using the PhishTank dataset of phishing URLs [22]. We found, however, that this dataset
did not contain enough phishing domains that were similar to a legitimate domain. We
then compared the functions using a list of domains registered directly under top-level
domain ‘sk’, that is publicly available at https://sk-nic.sk/subory/domains.
txt. The list is maintained by SK-NIC, the manager of the domain. This experiment
showed that most of registered similar domains did not contain malicious websites.

https://sk-nic.sk/subory/domains.txt
https://sk-nic.sk/subory/domains.txt
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Instead, most of the domains were unavailable, parked or redirected to another unrelated
website.

In the rest of this section we describe both experiments in more detail.

1.3.1 PhishTank Dataset

For the first experiment we obtained a dataset of 58107 phishing URLs from PhishTank
[22]. PhishTank is a service where registered users can submit and verify suspected
phishing URLs they encounter. PhishTank provides access to an hourly updated
database of the verified phishing URLs.

We also obtained a dataset of the one million most popular legitimate domains from
the Tranco list4 [23]. Tranco is a service that provides free access to a daily updated
ranking list of the most popular websites. The list is created by aggregating data from
several other publicly available ranking lists with the purpose of making the list more
stable and less prone to malicious manipulation. The Tranco website also contains an
archive of previous lists. Both datasets were obtained on April 7, 2024.

To evaluate the effectiveness of the functions we selected the 5000 most popular
domains from the legitimate dataset and 5000 unique randomly selected phishing
domains extracted from the URLs in the phishing dataset.

For each distance function we chose a threshold and considered each pair of domains
(x, y) with distance under that threshold to be similar. The number of true positives for
each function and threshold was then computed as the number of phishing domains y,
such that there existed a similar legitimate domain x. The number of false positives was
computed analogically with pairs of different legitimate domains x and y. The number
of true and false positives for similarity functions was computed analogically, with the
difference that the domains were considered similar if the similarity value between them
was higher than the threshold.

However, the initial results of this experiment showed that the functions performed
significantly worse than expected. For example, the Jaro-Winkler similarity with 0.98

as threshold correctly identified only 2 phishing domains, while incorrectly declaring 52
legitimate domains as phishing. While the precision increased with lower thresholds,
this was mostly due to the fact, that the majority of legitimate domains were already
declared as phishing with higher thresholds. The rest of the functions followed a similar
pattern.

One issue that contributed to this result was that the phishing dataset contained
long domains that did not look similar to any popular legitimate domain. To mitigate
this issue, domains longer than 20 characters were excluded from both datasets. This
filter removed around half of domains in the phishing dataset, while removing only 90

4The list used in this thesis is available at https://tranco-list.eu/list/XJJ7N.

https://tranco-list.eu/list/XJJ7N
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domains from the 5090 most popular legitimate domains.
We repeated the experiment with new lists of 5000 phishing and 5000 legitimate

domains that passed through the filter. For comparison, the results with and without
the filter for the Jaro-Winkler similarity can be seen in Figure 1.1. For each function
the points in the graph represent the number of true and false positives for different
thresholds. The thresholds are multiples of 0.01, starting with 1 in the bottom left
corner, where both the number of true and false positives is zero, and ending with 0 in
the top right corner, where both the number of true and false positives is 5000.
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Figure 1.1: Number of true positives in relation with the number of false positives for
the Jaro-Winkler similarity

The results of the experiment are shown in Figure 1.2. Again, for each function
the points in the graph represent values for different thresholds. The thresholds for
similarity functions are multiples of 0.01 between 1 and 0, while the thresholds for
distance functions are multiples of 0.1 between 0 and 20. The values for each function
and threshold are included in Appendix B. The results showed that all the previously
existing functions performed very similarly, however, the Gestalt pattern matching
function performed slightly better than the rest. More importantly, the Caramel distance
performed better than any other function. This might be due to the fact that it was
designed with the phishing dataset in mind. However, the results still suggest that
the type of similarity, which the Caramel distance was designed to detect, does not
commonly occur in legitimate domains.
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Overall, all functions had less than 50% precision, which suggested that legitimate
domains on average look more similar to other legitimate domains than to phishing
domains contained in the dataset. To verify this, we manually reviewed the phishing
dataset and confirmed that the dataset contained very few domains that look similar
to legitimate domains, such as typosquatting domains. The dataset, therefore, did
not contain phishing domains of types that the selected functions were designed to
detect, which explains the poor results. Instead, the PhishTank dataset contained
mostly domains that either did not resemble any meaningful word or words, such as
‘90281721.xyz’, or were domains of legitimate services, such as ‘docs.google.com’ or
‘tinyurl.com’, where the domain by itself was not malicious. Instead, the legitimate
service either unknowingly hosted malicious content, or was used to redirect to another
malicious domain.
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Figure 1.2: Number of true positives in relation with the number of false positives for
selected functions

1.3.2 Top-Level Domain sk

Because of the poor results of the experiment with the PhishTank dataset, we decided to
conduct another experiment with a publicly available list of domains registered directly
under the top-level domain ‘sk’. The list was obtained on April 9, 2024.
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We selected 5 popular domains registered under the top-level domain ‘sk’ — ‘ak-
tuality.sk’, ‘bazos.sk’, ‘dennikn.sk’, ‘google.sk’ and ‘zoznam.sk’. For each of the 5
domains we selected the 20 most similar domains registered under ‘sk’, according to
the Jaro-Winkler similarity, Gestalt pattern matching, Damerau-Levenshtein distance,
Enhanced Levenshtein distance, Vanilla distance and Caramel distance. For each of
the selected domains we manually verified the content of the website accessible on the
domain. We separated the websites into 4 categories.

• Malicious websites — Websites that either imitate the website their domain is
similar to, or contain malicious content. Websites that redirect to other websites
containing malicious content are also considered to be malicious.

• Typosquatting websites — Typosquatting websites, which do not appear to
contain malicious content, but instead redirect to other unrelated websites.

• Legitimate websites — Websites that are not related to the target website and
do not appear to be intentionally imitating the popular website their domain is
similar to.

• Neutral websites — Websites that do not fit into any of the other categories,
for example because they were unreachable or parked.

The number of websites in each category for each function is listed in Table 1.2. To
provide a concrete example, the 20 domains most similar to ‘google.sk’ according to the
Caramel distance, along with their distances and categories, are shown in Table 1.3.

The numbers show that all functions performed very similarly. In fact, there was a
significant overlap between the most similar domains according to each function. In
total, the functions detected 192 unique domains.5 For each of the 192 domains we
counted the number of functions which detected it, and computed the average number
of functions for each category of domains, see Table 1.1. The average numbers show
that there was more overlap between malicious and typosquatting domains detected by
each function, compared to legitimate and neutral domains.

Type Number of functions

Malicious 4.2
Typosquatting 4.0

Legitimate 2.0
Neutral 3.1

Table 1.1: Average number of functions for each domain

5If there was no overlap between the functions, the total number of unique domains would be 600.
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In regard to the previous experiment, each function detected more malicious and
typosquatting domains than legitimate domains, which confirms that the poor results
of the first experiment can be explained by the fact that the PhishTank dataset did not
contain the types of domains this thesis focuses on.

Function Malicious Typosquatting Legitimate Neutral

Jaro-Winkler similarity 10 16 8 66
Gestalt pattern matching 11 14 7 68

Damerau-Levenshtein distance 14 15 9 62
Enhanced Levenshtein distance 13 14 10 63

Vanilla distance 13 15 6 66
Caramel distance 14 13 8 65

Table 1.2: Number of domains detected by each function
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Domain Caramel distance Type

googie.sk 0.0 neutral
gooogle.sk 0.5 neutral
coogle.sk 0.8 neutral
gooqle.sk 0.8 neutral
ggoogle.sk 0.9 typosquatting
gogle.sk 0.9 typosquatting
gogole.sk 0.9 malicious
googgle.sk 0.9 malicious
googlee.sk 0.9 malicious
boogie.sk 1.0 legitimate
boogle.sk 1.0 neutral
goodie.sk 1.0 legitimate
googe.sk 1.0 typosquatting
googel.sk 1.0 malicious
googi.sk 1.0 neutral

googke.sk 1.0 malicious
googler.sk 1.0 typosquatting
googlr.sk 1.0 malicious
googlw.sk 1.0 malicious
goole.sk 1.0 malicious

Table 1.3: The domains most similar to ‘google.sk’ according to the Caramel distance





Chapter 2

Similar Domain Generator

In this chapter we propose and implement a tool for generating similar domain names
called Similar Domain Generator (SDG). In the simplest scenario, SDG takes a domain
name as an input from the user and returns a list of domain names that are similar
to the given domain name. SDG also has multiple features designed to make the tool
more practical, such as using DNS to return only registered domains.

We first explore existing tools with similar functionality. Next, we identify limitations
of these tools and describe the functionality and implementation of SDG, which improves
upon them. Finally, we compare SDG with the existing tools.

Throughout this chapter we use the term modification to informally refer to any
operation that alters a part of a string in a specific way and has a cost associated with
it. More formally, modification is any function e(a) = (b, c), where a is a string to
be transformed, b is the result of the transformation and c is the cost associated with
the transformation. For example, insertion is a modification that inserts any single
character at any position in a string with a constant cost of 1. The term modification
mirrors the term edit operation defined in the previous chapter.

2.1 Existing Solutions

In this section we explore three of the most notable available tools with functionality
similar to SDG. While more tools exist, most of them either offer less functionality
than the described tools, such as Domain Check’s Typo Generator [24] or Catphish
[25], or provide no information about how the similar domains are generated, such as
Have I Been Squatted? [26], Domain Name Typo Generator [27] or Cloudflare’s Brand
Protection [28].

Although we defined modification as an operation with a cost, we found no existing
tools which implement operations with variable costs. This is equivalent to each
modification having the same constant cost. However, SDG has operations with variable

23
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costs, which allows it to generate domains in order of their similarity.

Typosquatting Finder

Typosquatting Finder [29] is a website and a Python package created by David Cruciani,
that generates domains similar to the domain given by the user.

Typosquatting Finder generates similar domains using various types of modifica-
tions. This includes broad modifications, such as insertion, deletion, substitution or
transposition of any character or characters, and more targeted modifications, such as
insertion or deletion of specifically ‘-’ or ‘.’, substitution of similar Unicode characters,
or detection of certain words inside the domain, which are then replaced with their
misspellings obtained from Wikipedia’s list of common misspellings. The tool also uses
modifications specific to domain names, such as swapping the top-level domain with
another top-level domain, or adding another top-level domain after the original one.
The Python package also allows the user to specify a limit to the number of generated
domains. It also contains a modification named combo, which generates domains by
applying a combination of any two different modifications. The user can select which
modifications to use to generate domains.

Typosquatting Finder uses DNS to filter the list of generated domains to contain
only registered domains. Additionally, the user can provide a list of NS records and a
list of MX records, which will be used to mark matching domains as known. The user
can also provide a file containing a list of domains that will be excluded from the result.

URLCrazy

URLCrazy [30] is a command line tool created by Andrew Horton that generates
similar domains using mostly the same modifications as the Typosquatting Finder. The
most notable difference is that URLCrazy does not generate domains by inserting or
substituting any arbitrary character. Instead, these two operations use only characters
to the immediate left and right of the original character on keyboard.

Dnstwist

Dnstwist [31] is a command line tool created by Marcin Ulikowski. Although it is also
available as a website, the website does not offer all the functionality of the command
line tool.

Most of the modifications that dnstwist uses to generate similar domains are also
covered by the previous two tools. One notable exception is that the command line
version of dnstwist can be supplied with a dictionary file. Dnstwist then uses words from
the dictionary to add prefixes and suffixes to the original domain. For example, if the
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dictionary includes word ‘fish’ and the given domain is ‘example.com’, dnstwist uses the
word ‘fish’ to generate domains ‘fishexample.com’, ‘fish-example.com’, ‘examplefish.com’
and ‘example-fish.com’.

2.2 Functionality

All three described tools offer very similar functionality and use similar modifications
to generate domains. SDG contains most of the modifications used in the described
tools and combines most of their additional functionality. It allows the user to specify a
limit to the number of generated domains. It is capable of filtering domains using DNS
and can be supplied with various lists that are used to exclude certain domains from
the result. It can also be supplied with a custom word list that is used with certain
modifications. We also identified a few ways to improve upon the existing tools.

One limitation of these tools is their limited capability of combining multiple
modifications. While Typosquatting Finder allows combining any pair of different
modifications, it is not possible to apply more than two modifications to a domain. It is
also not possible to apply the same modification twice. Dnstwist and URLCrazy do not
allow combining modifications at all. During our experiments in the previous section
we found that some phishing domains are created by modifying the original domain
multiple times. To address this limitation, SDG is designed to allow repeatedly applying
certain compatible modifications without any limit to the number of repetitions.

Another way to improve upon the existing tools is to provide more modifications.
This improvement, together with the ability to more freely combine modifications,
greatly increases the number of generated domains.

Although increasing the number of generated domains is an improvement, it could
also make it infeasible for the user or another automated tool to review the generated
list of domains. In fact, depending on configuration of SDG, the length of the list
may not be finite. This makes it necessary to limit the number of generated domains.
However, if the domains are not generated in any specific order, this means that the
limited list might not necessarily contain the most similar domains. To address this
issue, SDG implements an additional feature that is not available in any of the existing
solutions — a variable cost for each modification. This cost represents how much will
the similarity between the original domain and the new domain decrease by applying
that modification. SDG uses the variable costs to generate domains in order of their
similarity, starting with the most similar domain. This, combined with the limit, allows
SDG to generate a list of the most similar domains that is still short enough to be
reviewed by the user or a more complex automated tool, which for example analyzes
contents of websites accessible on the generated domains.
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2.2.1 Modifications

Below we describe how the modifications used by SDG can be combined, and list all
modifications, with related modifications grouped together.

The original domain is split into two parts — the public suffix and the rest of the
domain, which we refer to as the core. Most modifications can be applied only to the
core of the domain. The only exceptions to this are modifications in the public suffix
group, which can be applied only to the public suffix.

Any modification can be chained together with any other modification to modify
the domain multiple times. For example, the domain ‘exaamplee.com’ can be generated
from ‘example.com’ by first inserting the extra character ‘a’, and then inserting the
character ‘e’, or vice versa. The only exceptions to this are modifications in the
typosquatting group, which can be chained together with modifications from the same
group, but not with modifications from different groups. The reason for this is that the
typosquatting modifications generate domains based on the likelihood of them being
used as typosquatting domains, while the rest of the modifications generate domains
based on their visual similarity to the original domain.

Additionally, once a character in the domain has been modified, it cannot be modified
again. For example, if the domain ‘example.com’ is modified by transposing the first
two characters, it is no longer possible to delete the character ‘x’ from the resulting
domain ‘xeample.com’. On the other hand, it is still possible to delete a character in
another position, for example, to create the domain ‘xeamle.com’.

General

The first group of modifications contains four modifications — insertion, deletion,
substitution and transposition. A single application of these modifications generates a
domain with the Damerau-Levenshtein distance from the original domain of 1. Domains
with greater Damerau-Levenshtein distance can be created by chaining these rules.

Typosquatting

The typosquatting group contains two subgroups of modifications — repeat modifications
and adjacent modifications. Repeat modifications are repeat insertion and repeat
deletion. They reflect a common type of mistake, where a user presses the same
keyboard button twice instead of once, or vice versa. Adjacent modifications are
adjacent substitution, adjacent insertion, adjacent deletion and adjacent transposition.
These modifications represent a similar mistake, where a user accidentally presses a
keyboard button that is adjacent to the button they intended to press.
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Similar

The similar group contains similar substitution, similar transposition and multicharacter
substitution. These modifications represent operations with characters that are visually
similar to each other and therefore have a lower cost than the general operations in the
general group. For example, the cost of similar substitution of character ‘j’ for character
‘i’ is 0.5, while the cost of general substitution for the same pair of characters is 1. The
values used for these modifications were obtained from a project of Paul E. Black [18].

Public Suffix

The public suffix group contains modifications that alter the public suffix of a domain.
These are TLD1 insertion, TLD deletion, TLD substitution and TLD transposition.
These modifications work analogically to modifications in the general group, however,
instead of transforming one or two characters, they transform a single level of a domain.
For example, the domain ‘example.com’ can be transformed into ‘examle.com.org’
using the TLD insertion. For another example, the domain ‘example.co.uk’ can be
transformed into ‘example.uk.co’ using the TLD transposition.

Extended Similar

The extended similar group contains several more advanced modifications. These
are level transposition, digit substitution, three prefix modifications and three suffix
modifications.

The level transposition is similar to TLD transposition, however, it transposes levels
that are part of the core of a domain, not part of the public suffix. For example, the
domain ‘site.example.com’ can be transformed into ‘example.site.com’.

Digit substitution is a substitution of a digit for its English word representation or
vice versa. For example ‘exampleone.com’ can be transformed into ‘example1.com’.

The prefix modifications are user-provided prefix, common prefix and custom prefix.
All three modifications take a list of words and insert them to the beginning of the
domain. However, they differ in how the list of words is obtained. The user-provided
prefix, as the name suggests, uses a list of words that is provided by the user. The
common prefix uses a list of the most common subdomains obtained from the SecLists
collection of lists.2 Finally, the custom prefix uses a list of words that are often used
on the website accessible on the original domain. The list is obtained by crawling
the website with a tool named CeWL (Custom Word List generator) [32]. This list is

1top-level domain
2The list of subdomains is available at https://github.com/danielmiessler/SecLists/

blob/master/Discovery/DNS/subdomains-top1million-5000.txt.

https://github.com/danielmiessler/SecLists/blob/master/Discovery/DNS/subdomains-top1million-5000.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/DNS/subdomains-top1million-5000.txt
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filtered using a list of stop words. Stop words are words that hold little or no meaning
on their own, such as ‘the’ or ‘is’.

All three modifications insert the word directly before the domain, for example
‘worddomain’, and separated from it by a dash, for example ‘word-domain’.

The three suffix modifications are user-provided suffix, common suffix and custom
suffix, and are analogous to the prefix modifications.

2.3 Implementation

Since the implementation makes use of formal grammars, we first need to define a few
terms from formal language theory. However, giving a comprehensive introduction to
the field of formal language theory is out of scope of this thesis, therefore we provide
the definitions without giving further context. For a comprehensive introduction to
formal language theory we recommend for example Introduction to Automata Theory,
Languages, and Computation [33], which is the source for the following subsection.

2.3.1 Formal Grammars

An unrestricted grammar is defined as tuple (N, T, P, S), where N and T are disjoint
finite sets of nonterminal and terminal symbols, S is a nonterminal symbol named start
symbol and P is a finite set of productions, where P ⊆ (N ∪ T )∗N(N ∪ T )∗ × (N ∪ T )∗.
Production (x, y) can also be denoted as x → y. Two or more productions that share
the same left-hand side can be grouped together by separating the right-hand sides with
character |. For example, productions (x, y) and (x, z) can be denoted as x → y | z.

A string is a finite sequence of nonterminal and terminal symbols. We define a
binary relation ⇒ (derives in one step) between two strings x and y as follows.

x ⇒ y ⇔ ∃α, β, x1, x2 ∈ (N ∪ T )∗ : x = x1αx2 ∧ y = x1βx2 ∧ α → β ∈ P

Relation ⇒∗ (derives) between strings x and y is defined as the reflexive transitive
closure of ⇒.

Language generated by grammar G is a set of strings that can be derived from the
start symbol S. Formally, language is defined as L = {w | w ∈ T ∗ ∧ S ⇒∗ w}.

In some grammars, there are multiple possible derivations for a single string. This
could mean that there is more than one multiset of productions that can be used to
derive the string, or that productions from same multiset can be used in multiple
different orders. The leftmost derivation is defined as a derivation, such that in each
step, the leftmost nonterminal symbol is used in the applied production. The leftmost
derivation then serves as a representative derivation for all derivations that use the
same multiset of productions.
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2.3.2 Weighted Grammar

For our purposes we define weighted grammar as an unrestricted grammar that also has
a cost associated with each production. This cost represents how much will the distance
between the original string and the derived string increase by applying that production.
We also allow only nonterminal symbols on the left-hand side of productions.

Formally, weighted grammar is defined as a tuple (N, T, P, S), where N and T are
disjoint finite sets of nonterminal and terminal symbols, S is a start symbol and P is a
finite set of productions, where P ⊆ N+ × (N ∪ T )∗ × R+

0 , and the following condition
holds.

∀x, y ∈ (N ∪ T )∗ ∀a, b ∈ R : (x, y, a) ∈ P ∧ (x, y, b) ∈ P ⇒ a = b

Production (x, y, a) can also be denoted as x → y [a]. The third element of a production
is the production cost.

We define derivation cost as the sum of costs of productions used in a derivation.
The cost of a string is then defined as the minimum derivation cost for all derivations
for that string.

For convenience, we use uppercase alphabetic strings to denote nonterminal symbols,
and all other strings to denote terminal symbols. For example, A, NINE and TLD
are nonterminal symbols, while a, 9 and .com are terminal symbols. This convention
allows us to provide examples of productions without first needing to define the sets of
terminal and nonterminal symbols. Figure 2.1 shows a small example of a weighted
grammar defined using this notation. We use this example grammar throughout the
rest of this section.

S → A B C [0.0]

A → a [0.0] | C a [1.0]

B → b [0.0]

C → c [0.0] | d [0.5]

Figure 2.1: An example of a weighted grammar

2.3.3 Architecture and Design

The most important component of the tool is the SimilarDomainGenerator class. It
directly or indirectly utilizes several other components, as can be seen in Figure 2.2.
We first describe each of these components separately.3 Afterwards, we describe how

3We do not describe classes, which represent objects from formal language theory, such as terminals
and productions.
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SimilarDomainGenerator uses the other components to generate similar domains.

Modification

Language
GeneratorDNSResolver

Similar
Domain
Generator

String
Iterator

Figure 2.2: A diagram displaying the architecture of SDG

Modification

Instances of this class encapsulate a modification in form of a set of productions. These
productions are then used to create a grammar, which generates a language of strings
that can be created by applying the modification to a domain.

For example, one modification available in SDG is insertion. The modification is
represented by two productions for each pair of characters that are valid in a domain
name. For each pair (a, b), there are productions X → X y [c] and X → y X [c], where
X is a nonterminal symbol representing character a, y is a terminal symbol representing
character b and c is the cost of the modification.

When the productions are first generated, their cost is calculated to mirror the
Caramel distance described in the previous chapter. First, the cost of a production is
calculated as the Enhanced Levenshtein distance between the left-hand side and the
right-hand side of the production. More precisely, the inputs to the distance function
are symbols from the left-hand side concatenated together as the first string and the
symbols from the right-hand side concatenated together as the second. Furthermore,
each nonterminal symbol is converted to its corresponding terminal symbol. For example,
A is converted to a. Nonterminal symbols that do not have a dedicated terminal symbol,
such as PREFIX, are discarded. For example, in order to calculate the cost of production
PREFIX X → www- X, it is first converted to x → www- x. Next, the symbols are
concatenated together, and the inputs to the distance function are strings ‘x’ and
‘www-x’. The distance between these two strings is 4, therefore the initial cost of the
production is also 4.

If the production is applicable to the core of the domain, this is the actual cost
of the production. On the other hand, if it is applicable only to the prefix, suffix or
public suffix of the domain, the initial cost is further divided by 3. This reflects how
the Caramel distance gives greater importance to the core of the domain.
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StringIterator

StringIterator is an iterator class that is initialized with a grammar and a string.
Afterwards, the StringIterator generates strings on demand. It iterates over all strings
that can be derived from the provided string in a single step, using only productions
from the provided grammar, which use the leftmost nonterminal in the string. The
condition to use only the leftmost nonterminal ensures that all strings, which are later
generated by LanguageGenerator, are generated using only leftmost derivations.

The productions are ordered by their cost, starting with the least expensive one.
The cost of a generated string is equal to the cost of the applied production added to
the cost of the string it was initialized with.

For example, a StringIterator object initialized with the grammar in Figure 2.1 and
string a A B with cost 2 would first generate string a a B with cost 2. The next string
would be a C a B with cost 3, and afterwards there would be no more strings to be
generated.

LanguageGenerator

LanguageGenerator is an iterator class that is initialized with a grammar. The iterator
generates strings from language generated by the grammar. The strings are generated
in order of their cost, starting with the string with the lowest cost.

During iteration, LanguageGenerator uses a priority queue of StringIterator objects,
where the priority of a StringIterator is the cost of the string it will return next, with
the StringIterator the lowest cost having the highest priority. In the beginning, the
queue contains a single StringIterator initialized with string, that consists only of the
start symbol and has the cost of 0. Each time a new string from the language needs to
be generated, the following function is called.

def next():

# queue: priority queue of StringIterators

while not queue.empty():

it = queue.get()

string = it.next()

if it.has_next():

queue.put(it)

if string.contains_nonterminal():

new_it = StringIterator(string)

queue.put(new_it)

else if string not in previously_generated:

previously_generated.add(string)

return string
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# there are no more strings to be generated

raise Exception

Since each StringIterator generates strings ordered by their distance and the priority
queue orders the iterators in such a way, that the iterator, which will generate the
string with the lowest distance will be used each time, the algorithm ensures that
LanguageGenerator generates strings ordered by their distance.

For example, LanguageGenerator initialized with the grammar in Figure 2.1 with S
as the start symbol would first generate a b c, then a b d, c a b c, c a b d and d a b c.
The last generated string would be d a b d.

DNSResolver

The primary purpose of this class is to test whether a domain is registered using DNS
queries. It is initialized with a list of IP addresses and networks, a list of NS records
and a list of MX records, based on which to exclude domains.

DNSResolver has a single function named resolves. The function first looks up
the SOA record for the domain to check, if it is registered. Afterwards, if the domain is
registered, it looks up A, AAAA, MX and NS records for the domain and checks if any
of the records are present in the corresponding lists. If the domain is registered and
no record is present in its corresponding list, the function returns True. Otherwise, it
returns False.

SimilarDomainGenerator

The main class of the package. It is initialized with the following parameters provided
by the user. All except the first are optional.

• Target domain — The only required parameter. SDG generates domains similar
to this domain.

• Limit — The maximum number of generated similar domains.

• Selected modifications — By default, SDG generates domain names using every
modification available. Optionally, the user can specify a list of modifications to
be used. For convenience, the user can also select whole groups of modifications
instead of selecting them individually.

• Word list — A list of words used by the user-provided prefix and suffix mod-
ifications. These should be words associated with the individual, business or
institution that owns the target domain.
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• Excluded domains — A list of domains to exclude when generating domains.
These can be domains that the user owns, or domains that the user knows about
and does not want them to clutter the output.

• Excluded IP addresses and networks — A list of IP addresses and IP
networks, based on which to exclude domains.

• Excluded NS records — A list of NS records, based on which to exclude
domains.

• Excluded MX records — A list of MX records, based on which to exclude
domains.

• Registered only — A boolean value that determines if SDG should return only
registered domains. If this parameter is set to False, SDG will not make any DNS
requests and the lists of excluded IP addresses and networks, NS records and MX
records will not be used.

The selected modifications are used to create a grammar, which is in turn used to
construct a LanguageGenerator object. The lists of IP addresses and networks, NS
and MX records are used to construct a DNSResolver object. After the initialization is
completed, the list of similar domains can be obtained by calling the following function.

def generate():

domains = []

while len(domains) < limit:

if not language_generator.has_next():

break

domain = language_generator.next()

if domain in excluded_domains:

continue

if not dns_resolver.resolves(domain):

continue

domains.append(domain)

return domains

2.4 Results

We compared SDG and the three previously described tools based on three properties —
the time it takes to generate the list of similar domains,4 how many of the generated

4The time was measured on an AMD Ryzen 5 5600H processor with 3.30 GHz clock speed.
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domains were registered, and the average Damerau-Levenshtein and Caramel distance
of the generated domains. The time was measured without taking into account the
time it takes to check if the domains are registered. Since dnstwist does not allow the
user to disable this functionality, we had to disable it directly in source code.

The number of registered domains is an indicator of how closely the generated
domains reflect domains used on the Internet. If a tool generated no registered domains,
not only would it mean that the tool failed to detect any phishing or typosquatting
domains, it would also indicate that the types of domains generated by the tool are not
being used, and it might not be worth it to register them as a preventative measure.

The properties were measured using the same 5 popular domains registered under
the top-level domain ‘sk’ that were used in the previous chapter. The resulting values
were computed as averages of values measured for each of the domains.

Existing Tools

The properties of the existing tools were measured with the following configurations.
Typosquatting Finder and URLCrazy were used with their default configurations, which
means that all their modifications were used. Since dnstwist can be provided with a
list of top-level domains and a custom list of words, it was used with two different
configurations — one with all modifications that do not require the two lists and one
with all modifications, including the modifications that require the lists.5 The results of
the measurements are shown in Tables 2.1, 2.2 and 2.3, along with selected values from
the measurements of SDG described below.

The results show that Typosquatting Finder generates domains in the shortest time,
generates the most registered domains and the generated domains have the lowest
average Vanilla and Caramel distance. On the other hand, while domains generated
by URLCrazy have higher average distance and there are less registered domains in
total, the percentage of generated domains that are registered is much higher. For
Typosquatting Finder, around 1.10% of generated domains were registered, while around
4.73% of domains generated by URLCrazy were registered.

Similar Domain Generator

The properties of SDG were measured with 5 different configurations:

• General, which used modifications from the general group.

• Typosquatting, which used modifications from the typosquatting group.

• Similar, which used modifications from the similar group.

5The provided lists were the same as the lists used by SDG.



2.4. RESULTS 35

Tool Time

dnstwist (default) 0.45s
dnstwist (with lists) 1.14s
Typosquatting Finder 0.28s
URLCrazy 0.35s
SDG Default (5000) 7.98s
SDG General (5000) 2.67s
SDG Default (10000) 9.10s
SDG General (10000) 4.45s
SDG Default (25000) 23.23s
SDG General (25000) 9.53s

Table 2.1: Average time needed to generate domains by existing tools and SDG

Tool Generated domains Registered domains

dnstwist (default) 3256.6 17.8
dnstwist (with lists) 20619.2 31.2
Typosquatting Finder 10600.0 117.0
URLCrazy 2030.6 96.0
SDG Default (5000) 5000 26.0
SDG General (5000) 5000 38.0
SDG Default (10000) 10000 65.2
SDG General (10000) 10000 70.4
SDG Default (25000) 25000 271.0
SDG General (25000) 25000 115.6

Table 2.2: Average number of registered domains generated by existing tools and SDG

• Extended similar, which used modifications from both the similar and the
extended similar group.

• Default, which used all modifications.

The results of the measurements are shown in Figures 2.3, 2.4 and 2.5. All config-
urations, except the similar configuration were capable of generating at least 100000
domains. The modifications in the similar configuration were capable of changing only
few selected characters, which limited the highest possible number of generated domains.

The results show that the default configuration generated the most registered
domains, followed by the general configuration. The default configuration was also
the slowest configuration, while the general was the second slowest. The rest of the
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Tool Damerau-Levenshtein Caramel

dnstwist (default) 2.27 2.15
dnstwist (with lists) 5.01 3.08
Typosquatting Finder 2.39 1.01
URLCrazy 4.82 1.63
SDG Default (5000) 3.30 2.12
SDG General (5000) 1.89 1.76
SDG Default (10000) 3.48 2.20
SDG General (10000) 1.95 1.86
SDG Default (25000) 3.68 2.22
SDG General (25000) 1.98 1.86

Table 2.3: Average distance of domains generated by existing tools and SDG

configurations generated significantly less registered domains.
In comparison with the existing tools, SDG with both the default and the general

configuration takes longer than Typosquatting Finder or URLCrazy to generate the
same number of domains, however, it is capable of generating a significantly larger
number of both registered and unregistered domains. At 100000 generated domains,
the percentage of registered domains with the default configuration is around 1.78%,
which is higher than the percentage of registered domains generated by Typosquatting
Finder. With the general configuration the percentage is only around 0.56%.

We conclude that SDG is not better suited than the existing tools for generating a
small list of unregistered domains for preventative registration, or for generating a small
list of potential phishing and typosquatting domains for manual verification by the user.
However, since SDG is capable of generating significantly more domains, it is better
suited for a more extensive detection of phishing and typosquatting domains, where
the generated list is further filtered using another automated tool, which for example
analyzes contents of websites accessible on the generated domains, such as Cantina [6].
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Figure 2.3: Average time needed to generate domains by SDG
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Figure 2.4: Average number of registered domains generated by SDG
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Figure 2.5: Average Damerau-Levenshtein distance of domains generated by SDG
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Figure 2.6: Average Caramel distance of domains generated by SDG



Conclusion

This thesis explored the usage of similarity between domain names for the purpose of
detecting phishing and typosquatting websites. We described several existing functions
that measure similarity between two domains, and proposed two novel functions — the
Vanilla distance and the Caramel distance. The Vanilla distance was designed to detect
typosquatting domains, while the Caramel distance was designed to detect a specific
type of visually similar phishing domains. Both of them were based on already existing
functions.

We compared the functions using a publicly available dataset of phishing domains
and a list of the most popular legitimate domains. The experiment, however, did not
yield conclusive results, due to the fact, that the phishing dataset did not contain
many domains that appeared similar to a legitimate domain. We conducted another
experiment using domains registered under the top-level domain ‘sk’, which confirmed
that the results of the first experiment were most likely not representative of the real
world situation.

In the second part of the thesis we proposed and implemented Similar Domain
Generator, a tool for generating domains that are similar to a given domain. SDG
can be used for detection of phishing and typosquatting domains, or preventative
registration of the most similar domains, so they cannot be misused in the future. SDG
uses various modifications, such as insertion or substitution, in order to transform
the original domain and generate new similar domains. Each of the modifications has
a variable cost associated with it. The cost represents how much will the similarity
between the original and the generated domain decrease by applying the modification.

We compared SDG with other existing tools and concluded, that although SDG
is slower than the other tools, it is capable of generating significantly more of both
unregistered and registered domains. This makes it suitable for a more extensive
detection of phishing and typosquatting domains, where the generated domains are
further analyzed by another automated tool, which for example analyzes contents of
websites accessible on the domains generated by SDG.

Further work on this subject would include obtaining a dataset of phishing and
typosquatting domains that appear similar to legitimate domains they are targeting.
This dataset could then be used to repeat the experiments in Section 1.3, in order to

39
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obtain more reliable results.
In regard to SDG, further work would include adding more modifications. It could

also be beneficial to more extensively experiment with various configurations and change
the cost of modifications in order to generate more relevant domains first.
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Appendix A

Source Code

The electronic attachment contains source code files for Python implementations of
the Vanilla and Caramel distances, as well as the implementation of Similar Domain
Generator. Instructions for use of Similar Domain Generator are included in file
README.md.
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Appendix B

Experiment Results

The results of the experiment with the PhishTank dataset are included in the form of
CSV files as an electronic attachment.
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