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Abstract

An algebraic attack is a new cryptanalytic method. The main idea behind

this method is finding and solving a system of multivariate polynomial equa-

tions over finite field. Recently, algebraic attacks were very successful against

certain stream ciphers based on LFSRs (e.g. nonlinear filter generators and

nonlinear combination generators). In this paper, we explain the main ideas

of algebraic attack on stream ciphers and illustrate them with examples. We

describe methods for generating systems of polynomial equations for some

classes of the stream ciphers based on LFSRs. We set out to study the XL

algorithm for solving these systems and run various computer simulations

for verifying the behaviour of the XL algorithm. Afterwards, the method for

solving the system of nonlinear equations using SAT solvers is presented, and

the experimental analysis of our heuristic for speeding up the conversion from

algebraic normal form to conjunctive normal form is described. Efficiency of

this conversion is eminent for the use of SAT solver for solving the system

of equations. We concluded that the presented heuristic is highly efficient

for the systems with high density. We also explain the improvement of the

algebraic attack – namely the fast algebraic attack.

Keywords: Algebraic attack, fast algebraic attack, stream ciphers, linear

feedback shift register, A5/1, XL algorithm, SAT solver.
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Notation

A System of equations

ANF Algebraic Normal Form

CNF Conjunctive Normal Form

deg(f) Degree of the Boolean function (polynomial) f

Fq Finite field with q elements

F[x1, x2, . . . , xn] Ring of multivariate polynomials over field F
FAA Fast Algebraic Attack

K Encryption key

LFSR Linear Feedback Shift Register

NLCG Nonlinear Combination Generator

NLFG Nonlinear Filter Generator

Z = (z)∞t=0 Linear recurring sequence

S Internal state (e.g. state of the LFSR)
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Chapter 1

Introduction

The stream ciphers play really important role in modern symmetric cryptog-

raphy. They are widely used due to their efficiency and hardware suitability

in practice. For example, the stream cipher A5/1 is used in GSM standard,

which is used by more than 2 billion people. Recently, eSTREAM - ECRYPT

Stream Cipher Project is a multi-year effort to identify new stream ciphers

that might become suitable for widespread adoption [1].

An algebraic attack is a very recent cryptanalytic technique which reduces

the cryptanalysis of the attacked cryptosystem into problem of finding and

solving a system of polynomial equations. Therefore the problem of solving

a system of nonlinear equations over finite field is close to the algebraic

attack. There is a discussion about applicability of the algebraic attack on

various cryptographic primitives at the moment, but there is no doubt about

applicability of the algebraic attack on certain stream cipher based on LFSRs.

The main objective of this thesis is to study, explain and illustrate the

basic ideas and techniques related to the algebraic attack on stream ciphers.

This thesis is organized as follows. In Chapter 2 we present basic ideas behind

algebraic attack and describe techniques of generating system of equations

for two large classes of the stream ciphers based on LFSRs – nonlinear com-

bination generators and nonlinear filter generators. Afterwards, we try to

use algebraic attack directly on the stream cipher A5/1, which is clocked

irregularly. We show how to generate the system of equations for A5/1.
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Unfortunately, our method is not efficient.

In Chapter 3 and Chapter 4 we present two algorithms, linearization and

XL algorithm, for solving the system of nonlinear equations based on linear

algebra. We have run large amount of computer simulations for experimental

analysis of XL algorithm.

We examine method for solving the system of nonlinear equations using

SAT solvers in Chapter 5. As its result we present our heuristic for speeding

up a process of converting equations in algebraic normal form to conjunctive

normal form. We present experimental results of applying this technique on

various systems of equations.

Finally, in Chapter 6 we present and illustrate on the examples an en-

hancement of the standard algebraic attack – fast algebraic attack.

We have implemented various programs for the purposes of our experi-

ments with algebraic attacks on various stream ciphers. Short descriptions

of the implemented programs are in Appendix A. To the best of our known-

ledge, the program xl, which is implementation of the XL algorithm, de-

scribed in Chapter 4, is a first public implementation of this algorithm.
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Chapter 2

Algebraic Attack – Basic Ideas

Algebraic attack is a very recent attack on various cryptosystems. First pa-

per which introduced algebraic attack is the paper by Kipnis, Shamir [13].

Authors defined new algorithm “Relinearization” for solving the system of

nonlinear equations over finite field. They used Relinearization for attacking

the public key cryptosystems Hidden Fields Equations and Dragon [16]. But

the idea of breaking cipher as solving the system of equations is 50 years

older. Claude Shannon wrote that breaking a good cipher should require “as

much work as solving a system of simultaneous equations in a large number

of unknowns of a complex type” in his paper [17].

The main principle of the algebraic attack is really simple – converting a

problem of attacking cryptosystem (e.g. recovering secret key of symmetric

cipher) into solving the system of polynomial equations. The algebraic attack

then consists of two basic steps:

1. Find a system of equations.

2. Solve the system of equations.

However there is the fundamental problem of the algebraic attack. It

is that solving the system of polynomial equations over any finite field is

NP-Complete problem.
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Theorem 2.1. Solving a system of quadratic equations over any finite field

(QS) is NP-Complete.

Proof. It is easy to see that our problem QS ∈ NP – we guess the solution

and check our solution in polynomial time. We find a reduction from well

known NP-Complete problem 3SAT to QS. Let C = C1 ∧ C2 ∧ . . . Cn be a

Boolean expression where Ci is a clause of the form Ci = li1 ∨ li2 ∨ li3 and lij
is a literal. Let us assume that our finite field is F2. We construct following

three equations for each clause Ci:
xi = li1 + li2 + li3 one or three literals are true;

yi = li1li2 + li2li3 + li1li3 at least two literals are true;

1 = xi + yi + xiyi one or both first equations are satisfied,

where
li = vi if li is a positive literal of variable vi;

li = (1− vi) if li is a negative literal of variable vi.

Transformation of the C into the system of quadratic equations is done in

polynomial time. Now it is easy to see that if we solve a system of new equa-

tions we also get solution for the Boolean expression C. To prove theorem

for any finite field we add for each variable vi another equation:

vi(1− vi) = 0 force variable to have value 0 or 1.

Following corollary is a trivial consequence of the previous theorem.

Corollary 2.1. Solving a system of polynomial equations over any finite field

is NP-Complete.

Theorem 2.1 was proved by Valiant and independently by Fraenkel and

Yesha. It sounds little bit paradoxical to try to break cryptosystem by con-

verting it to NP-Complete problem. We will show some examples where

algebraic attack can be very effective in the next chapters.
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2.1 The Attack Scenario

Algebraic attack on the stream ciphers is known-plaintext attack. So our

assumption is that the attacker knows some bits of the plaintext and also

corresponding bits of the ciphertext at some known positions. For example

source of these bits might be fixed header of the encrypted file. If the at-

tacker knows format of the encrypted file and this file format has fixed header

(e.g. Excel spreadsheet) it will be enough for him to get necessary bits for

the attack. These bits do not have to be consecutive. We follow Kerckhoffs’

principle, so the attacker has also complete description of the attacking cryp-

tosystem. In this paper we restrict ourselves to binary stream ciphers (they

generate one bit per one step) and to synchronous stream ciphers (they gen-

erate next state from the previous one independently of the plaintext), see

Figure 2.1. Most of the time we work with binary finite field F2.

2.2 Generating Equations for Stream Ciphers

We describe how to generate a system of equations for the attacking stream

ciphers in this section.

2.2.1 Stream Ciphers

Stream ciphers are very important part of symmetric cryptography. They

encrypt each character of plaintext one at a time. Transformation of the

cipher varies during the time. Stream ciphers are sometimes called state ci-

phers because encryption of the character depends not only on the key and

the character, but also on the current state of stream cipher. Basic idea is to

simulate one-time pad (originally called Vernam cipher [19]). We initialize

the generator of pseudorandom keystream using our secret key. The part

of the stream cipher called keystream generator generates pseudorandom se-

quence of bits. The cipher combines it with plaintext during the encryption

and with ciphertext during the decryption, respectively. Generally, some of

the main advantages of the stream ciphers are speed and that they are also
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usually well-suited for hardware implementation. More about stream ciphers

can be found in chapter 6 of [15].

Figure 2.1: General model of synchronous stream cipher, L – next state
function, G – produces keystream bits zi, ci – ciphertext bits, mi – plaintext
bits, k – key

Currently there is an effort to identify new stream ciphers that might

become suitable for widespread adoption. The name of the project is eS-

TREAM - ECRYPT Stream Cipher Project and is funded by the European

Union. More information about this effort can be found at [1].

2.2.2 LFSR-based Stream Ciphers

There are various building blocks for the construction of the stream ciphers.

One of the well-known class of the stream ciphers is a class containing ciphers

based on linear feedback shift registers.

Definition 2.1. ([15]) A linear feedback shift register (LFSR) of length L

consists of L stages (or delay elements) numbered 0, 1, . . . , L − 1, each ca-

pable of storing one bit and having one input and one output; and a clock

which controls the movement of data. During each unit of time the following

operations are performed:

1. the content of stage 0 is output and forms part of the output sequence;

2. the content of stage i is moved to stage i− 1 for each i, 1 ≤ i ≤ L− 1;

and
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3. the new content of stage L−1 is the feedback bit sj which is calculated by

a feedback function f(s0, s1, . . . , sn−1), which is equal to adding together

modulo 2 the previous contents of a fixed subset of stages 0, 1, . . . , L−1.

If the content of stage i is si ∈ {0, 1} for each 0 ≤ i ≤ L − 1, then S =

(s0, s1, . . . , sL−1) is called the state of the LFSR.

Note 2.1. The feedback function f of LFSR can be represented as a square

matrix Lf of dimension n over finite field F2. We can obtain state Si+1 from

the previous state Si as a result of multiplication of Si and Lf :

Si+1 = Si ∗ Lf .

Definition 2.2. A connection polynomial C(x) of LFSR L with length n is

an univariate polynomial over F2 and it is equal to

C(x) = 1 + c1x + c2x
2 + . . . + cnx

n,

where

ci =

{
1 if sn−i is in the fixed subset of stages of the feedback function;

0 otherwise.

Example 2.1. Let length of LFSR be 3, the feedback function be f = s0⊕ s1

and Si = (x0, x1, x2). Then matrix Lf is

Lf =

0 0 1

1 0 1

0 1 0

 ,

and the state Si+1 is equal to

Si+1 = Si ∗ Lf = (x0, x1, x2)

0 0 1

1 0 1

0 1 0

 = (x1, x2, x0 + x1).

LFSRs are well suited to hardware implementation and they are capable
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Figure 2.2: A linear feedback shift register

of producing sequences having large periods and good statistical properties.

LFSR produces an output sequence with maximum period if a connection

polynomial is a primitive polynomial (see Chapter 6 in [15]). Let us use LFSR

directly as a keystream generator. Unfortunately, the output bit stream of

any LFSR is easily predictable as the following example shows. The attack

scenario at this generator is the same as it sis described in the Section 2.1

except for the known keystream bits that have to be consecutive.

Example 2.2. Suppose a LFSR L with a length 3 and a feedback function

f(s0, s1, s2) = s0⊕s1. If attacker knows the length of L , the feedback function

f and three consecutive output bits (a, b, c) of L, he can easily predict following

output bits of L. The following table shows sequence of the states of L during

generation of the known bits (a, b, c).

State L Output

1st (a, b, c) a

2nd (b, c, a⊕ b) b

3rd (c, a⊕ b, b⊕ c) c

The attacker can easily predict the values of the next two output bits which

are a⊕ b and b⊕ c.

Generally, for predicting output bit of LFSR with length N the attacker

needs to know previous N consecutive output bits. There is also another very

efficient attack on LFSR based on Berlekamp-Massey algorithm (see [15]),

when the attacker does not even need to know the feedback function f of

LFSR. Due to these facts, using LFSR as a keystream generator directly is

insecure. We need to add nonlinearity into the design of the stream cipher.

12



2.2.3 Nonlinear Combination Generators

One of the methods of constructing the stream ciphers from LFSRs is to

combine outputs of several LFSRs using a nonlinear combining function. We

call the class of these ciphers nonlinear combination generators.

Definition 2.3. A nonlinear combination generator (NLCG) consists of n

LFSRs numbered 0, 1, . . . , n − 1; a nonlinear Boolean combination function

f(l0, l1, . . . , ln−1); and a clock which controls the movement of data. During

each unit of time the following operations are performed:

1. LFSR Li is updated to next state for 0 ≤ i ≤ n− 1; and

2. result of the function f(l0, l1, . . . , ln−1), where li is output of the i-th

LFSR, is output and forms part of the output sequence.

Note 2.2. Every Boolean function f(x1, x2, . . . , xn) can be written as a mod-

ulo 2 sum of distinct mth order products of its variables, 0 ≤ m ≤ n; this

expression is called the algebraic normal form (ANF) of f (see [15]). Also

every f(x1, x2, . . . , xn) can be viewed as a multivariate polynomial over F2.

Due to these facts we write Boolean functions as polynomials in this work.

Figure 2.3: A nonlinear combination generator

Unfortunately, there are no known mathematical proofs of security of

such stream ciphers so far. Yet, they can not be provably secure. A cipher

is said to be provably secure if the difficulty of its defeating can be shown
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to be essentially as difficult as solving a well-known and supposedly diffi-

cult (typically number-theoretic) problem, such as integer factorization or

the computation of discrete logarithms (see [15]). These ciphers can only

be deemed computationally secure. A proposed cipher is said to be compu-

tationally secure (see [15]) if the perceived level of computation required to

defeat it (using the best attack known) exceeds, by a comfortable margin,

the computational resources of the hypothesized adversary. That is another

reason of our attempt to attack this class of symmetric stream ciphers by

algebraic attack. We believe that in some cases the algebraic attack requires

less computation than the brute force attack.

The attacker knows some bits of the keystream at some known positions

and he wants to generate the system of polynomial equations A, where un-

known variables represent the key. Generating the system of polynomial

equations for NLCG is straightforward. The unknown variables are initial

values of each LFSR. We simulate operation of the keystream generator step

by step and for each known output bit we add equation to system A.

Let Li be a matrix representation of the feedback function and ni be a

length of i-th LFSR, l
(k)
i be an output bit of the i-th LFSR in k-th step and

f(l0, l1, . . . , ln−1) be a nonlinear combination function of NLCG. For k-th

known output bit ck of the cipher we add following equation to our system:

f(l
(k)
0 , l

(k)
1 , . . . , l

(k)
n−1) = ck.

We get l
(k)
i as a content of the 0-th stage of the i-th LFSR in k-th step.

S0 = (s
(0)
0 , s

(0)
1 , . . . , s

(0)
ni−1), S0 ∗ Lk

i = (s
(k)
0 , s

(k)
1 , . . . , s

(k)
ni−1), l

(k)
i = s

(k)
0 .

Example 2.3. Consider a NLCG with a combination function f(l0, l1) =

l0l1 + l1 and two LFSRs with matrix representations of the feedback functions

L1 and L2.
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L1 =

(
0 1

1 1

)
, L2 =

0 0 1

1 0 1

0 1 0

 .

The attacker knows the first three keystream bits (0, 1, 0) of the generator.

He will simulate operating of the stream cipher and will get following system

of equations.

State L1 L2 Equation

Initial (x0, x1) (x2, x3, x4) -

1st (x1, x0 + x1) (x3, x4, x2 + x3) x0x2 + x2 = 0

2nd (x0 + x1, x0) (x4, x2 + x3, x3 + x4) x1x3 + x3 = 1

3rd (x0, x1) (x2 + x3, x3 + x4, x2 + x3 + x4) x0x4 + x1x4 + x4 = 0

2.2.4 Nonlinear Filter Generators

Another class of the stream ciphers based on LFSRs is called nonlinear filter

generators. The keystream generator consists of only one LFSR and a non-

linear filtering function in this class.

Definition 2.4. A nonlinear filter generator (NLFG) consists of one LFSR

L with length n; a nonlinear filtering Boolean function f(s0, s1, . . . , sn−1);

and a clock which controls the movement of data. During each unit of time

the following operations are performed:

1. LFSR L is updated to next state; and

2. result of the function f(s0, s1, . . . , sn−1), where si is content of i-th stage

of the LFSR, is output and forms part of the output sequence.

Generating the system of polynomial equations for this class of stream

ciphers is similar to generating equations for NLCG.

Example 2.4. Consider a NLFG with a filter function f(s0, s1, s2) = s0s2 +

s1s2 +s1 and with one LFSR with matrix representation of the feedback func-

tion L1.

15



Figure 2.4: A nonlinear filter generator

L1 =

0 0 1

1 0 1

0 1 0

 .

The attacker knows the first three keystream bits (0, 1, 1) of the generator. He

will simulate operation of the keystream generator and get following system

of equations as well as he does for the NLCG.

State L Equation

Initial (x0, x1, x2) -

1st (x1, x2, x0 + x1) x0x1 + x0x2 + x1x2 + x1 + x2 = 0

2nd (x2, x0 + x1, x1 + x2) x0x1 + x0x2 + x0 + x2 = 1

3rd (x0 + x1, x1 + x2, x0 + x1 + x2) x0x1 + x1x2 + x0 + x1 = 1

From the previous two examples, Example 2.3 and Example 2.4, we can

see that a degree of the generated equations is upper bounded by the degree

of combining or filtering function f . Content of any stage of LFSR is always

linear expression and we substitute linear expressions into function f . The

maximal degree of the equations is important factor of the algebraic attack.

Generally, the algebraic attack is more effective for the lower degree.

The important fact is that a generation of the system of polynomial equa-

tions usually can be done as a precomputation step. The computers have
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enough space to store database of equations for any cipher these days. So for

the algebraic attacks, when we work with the equations in ANF, the most

time consuming part of the attack is the second step – solving the system of

equations. There can be exception, for example when we use SAT solver for

solving equations. We have to transform equations into conjunctive normal

form (CNF). We will discuss this case in Chapter 5.

2.3 Generating System of Equations for A5/1

A5/1 is the stream cipher used in the GSM cellular telephone standard, which

is widely used technology for the mobile communication. It has not been

published publicly. The algorithm was entirely described by Marc Briceno

in 1999. We take the definition of A5/1 from [5].

A5/1 does not belong to any previously described class of the stream ci-

phers, but it is partially similar to NLCG. It contains three LFSRs L1, L2 and

L3 with length 19, 22 and 23, respectively (see Figure 2.5). The size of the

key is 64 bits (in GSM implementation 10 bits are fixed to 0). The combining

function is a linear Boolean function f(l0, l1, l2) = l0 + l1 + l2. Till this point,

A5/1 looks vulnerable to algebraic attack, because the generated equations

are upper bounded by the degree of the combining function f(l0, l1, l2) and

we can solve the system of linear equations effectively. But LFSRs of A5/1

are not clocked regularly. There is used majority rule for clocking the regis-

ters. Each register has a clocking bit vi (v1 = s1
8, v2 = s2

10 and v3 = s3
10). At

each cycle, majority bit is determined (if at least two clocking bits are equal

to 1, then the majority bit is equal to 1, otherwise it is set to 0). LFSR Li

is clocked at cycle, if his clocking bit is equal to majority bit.

We use the same trick, as it has been used in proof of Theorem 2.1, for

generating the system of equations for A5/1.
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Figure 2.5: A5/1 (source: http://www.wikipedia.org)

V = (v0v1+v1v2+v0v2) =

{
1 at least 2 of the clocking bits are equal to 1;

0 at least 2 of the clocking bits are equal to 0.

Hence, V represents the value of the majority bit. Now we can easily write

how to transform i-th LFSR from the current state Si
j to the next state Si

j+1

for i = 1, 2, 3:

Si
j+1 = V (viS

i
j ∗ Li + (1− vi)S

i
j) + (1− V )((1− vi)S

i
j ∗ Li + viS

i
j).

Finally, we can start generating the system of equations. We fill the LF-

SRs by fresh variables, which represent the initial configuration of the stream

cipher, and similar to previous generating, we will simulate operation of the

stream cipher and for each known keystream bit ak, we will generate the

equation of the form f(l0, l1, l2) = ak, where li is substituted by actual con-

tent of the stage si
0. The problem of this method is that there is no upper

boundary for the degree of the generated equations. There is only upper

bound by the number of variables 64. Therefore the number of the mono-
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mials which may appear in the system of equations is
∑64

k=1

(
64
k

)
= 264 − 1.

The size of the generated equations is also exponentially large. Actually, we

capture the decision of clocking or not clocking the registers in the generated

equations. The number of possibilities is exponential (at each cycle there are

4 possibilities of clocking the LFSRs). Hence the size of the equation has to

grow exponentially.

Example 2.5. For simplicity, let us have a stream cipher with the same

design as A5/1 has. Except that, all LFSRs are equal with the length 3. Let

L be a matrix representing a feedback function for each LFSR.

L =

0 0 1

1 0 1

0 1 0

 .

The clocking bit for each LFSR is the first stage of LFSR. The stream cipher

generates an output bit and then clock the LFSRs using majority rule at each

cycle. The attacker knows first two output bits (0, 1) of the keystream. He

wants to recover the initial state of the LFSRs. He will fill the LFSRs by the

unknown variables and will generate the following two equations:

State L1 L2 L3 Equation

1st (x0, x1, x2) (y0, y1, y2) (z0, z1, z2) x0 + y0 + z0 = 0

2nd (s1
0, s

1
1, s

1
2) (s′10 , s′11 , s′12 ) (s′′10 , s′′11 , s′′12 ) f(s1

0, s
′1
0 , s′′10 ) = 1

s1
0 = x1y1x0 + x1z1x0 + y1z1x0 + x1x0 + x1y1 + x1z1 + y1z1x1

s1
1 = x1y1 + x1z1 + y1z1x1 + x1 + x2 + x1x2 + x1y1x2 + x1z1x2 + y1z1x2

s1
2 = x1y1x0 + x0 + x1x2 + x1x0 + x1z1x0 + y1z1x1 + y1z1x2 + x1y1+

+ x1z1 + y1z1x0 + x1y1x2 + x1z1x2
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s′10 = x1y1y0 + x1z1y0 + y1z1y0 + y1y0 + x1y1 + y1z1x1 + y1z1

s′11 = x1y1 + y1z1x1 + y1z1 + y1 + y2 + y1y2 + x1y1y2 + x1z1y2 + y1z1y2

s′12 = y1z1y0 + y0 + y1y2 + y1y0 + x1y1y0 + y1z1x1 + x1z1y2 + x1z1y0+

+ x1y1 + y1z1 + x1y1y2 + y1z1y2

s′′10 = x1y1z0 + x1z1z0 + y1z1z0 + z1z0 + y1z1x1 + x1z1 + y1z1

s′′11 = y1z1x1 + x1z1 + y1z1 + z1 + z2 + z1z2 + x1y1z2 + x1z1z2 + y1z1z2

s′′12 = x1z1z2 + y1z1z2 + y1z1z0 + x1z1z0 + z0 + x1y1z0 + z1z2 + z1z0+

+ y1z1x1 + x1z1 + y1z1 + x1y1z2

f(s1
0, s

′1
0 , s′′10 ) = x1y1x0 + y1z1y0 + y1z1z0 + x1z1z0 + x1y1z0 + x1x0 + y1y0+

+ z1z0 + x1z1x0 + x1y1y0 + y1z1x1 + x1z1y0 + y1z1x0 = 1

We see that the size of the generated equations will grow exponentially from

our simple example. The usage of memory for storing the LFSRs will grow

exponentially as well.

Precisely, the number of possible generated equations with n variables

over F2 is upper bounded by 2
Pn

i=0 (n
i). Hence the size of the generated equa-

tion is also upper bounded and it will not grow to infinity. Unfortunately,

the size of the equations grows very fast from the beginning and the upper

bound has no relevant impact on the efficiency of this technique. Therefore

the size of the generated equations grows exponentially for the attacker’s

point of view.

We have presented method for generating equations for the stream cipher

A5/1 required for algebraic attack. Unfortunately, the described method is

not effective. On the other side, there have been presented other attacks

[8] and [12], which are very effective. Some of presented attacks require to

solve the system of equations. Therefore the effective methods for solving

the system of polynomial equations discussed in this work may improve the

attacks on the A5/1.
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Chapter 3

Linearization

The basic and well known technique for solving the system of multivariate

polynomial equations is called linearization. Consider the problem of solving

the overdefined system of equations where the number of the equations is ap-

proximately the same as the number of the terms occurring in the equations.

Then we can solve the system by using following algorithm:

Algorithm 1 Linearization

1: Substitute any product of variables by fresh variable.
2: Solve the linear system (e.g. using Gaussian elimination).
3: Plug the solution into the original system and check correctness of the

solution.

Example 3.1. Consider the problem of solving the following system of equa-

tions:
xy + y = 0

xy + x + y = 1

xy = 1

In step 1 we replace term xy with fresh variable z and we get the following

system of linear equations:

z + y = 0

z + x + y = 1

z = 1
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By solving the system of linear equations we get the following solution:

x = 1, y = 1, z = 1.

At the end, we check the correctness of the solution:

1 ∗ 1 + 1 = 0

1 ∗ 1 + 1 + 1 = 1

1 ∗ 1 = 1

Example 3.2. Consider the problem of solving the following system of equa-

tions:
xy + x + y = 1

x + y = 0

xy + y = 1

In step 1 we replace term xy with fresh variable z and we get the following

system of linear equations:

z + x + y = 1

x + y = 0

z + y = 1

By solving the system of linear equations we get the following solution:

x = 0, y = 0, z = 1.

At the end, we check the correctness of the solution:

0 ∗ 0 + 0 + 0 6= 1

0 + 0 = 0

0 ∗ 0 + 0 6= 1

This solution is not correct. The example shows that step 3 of linearization

method is necessary.
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Solving the linear system of equations over finite field runs in polynomial

time (e.g. O(n3) if we use Gaussian elimination). There are various methods

for solving large sparse linear systems which are more efficient than Gaussian

elimination. In this work we concentrate on the methods for solving the non-

linear systems therefore we use only Gaussian elimination for simplicity and

we do not try to improve algorithms using better methods for solving linear

systems. Comparison of the algorithms for solving linear systems related to

algebraic attack on the stream ciphers can be found in [7].

Drawback of linearization is that the attacker needs to generate strongly

overdefined system. Let n be a number of variables and m be the highest

degree of equations. Generally, we can end up with approximately

m∑
i=2

(
n + i− 1

i

)

new variables. In case of solving system over F2 the number of new variables

is lower than in general case,
m∑

i=2

(
n

i

)
because of the equation a2 = a. It means that the attacker needs to know

huge amount of the keystream for attacking stream cipher. The number of

new variables has also impact on running time of linearization.

Example 3.3. Let us have NLFG with LFSR of length 128 and a filtering

Boolean function with degree 8. By linearizing system of equations for this

cipher we can end up with

8∑
i=2

(
128

i

)
≈ 240

new variables so the attacker needs to have approximately 128 GB of known

keystream bits. Running time of linearization is approximately 2120 steps,

what is just little lower than running time of brute force attack.

23



During the analysis of linearization we omitted the fact that the lin-

earized system can contain linear dependent equations. There have been

proposed several improvements as Relinearization [13] and the XL algorithm

[10]. These methods try to cut back the number of known keystream bits.

Relinearization is an intermediate step between linearization and the XL

algorithm. In [10] authors have proved that the XL algorithm “contains”

Relinearization so we leave out elaboration of this technique and we concen-

trate on the XL algorithm.
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Chapter 4

The XL Algorithm

Another technique for solving the polynomial system of equations is called

the XL algorithm (XL stands for an eXtended Linearization). The XL algo-

rithm has been proposed by Courtois, Klimov, Patarin and Shamir in [10].

The XL tries to benefit from the fact that the number of equations exceeds

the number of variables. The main idea is to increase the number of initial

equations by adding the new algebraically dependent equations, which are

linearly independent to initial system.

Let F be a field (field does not have to be finite), let A be a system of

multivariate polynomial equations lk = 0 (1 ≤ k ≤ m) where each lk is

multivariate polynomial lk = fk(x1, x2, . . . , xn)− bk, and let dmax be a maxi-

mal degree of the polynomials in A. The system A has at least one solution.

The problem is to find at least one solution x = (x1, x2, . . . , xn) ∈ Kn, for

a given b = (b1, b2, . . . , bm) ∈ Fm. In case of attacking stream cipher, b

represents known keystream bits and A represents corresponding equations

generated for example as it was described in Chapter 2. In case of F being

a finite field, we suppose the powers of variables taken from 1, 2, . . . q − 1,

where q is the characteristic of field F, because of the equation aq = a. We

denote Xk the set of all terms of degree exactly k, Xk = {xe1
i1

xe2
i2

. . . xem
em
|ij =

1 . . . n, e1 + e2 + . . . em = k}, X0 = {a|a ∈ F}.
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Definition 4.1. A monomial over field F is a multivariate polynomial of the

following form:

a ∗ xe1
i1

xe2
i2

. . . xem
im

a ∈ F, ej ∈ N, ij ∈ N.

The authors of [10] have defined the XL algorithm for solving quadratic

systems (dmax = 2). Courtois has described obvious extension of the XL

algorithm for solving the system with dmax ≥ 2 in [9]. We present extended

version of the XL algorithm in this work.

Definition 4.2. (The XL algorithm) Algorithm input parameters are the

system of equations A, which has at least one solution, and D ∈ N, which is

upper bound for the equations used in XL algorithm. Execute the following

steps:

1. Multiply: Generate the new system A′:

A′ =
⋃

0≤k≤D−dmax

Xk ∗ A.

2. Linearize: Consider each monomial in the variables xi of degree ≤ D

as a new variable and perform Gaussian elimination on the system

A′. The ordering on the monomials must be such, that all the terms

containing one variable (say x1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate in the powers

of x1. Solve this equation over the finite field F (e.g. with Berlekamp’s

algorithm or Cantor-Zassenhaus’s algorithm, for more information about

the algorithms see [18]).

4. Repeat: Simplify the equations and repeat the process to find values

of the other variables.

All operations, except for solving univariate equation over F, in the XL

algorithm are done by linear algebra. The XL algorithm tries to find a basis of

the linear vector space V (F) (described in the Lemma 4.1), so that univariate

polynomial belongs to it.
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Lemma 4.1. Let A = {f1, f2, . . . , fm} be a system of multivariate equations

over finite field F, let D ∈ N and let V be a set equal to:

V = {g · fi|fi ∈ A, g ∈ F[x1, x2, . . . , xn], deg(g · fi) ≤ D}.

Then a set V (F) of the linear combinations of the elements from V is a vector

space over F, where + : V × V → V is a standard polynomial addition and

∗ : F× V → V is a multiplying polynomial by the constant.

Proof. (V (F), +) has to be Abelian group. Let α, β ∈ V ⇒ α = c1 ·f1 + . . .+

cm · fm, β = d1 · f1 + . . . + dm · fm, c1, . . . , cm, d1, . . . , dm ∈ F[x1, x2, . . . , xn].

α + β = c1 · f1 + . . . + cm · fm + d1 · f1 + . . . + dm · fm =

= (c1 + d1) · f1 + . . . + (cn + dm) · fm ∈ V (F).

Other properties of the Abelian group (V (F), +) can be easily shown from

the properties of the addition of polynomials. Also the following properties

can be easily proved, for any c, d ∈ F and α, β ∈ V (F):

1. c ∗ (α + β) = c ∗ α + c ∗ β,

2. (c + d) ∗ α = c ∗ α + d ∗ α,

3. (c · d) ∗ α = c ∗ (d ∗ α),

4. 1 ∗ α = α.

We remark that any solution s = (s1, s2, . . . , sn) of the system A, is also

the solution for any equation of the form: h(x) = 0, h(x) ∈ V (F).

h(s) = c1(s) · f1(s) + . . . + cm(s) · fm(s) = c1(s) ∗ 0 + . . . + cm(s) ∗ 0 = 0.

Hence step 1 of the XL algorithm does not add any new solution to the

system A′. Therefore the solution for the system A′ is also the solution for

the system A.
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The XL algorithm generates the elements of the vector space V (F) in step

1. In step 2 algorithm finds one of the basis of V (F). If at least one element

of the founded basis is a univariate polynomial, we solve this equation and

iterate this process.

Note 4.1. (Solving the univariate equations) In case of solving the

system over F2, the only possible univariate equations yielded by step 2 have

form xi = ai, ai ∈ F2. Hence step 3 for this case is very simple and we do

not have to use any univariate solver. The univariate equations yielded by

step 2 may have more than one solution for other finite fields. The authors

of the XL algorithm have not described how to handle this situation.

Note 4.2. It is not always necessary to work with Xk for each k ≤ D−dmax,

but it is sometimes more efficient to work only with a subset of the monomials.

For example, if we have the quadratic homogeneous system, it is sufficient to

work only with Xk for k ≤ D−2 and k is even. We get only monomials with

even degree in the system A′. Using only subset of monomials has impact on

the speed of the steps 1 and 2.

Note 4.3. If step 2 yields more than one univariate equation, it is obvious to

solve all yielded univariate equations and speed up the process of solving the

system. If step 2 does not yield any univariate equation, the XL algorithm

fails.

Example 4.1. Consider the problem of solving the following system of equa-

tions:
x0x1 + x1 = 0

x1x2 + x0 + x2 = 0

x0x2 + x1 = 1

x0x1 + x0x2 + x0 = 0

We set up D = 4 and we use only X2 for generating the products as we have
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mentioned in Note 4.2. In step 1 we get the following new equations:

x0x1 = 0

x0x1x2 = 0

x0x1x2 + x1x2 = 0

In step 2 we linearize the system of equations and we solve the linearized

system (new variables yi are eliminated first).

x0x1 = y0, x1x2 = y1, x0x2 = y2, x0x1x2 = y3.

y0 y1 y2 y3 x0 x1 x2

1 0 0 0 0 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

1 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0


∼



y0 y1 y2 y3 x0 x1 x2

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1


Step 2 yields three univariate equations. Hence we get the solution for all

unknown variables after one iteration:

x0 = 1, x1 = 0, x2 = 1.

4.1 Analysis of the XL Algorithm

It is obvious that for a higher D, the XL algorithm generates more new

equations so we have a better chance of finding solution. On the other side,

higher D has a negative impact on the time complexity of the steps 1 and 2.

Generally, we can start with the lowest possible D = dmax + 1 and if the XL

algorithm fails, we increase D by one and try again. We present boundaries

for the parameter D in the following part.
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In case of solving the system over F2, the upper bound for the parameter

D is n – the number of the variables. Generally, for finite field F with char-

acteristic q, the parameter D is upper bounded by (q − 1)n.

Let R be the number of equations in the system after the step 1 and

let T be the number of all monomials which may appear in the system of

equations. We assume that D ≤ n
2
. In case of solving the system over F2 we

have:

R = m + m ·
(D−dmax∑

i=1

(
n

i

))
≈ m ·

(
n

D − dmax

)
,

T =
D∑

i=1

(
n

i

)
≈
(

n

D

)
.

In general case, we have:

R′ = m + m ·
(D−dmax∑

i=1

(
n + i− 1

i

))
≈ m ·

(
n + D − dmax

D − dmax

)
,

T ′ =
D∑

i=1

(
n + i− 1

i

)
≈
(

n + D

D

)
.

We expect that a linearized system has a solution, if R ≥ T . For sim-

plicity, we use the approximation (4.1) in the following derivation of a lower

bound of the parameter D: (
n

k

)
∼ nk

k!
. (4.1)

For example, we have n = 128 in case of attacking stream cipher with 128

bit key. However the parameter D will be much less than 128, D � 128.

The complexity of Gaussian elimination on the generated system A′ by XL

algorithm for D ∼ n will be much more than the complexity of brute force

attack at the stream cipher. Therefore, the approximation for the binomial

coefficients is sufficient for our derivation. We get the lower bound for the
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parameter D in case of F2 from R and T :

R ≥ T ⇒ m ≥
(

n
D

)(
n

D−dmax

) .
Using (4.1) we get

m ≥
nD

D!
nD−dmax

(D−dmax)!

=
ndmax

D(D − 1) . . . (D − dmax + 1)
,

therefore
ndmax

m
≤ D(D − 1) . . . (D − dmax + 1) ≤ Ddmax .

Finnally, we get desired formula:

D ≥ n

m
1

dmax

.

Unfortunately, not all generated equations are linearly independent in

practice. Let RFree be the exact number of linearly independent equations in

the system generated by the XL algorithm after step 1. We have RFree ≤ R

and RFree ≤ T . The main heuristics behind the XL algorithm is that for

some values of D we get always R ≥ T . Then we expect that RFree ≈ T .

When RFree ≥ T−n, step 2 of the XL algorithm yields at least one univariate

equation.

4.2 Experimental Analysis of XL for dmax ≥ 2

The exact number of linearly independent equations is somewhat complex to

predict. Courtois has presented following conjecture about behaviour of XL

for D < 3dmax and F2 in [9].

Conjecture 4.1. Behaviour of XL for D < 3dmax

1. For D = dmax, . . . , 2dmax − 1 there are no linear dependencies when

R ≥ T and we have RFree = min(T, R)− ε with ε ∈ {0, 1, 2, 3}.
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2. For D = 2dmax, . . . , 3dmax−1 there are linear dependencies and we have

RFree = min(T, R−
(∑D−2dmax

i=0

(
n
i

))
(
(

m
2

)
+m))− ε with ε ∈ {0, 1, 2, 3}.

For more information about Conjecture 4.1 see [9]. The author has de-

rived this conjecture from computer simulations. We have done various com-

puter simulations using our programs eq-gen and xl (see Appendix A) with

different parameters dmax and D as they have been chosen in [9]. Selected

results of our simulations are presented in Appendix B. Our results confirm

the Conjecture 4.1.
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Chapter 5

Solving the System of

Equations using SAT Solvers

We have mentioned that every Boolean function can be viewed as a mul-

tivariate polynomial over F2 in Chapter 2. Hence we work with Boolean

expressions as the polynomials and we use algebraic methods for solving the

systems (in case of algebraic attack on the stream cipher, solution represents

the key used for encryption). We choose different approach of solving the sys-

tem of equations over F2 in this chapter. We use SAT solvers for this purpose.

The SAT solver is a program for solving the Boolean satisfiability prob-

lem, also known as SAT problem. The solver takes a Boolean expression as

an input and finds a satisfying assignment for the variables of the input, if

that assignment exists. SAT problem is NP-Complete (k-SAT is the same

problem as SAT, except that the input has to be in CNF and it has a re-

striction k on the maximum number of literals in one clause, we know how

to solve k-SAT problem in polynomial time only for k ≤ 2). Therefore the

running time of SAT solver is exponential in the worst case. It again sounds

paradoxical to try to solve the system of polynomial equations using SAT

solver, because 3SAT problem is used for proving that the problem QS is

NP-Complete in Theorem 2.1. There have been written many papers about

theory and practice of designing SAT solver. Many practical hard problems
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are solved by converting them into SAT problem, because a lot of effort has

been made on implementation the good SAT solvers. The disadvantage of

this approach is that converting problem into SAT may be inefficient. The

design and the implementation of the good SAT solver is completely out of

the scope of this work. We used MiniSAT 2.0 solver [2] in this work. Min-

iSAT 2.0 is the winner of the annual SAT race in 2006 [3].

The attacker generates a system of nonlinear equations A as it was de-

scribed in Chapter 2. All generated equations are in ANF. The problem of

using SAT solver for solving A is that SAT solvers must have the Boolean

expression in CNF on the input. Therefore we have to add an extra step for

converting equations in ANF into CNF.

5.1 Converting ANF to CNF

We have the system of polynomial equations

A = {fi(x1, x2, . . . , xn) = 0| i ∈ 0, 1, . . . ,m− 1}

over F2 in ANF. The system A can be viewed as the system of the Boolean

expressions. We want to generate a Boolean expression B in CNF, where the

solution for the satisfiability of B is also solution for the system A. We will

use the following algorithm:

Algorithm 2 Converting system A into Boolean expression B

1: Convert the fi(x1, x2, . . . , xn) into Boolean expression Bi in CNF, where
the solution for Bi is also the solution for equation fi(x1, x2, . . . , xn) = 0
for each i ∈ 0, 1, . . . ,m− 1.

2: Put the following Boolean expression B = B0 ∧ B1 ∧ . . . ∧ Bm−1 as an
output of the algorithm (B is in CNF).

SAT solvers do not accept the constants on the input, but the system A
may have a polynomial with the constant 1. We present two possibilities how

to handle constants during the conversion. We can add new variable T (T
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will represent the constant 1 and ¬T will represent 0). We will use variable

T instead of the constant 1 and then Bi is equal to:

Bi = CNF (¬fi(x1, x2, . . . , xn)) ∧ T.

It is easy to see that variable T is equal to 1 in the satisfying solution. The

satisfying solution for Bi is also solution for the equation fi(x1, x2, . . . , xn) =

0, because

¬fi(x1, x2, . . . , xn) ∧ 1 = 1 ⇒ fi(x1, x2, . . . , xn) = 0.

The another approach for handling the constant 1 is the following one: we

ignore constant 1 during the conversion and then Bi is equal to:

Bi =

{
CNF (fi(x1, x2, . . . , xn)) if the constant 1 is in fi(x1, x2, . . . , xn);

CNF (¬fi(x1, x2, . . . , xn)) otherwise.

Again, it is easy to see that the solution for Bi is also the solution for the

equation fi(x1, x2, . . . , xn) = 0.

There is well known standard algorithm for converting any Boolean ex-

pression into CNF for the step 1. We present his modification for converting

ANF into CNF.

Algorithm 3 Converting ANF into CNF

1: Eliminate exclusive or ⊕ using following identity:

a⊕ b ⇐⇒ (a ∨ b) ∧ (¬a ∨ ¬b).

2: Drive in negation ¬ using De Morgan’s Laws:

¬(a ∨ b) ⇐⇒ ¬a ∧ ¬b;

¬(a ∧ b) ⇐⇒ ¬a ∨ ¬b.

3: Distribute disjunction ∨ over conjunction ∧:

a ∨ (b ∧ c) ⇐⇒ (a ∨ b) ∧ (a ∨ c).
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Generally, the size of the expression converted to CNF may be exponen-

tial. Therefore running time of any converting algorithm is at least expo-

nential in the worst case. The step 1 of the Algorithm 3 doubles the size of

the result. Therefore converting Boolean expression in ANF into CNF is the

case, where the size of the result is exponentially large.

We see that the process of creating an input for SAT solver will run in

exponential time. On the other side, the attacker may generate a database of

equations converted to CNF. For each equation of form fi(x1, x2, . . . , xn) =

ai, he will add 2 triplets into database:

1. (i, 0, Ci,0), Ci,0 = CNF (¬fi(x1, x2, . . . , xn)).

2. (i, 1, Ci,1), Ci,1 = CNF (fi(x1, x2, . . . , xn)).

The attacker has the knowledge of some keystream bits and their positions

I = {(i1, a1), . . . (ik, ak)|aj ∈ F2} according to the attack scenario. Hence

he will generate the input B for SAT solver by reading the corresponding

converted forms of equations from the database. Such process is very efficient.

B =
∧

(i,a)∈I

Ci,a where (i, a, Ci,a) is triplet stored in the database.

Example 5.1. Let the first two equations of a system A be:

x0x1 + x0 = a0

x1x2 + x0 = a1

where a0, a1 ∈ F2 represent the keystream bits. The attacker will store the

following four triplets into his database for the system A.

1. (0, 0, C0,0) = (0, 0, (¬x0 ∨ x1)).

2. (0, 1, C0,1) = (0, 1, (x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (¬x0 ∨ ¬x1 ∨ ¬x2)).

3. (1, 0, C1,0) = (1, 0, (¬x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ (x0 ∨ ¬x1 ∨ ¬x2)).

4. (1, 1, C1,1) = (1, 1, (x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (¬x0 ∨ ¬x1 ∨ ¬x2)).
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Let the first two output bits be a0 = 0 and a1 = 1, the attacker will put on

the input of the SAT solver the Boolean expression B which equals to:

B = C0,0 ∧ C1,1 = (¬x0 ∨ x1) ∧ (x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (¬x0 ∨ ¬x1 ∨ ¬x2).

The solver will return the following solution:

x0 = 0, x1 = 1, x2 = 1.

5.2 Improving the Efficiency of ANF to CNF

Conversion

Let nA denote the number of appearances of the xor operation ⊕ in the sys-

tem A and let nmax
A denote the maximal number of appearances of the xor

operation in one equation from A. We have mentioned that the first step of

the conversion algorithm has the biggest impact on the size of the output in

previous section. For each appearance of the operation xor, the first step of

Algorithm 3 will double the size of the output. Hence the system A, which

has lower parameters nA and nmax
A than the system B, will be converted into

CNF more efficiently (although the running time will be still exponential).

We present our simple technique how to find a new system A′, which has the

same solution as the original system A, but for the parameters of the new

system may stand nA < nA′ and nmax
A < nmax

A′ in this section.

The main idea behind our heuristic is very simple. Let us have a system

A, which contains the following two equations:

x0x1 + x1x2 + x2 + 1

x1x2 + x2 + x3

If we add the second equation to the first one, we get the new system A′,
which has both parameters lower than the original A (nA = 4 < 5 = nA′ and
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nmax
A = 2 < 3 = nmax

A′ ).

x0x1 + x3 + 1

x1x2 + x2 + x3

Therefore, if we have the overdefined system A of nonlinear equations we can

try to combine the equations and reduce both parameters.

We use systematic approach using Gaussian elimination instead of looking

for the good equations for combining “by hand”. We linearize the system

A (same as it is done for linearization, each monomial is substituted by a

fresh variable) and then eliminate the linearized system A. We get the A′ by

backward substitution from the eliminated system. We preprocess the system

A by Gaussian elimination, therefore preprocessing will run in polynomial

time (O(n3)). The new system A′, may have parameters nA′ and nmax
A′ lower

than the original A. Let T be the number of variables in the linearized

system and r be a rank of the matrix M representing the linearized system

A. After Gaussian elimination, the matrix M will look as (5.1):

1 0 0 . . . 0 a1,r+1 . . . a1,T

0 1 0 . . . 0 a2,r+1 . . . a2,T

...
...

...
...

...
...

0 0 0 . . . 1 ar,r+1 . . . ar,T

0 0 0 . . . 0 0 . . . 0
...

...
...

...
...

...

0 0 0 . . . 0 0 0


(5.1)

where ai,j ∈ F2. We can easily write the formulas for the parameters of the

new system A′.

nA′ =
∑

1≤j≤r,r+1≤i≤T

ai,j, nmax
A′ = max

1≤j≤r
(
∑

r+1≤i≤T

ai,j).

We can see that the success of the proposed method depends on the rank

r of the matrix M . We do not have any influence on the values of ai,j and

we also do not have any influence on the parameter T . We can only try

38



to increase the rank of the matrix M by adding the new equations into the

system A (it means to know more keystream bits in our case). Adding the

new equations into A has a negative impact on the time complexity of the

conversion algorithm, because we increase the number of equations which

has to be converted into CNF. However we do not have to work with the

whole system A′. We can choose just a subset of A′ (e.g. first j equations,

which contain all unknown variables, but j has to be equal or higher than the

number of the unknown variables) and convert only this subset of equations

into CNF.

Example 5.2. Let A be a system of nonlinear equations.

A = {x0x1 + x0x3 + x1x2 + x2x3 + 1,

x2x3 + x0, x0x1 + x1x3, x1x2 + x2x3 + 1}.

We have:

nA = 8, nmax
A = 4.

We linearize the system A

M =


x0x1 x1x2 x0x3 x2x3 x1x3 x0 x1 x2 x3

1 1 1 1 0 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1


and then use Gaussian elimination.

M ∼


x0x1 x1x2 x0x3 x2x3 x1x3 x0 x1 x2 x3

1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0
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Hence we get the new system A′.

A′ = {x0x1 + x1x3 = 0, x1x2 + x0 = 1, x0x3 + x1x3 = 0, x2x3 + x0 = 0}.

The proposed heuristic reduced both paremeters by factor 2.

nA′ = 4, nmax
A′ = 2.

We also run our conversion program poly2cnf (see Appendix A) on both sys-

tems A and A′. The running time of conversion for A′ was roughly half of

the time for the original system A.

We call the density 0 < p < 1 of the system of equations as a probability,

that the coefficient of any monomial in equation is not equal to 0. The

selected experimental results of this simple technique for reducing the time

complexity of the conversion algorithm from ANF to CNF are presented in

Appendix C. Examining Figure 5.1 we can see that presented technique

may reduce the size of the parameters nA and nmax
A by factor 3 to 5 for the

strongly overdefined dense systems (p > 1
4
, for more information see also

tables C.1, C.2 and C.3). The technique does not reduce the parameters

nA and nmax
A for the sparse systems (p < 1

10
, for detailed information see

tables C.4, C.5 and C.6). For example for the density p = 1
12

, the heuristic

reduces the parameters only for the strongly overdefined systems and the

factor is between 1 and 1.5. The results of our experiments show that both

parameters, nA and nmax
A , are reduced approximately by the same factor

as well. After various experiments it seems that the presented technique is

highly efficient for the systems with high density.
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Figure 5.1: Graphs for the tables C.4, C.5 and C.6 from Appendix C. q = nA
nA′

,

q =
nmax
A

nmax
A′
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Chapter 6

Fast Algebraic Attack

We have concentrated on the second step of the algebraic attack – solving

the system of equations in the previous chapters. Theorem 2.1 shows that

solving the quadratic system over finite field is NP-Complete. We have also

seen that the maximal degree of the system has impact on the time complex-

ity of solving the system. For example, for linearization method the higher

degree of the equations means the higher number of the possible monomials,

which has impact on the number of the new variables. It has also impact on

the number of required known keystream bits for successful attack. Hence if

we know how to find a system with a lower degree, the algebraic attack can

be accelerated. We present method known as Fast Algebraic Attack (FAA)

in this chapter.

FAA was introduced by Courtois [11] at Crypto 2003. The idea of finding

the new system is based on the principle that the equations of original system

are linearly combined to get new equations. The new equations have lower

maximal degree. So FAA contains the following three steps, where the first

and the third one are the same as the standard algebraic attack has.

1. Find a system of equations.

2. Reduce the overall degree of equations.

3. Solve the system of equations.
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Unfortunately, Courtois did not prove the correctness of the second step of

FAA. Later, Armknecht has proved that the second step is applicable for

cryptographically reasonable LFSR-based stream ciphers in [6].

Let C = {ci}∞i=0 be the keystream of the attacked stream cipher, let L be

the next state function of the cipher and let K be the key used during the

encryption. Generally, the attacker has to find a Boolean function F 6= 0

such that for δ ≥ 0 the equation

F (Lt(K), . . . , Lt+δ(K), ct, . . . , ct+δ) = 0. (6.1)

is true for all clocks t. Then he can easily find a system A of equations using

F according to the attack scenario (Section 2.1). The degree of the system

is concerning the variables representing the key K, because the variables ci

are substituted by captured bits of the keystream during the attack.

Note 6.1. We denote by Ft the Boolean function F for some fixed t and Ct,δ

represents the part of the keystream C, Ct,δ = (ct, ct+1, . . . , ct+δ).

The function F is easily derivable from combining or filtering function in

case of generating equations for a stream cipher from NLCG or NLFG class

as it was described in Chapter 2 (for simplicity, we did not use this notation

in Chapter 2). The δ is equal to 0 in this case.

Example 6.1. Let f(l0, l1) be a combining Boolean function for NLCG with

two LFSRs with total length n (l
(t)
i is equal to the tth output of the ith LFSR).

Then f(l0, l1) can be viewed as the Boolean function (6.1) required for the

algebraic attack where δ = 0:

F (Lt(K), ct) = f(l
(t)
0 , l

(t)
1 )− ct = 0.

The arguments l
(t)
0 , l

(t)
1 contain only linear combinations of the variables xi, 0 ≤

i ≤ n− 1, which represent the key K used during the encryption.

Suppose that (6.1) can be written as well as addition of the two Boolean
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functions G(K) and H(K, C)

Ft(K, Ct,δ) = Gt(K) + Ht(K, Ct,δ) =

= G(Lt(K), . . . , Lt+δ(K))+

+ H(Lt(K), . . . , Lt+δ(K), ct, . . . , ct+δ) = 0,

(6.2)

where deg(H) < deg(F ). We also assume that the attacker knows coefficients

a0, a1, . . . aT−1 ∈ F2 such that

T−1∑
i=0

ai.Gt+i(K) = 0 ∀K,∀t. (6.3)

Then the attacker can get a new equation E ′(K, C) with deg(E ′) < deg(F )

by linear combination of the T consecutive equations.

0 = E ′(K, C) =
T−1∑
i=0

ai · Et+i(K, C)

=
T−1∑
i=0

ai · Ft+i(K, Ct+i,δ)

=
T−1∑
i=0

(ai ·Gt+i(K) + ai ·Ht+i(K, Ct+i,δ))

= 0 +
T−1∑
i=0

ai ·Ht+i(K, Ct+i,δ)

=
T−1∑
i=0

ai ·Ht+i(K, Ct+i,δ).

The degree of the new equation E ′(K, C) is lower than the deg(F ). It is

upper bounded by deg(H). The attacker can reduce the maximal degree of

the system A using this technique. It needs to know more keystream bits

ci than the standard algebraic attack and also the attacker needs to know

T consecutive bits for each new equation. Generally, the standard algebraic

attack does not require the consecutive keystream bits.
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Example 6.2. Let us have NLCG with two LFSRs and let f(l0, l1) = l0l1 +

l0 + l1 be a combining Boolean function. Let L0 and L1 be matrices repre-

senting the feedback functions of LFSRs.

L1 =

(
0 1

1 1

)
, L2 =

0 0 1

1 0 1

0 1 0

 .

The Boolean function Ft(K, Ct,0) is equal to

Ft(K, Ct,0) = f(l
(t)
0 , l

(t)
1 )− ct = l

(t)
0 l

(t)
1 + l

(t)
0 + l

(t)
1 − ct = 0.

Let (c0, . . . , c7) be the first 8 keystream bits of the generator. Then the

first 8 generated equations for our stream cipher using the technique described

in Chapter 2 are:

E0 : x1x3 + x1 + x3 − c0

E1 : x0x4 + x1x4 + x0 + x1 + x4 − c1

E2 : x0x2 + x0x3 + x0 + x2 + x3 − c2

E3 : x1x3 + x1x4 + x1 + x3 + x4 − c3

E4 : x0x2 + x1x2 + x0x3 + x1x3 + x0x4 + x1x4 + x0 + x1 + x2 + x3 + x4 − c4

E5 : x0x2 + x0x4 + x0 + x2 + x4 − c5

E6 : x1x2 + x1 + x2 − c6

E7 : x0x3 + x1x3 + x0 + x1 + x3 − c7

We can rewrite the Boolean function Ft(K, Ct,0) as an addition of the two

Boolean functions G(l
(t)
0 , l

(t)
1 ) = l

(t)
0 l

(t)
1 and H(l

(t)
0 , l

(t)
1 , ct) = l

(t)
0 + l

(t)
1 − ct.

Ft(K, Ct,0) = G(l
(t)
0 , l

(t)
1 ) + H(l

(t)
0 , l

(t)
1 , ct) = l

(t)
0 l

(t)
1 + l

(t)
0 + l

(t)
1 − ct.

Let (a0, a1, a2, a3, a4, a5, a6) = (1, 1, 1, 0, 1, 0, 1) be a sequence of the coeffi-

cients required for FAA. We are able to eliminate the quadratic monomials
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according to (6.3) using these coefficients.

6∑
i=0

ai ·Gi(l
(i)
0 , l

(i)
1 ) = x1x3 + x0x4 + x1x4 + x0x2 + x0x3 + x0x2+

+ x1x2 + x0x3 + x1x3 + x0x4 + x1x4 + x1x2 = 0;

6∑
i=0

ai ·Gi+1(l
(i+1)
0 , l

(i+1)
1 ) = x0x4 + x1x4 + x0x2 + x0x3 + x1x3 + x1x4+

+ x0x2 + x0x4 + x0x3 + x1x3 = 0.

Therefore we are able to get the new system of equations. The new system

contains only linear equations. For demonstration, the first two new equa-

tions belonging to the new system are:

E ′
0 : =

6∑
i=0

ai · (Gi(l
(i)
0 , l

(i)
1 ) + Hi(l

(i)
0 , l

(i)
1 , ci)) =

= x0 + x2 + x3 − c0 − c1 − c2 − c4 − c6 = 0;

E ′
1 : =

6∑
i=0

ai+1 · (Gi+1(l
(i+1)
0 , l

(i+1)
1 ) + Hi+1(l

(i+1)
0 , l

(i+1)
1 , ci+1)) =

= x1 + x3 + x4 − c1 − c2 − c3 − c5 − c7 = 0.

6.1 How to Find Coefficients a0, . . . , aT−1

Let us start with formal definition of a linear recurring sequence.

Theorem 6.1. (Lidl, Niederreiter [14]) A sequence Z = (zt)
∞
t=0 over F2 is

called a linear recurring sequence if coefficients a0, . . . , aT−1 ∈ F2 (not all

zero) exist such that
∑T−1

i=0 aizt+i = 0 is true for all values t ≥ 1. In this

case,
∑T−1

i=0 aix
i ∈ F2[x] is called a characteristic polynomial of the sequence

Z. Amongst all characteristic polynomials of Z exists one unique polynomial

min(Z) which has the lowest degree. We will call it the minimal polynomial

of Z. A polynomial f(x) ∈ F2[x] is a characteristic polynomial of Z if and

only if min(Z) divides f(x).

Note 6.2. The connection polynomial of LFSR defined in Definition 2.2 is a
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characteristic polynomial for a linear recurring sequence generated by LFSR.

Definition 6.1. Let F be the smallest field such that F ⊂ F and each poly-

nomial f(x) ∈ F[x] has at least one root in F. We will call the field F an

algebraic closure of the field F.

It is crucial to find the coefficients a0, . . . , aT−1 ∈ F2 efficiently for the

success of FAA. Courtois proposed Algorithm 6.1 in [11].

Algorithm 4 Finding coefficients ai

1: Choose a reasonable key K′ and compute ci for 0 ≤ i ≤ 2T
2: Apply the Berlekamp-Massey algorithm to find a0, . . . , aT−1 where

T−1∑
i=0

ai · Ft+i(K′) = 0 ∀t. (6.4)

It is well known that the Berlekamp-Massey algorithm finds coefficients

a0, . . . , aT−1 efficiently with the smallest value of T and the coefficients ful-

fill (6.4) (for more information see [15]). Algorithm 6.1 needs O(T 2) steps.

The exact value of T is unknown, but T is upper bounded by the number

of possible different monomials occurring in the generated equations. The

reasonable key K′ is key from {0, 1}n where each LFSR is not filled with zeros

during initialization. If one of the LFSRs is filled with zero during the initial-

ization, the described algorithm usually returns the wrong result. Hence it

is recommended to choose the key, where all LFSRs are not in all-zero state.

The correctness of Algorithm 6.1 was not proved in [11]. The problem is

that the Algorithm 6.1 returns coefficients for the concrete reasonable choice

of the key K′. We need coefficients a0, a1, . . . aT−1, which are good for any

choice of the key K, for the successful FAA. There is no obvious reason that

(6.3) implies (6.4). As the following example shows, this implication does

not hold for all cases. In other words, Algorithm 6.1 does not always work

properly.

Example 6.3. Let us have NLCG with two LFSRs L1, L2, let Z1 = (z
(1)
t )∞t=0

and Z2 = (z
(2)
t )∞t=0 be the output sequences of LFSRs. Let x2 + x + 1
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be the characteristic polynomial of Z1 and x4 + x + 1 be the characterstic

polynomial of Z2. Let f(l0, l1) = l0l1 + l0 + l1 be a combining Boolean

function. Firstly, we rewrite the combining function f(l0, l1) as an addi-

tion of the two Boolean functions G(l0, l1) = l0l1 and H(l0, l1) = l0 + l1,

f(l0, l1) = G(l0, l1)+H(l0, l1). Let us try to use Algorithm 6.1 on our cipher.

If Algorithm 6.1 is correct, for any choice of reasonable key, the coefficients

calculated by algorithm should be the same (coefficients represents min(Z),

where Z is an output sequence of the stream cipher using G(l0, l1) as the

combining function). Firstly, we choose the following initial states of LF-

SRs: K1 = (1, 0), K2 = (1, 1, 1, 1). We get the coefficients (1, 0, 0, 0, 0, 0, 1),

respectively min(Z) = 1 + x6. Secondly, we choose the different initial states

of LFSRs: K′1 = (0, 1), K′2 = (1, 1, 1, 1). Unfortunately, we get the different

coefficients (1, 1, 1, 1, 1, 1), min(Z) = 1 + x + x2 + x3 + x4 + x5 respectively.

Hence Algorithm 6.1 does not work properly in this case.

It is clear that the Algorithm 6.1 does not work for every NLCG from

the previous example. Armknecht has formulated and proved the following

theorem in [6], which describes a subclass of the ciphers, where Algorithm

6.1 works properly.

Definition 6.2. (Armknecht [6]) Let R1, . . . , Rk ⊆ F2 be pairwise disjunct,

R := R1 ∪ . . . ∪ Rk. We say that a pair of vectors (α1, . . . , αn) ∈ Rn,

(β1, . . . , βm) ∈ Rm factorizes uniquely over R1, . . . , Rk if the following holds

α1 . . . αn = β1 . . . βm ⇒
∏

αi∈Rl

αi

∏
βj∈Rl

(βi)
−1 = 1, 1 ≤ l ≤ k.

For a monomial µ =
∏k

j=1 xij ∈ F2[x1, . . . , xn] with {i1, . . . , ik} ⊆ 1, . . . , n

and α = (α1, . . . , αn) ∈ Rn, we define vector −→µ (α) := (αi1 , . . . , αik) ∈ Rk.

Theorem 6.2. (Armknecht [6]) Let Z1 = (z
(1)
t )∞t=0, . . . ,Zk = (z

(k)
t )∞t=0 be

sequences with pairwise co-prime minimal polynomials which have only non-

zero roots. Let Ri denote the set of roots of min(Zi) in F2, F : F2
n → F2

be an arbitrary Boolean function and I := (i1, . . . , in) ∈ {1, . . . , k}n and

δ := (δ1, . . . δk) ∈ Nk be two vectors. We set R := Ri1 × . . . × Rin and
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divide F =
∑

µ into sum of monomials. Further on, for arbitrary d :=

(d1, . . . , dk) ∈ Nk the sequences Z := (zt)
∞
t=0 and Z(d) := (z

(d)
t )∞t=0 are defined

by

zt := F (z
(i1)
t+δ1

, . . . , z
(in)
t+δn

), z
(d)
t := F (z

(i1)
t+δ1+di1

, . . . , z
(in)
t+δn+din

).

If all pairs of vectors
−−−→
µi(α),

−−−→
µj(α

′) with α, α′ ∈ R factorize uniquely over

R1, . . . , Rk, the min(Z) = min(Z(d)).

What is the connection between Theorem 6.2 and the LFSR-based stream

ciphers? The output sequence of the NLCG or NLFG is a linear recurring

sequence Z. So Algorithm 6.1 looks for the coefficients a0, . . . , aT−1 which

correspond to the minimal polynomial of Z for some reasonable key K. This

minimal polynomial is unique according to Theorem 6.1. Theorem 6.2 shows

that if we shift each of the sequences produced by LFSRs individually (shift

of LFSRs is defined in vector d), the minimal polynomial of Z remains the

same. Because the period of the generated sequence is maximal, the minimal

polynomial is the same for any choice of the key K.

How large is the class of the LFSR-based stream ciphers which corre-

sponds to Theorem 6.2? The following two theorems describe the large sub-

classes belonging to the class of ciphers vulnerable to FAA.

Theorem 6.3. Algorithm 6.1 works properly for any NLFG, where the char-

acteristic polynomial of NLFG has only non-zero roots.

Proof. Let R′ =
⋃k

i=1 Ri and let P = {α1. . . . .αn|αi ∈ R′, n ∈ N} be the

set of all possible multiple products of elements in R′. We show that for

all pairs of vectors −→α = (α1, . . . , αn),
−→
β = (β1, . . . , βm) such that α1 . . . αn,

β1 . . . βm are elements in P factorize uniquely over R1, . . . , Rk. We have only

one LFSR in case of NLFG.

α1 . . . αn = β1 . . . βk ⇐⇒
n∏

i=1

αi

m∏
j=1

(βj)
−1 = 1 ⇐⇒

∏
αi∈R1

αi

∏
βj∈R1

(βj)
−1 = 1.

We showed that any two vectors factorize uniquely over R1 for the set P ,

which is the superset of all possible vectors µ(α), therefore the conditions of
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Theorem 6.2 are satisfied.

Theorem 6.4. Algorithm 6.1 works properly for any NLCG, where the de-

grees of the minimal polynomials of LFSRs are pairwise co-prime and char-

acteristic polynomials have only non-zero roots.

Proof. Let di denote the degree of the minimal polynomial mi(x). Then

α, α−1, α ∈ R1 and all multiple products are elements of F2di . Let us choose

l with 1 ≤ l ≤ k and Sl = d1 . . . dl−1dl+1 . . . dk. Then

α1 . . . αn = β1 . . . βk ⇒ γl =
∏

αi∈R1

αi

∏
βj∈R1

(βj)
−1 =

∏
αi /∈R1

αi

∏
βj /∈R1

(βj)
−1.

Therefore γl belongs to F2di ∩ F2Si . We have to show, that γl = 1. The

degrees of the minimal polynomials are pairwise co-prime by assumption.

Therefore gcd(di, Si) = 1. Hence γl ∈ F2. The roots are non-zero, so γl

has to be equal to 1. We showed that for any NLCG, where the degrees of

minimal polynomials are pairwise co-prime, the conditions of Theorem 6.2

are satisfied.
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Chapter 7

Conclusion

The main purpose of this thesis was to present and explain basic ideas of

the very recent attack on the stream ciphers - algebraic attack. We have

dedicated careful attention to both main steps of algebraic attack: finding a

system of equations and solving this system. We have described methods of

generating equations for two large classes of the stream ciphers based on LF-

SRs. We have also presented method of generating equations for the stream

cipher A5/1, which is irregularly clocked. Unfortunately, our method is not

efficient. On the other side, our idea may be helpful in applying algebraic

attack on the other stream ciphers based on irregular clocking. We have

studied two approaches for solving the systems of nonlinear equations over

finite field. We have presented two algorithms, linearization and XL algo-

rithm, which represent standard approach based on linear algebra. We have

run various experiments with our implementation of XL algorithm. The sec-

ond approach of solving these systems was based on converting problem to

the SAT problem. The key part of this approach is how to effectively convert

Boolean expression in ANF into CNF. We have presented and experimen-

tally analyzed our heuristic for speeding up this process. We concluded that

defined technique works very well for the systems with high density. In this

work we have presented improved algebraic attack – fast algebraic attack as

well.

The algebraic attack is related to various problems, from effective al-
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gorithms of solving the large systems of linear equations to the theory of

Boolean function. Due to this fact, there are many directions in which this

thesis can be extended. For example, there are more sophisticated methods

for solving the system of nonlinear equations at the moment. It may be

interesting to study impact of the algebraic attack on the design criteria of

Boolean functions used in various cryptosystems. Also studying possibility

of applying developed methods used for attacking stream ciphers on other

cryptographic primitives such as block ciphers or hash functions could be

worth to study.
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Appendix A

Programs Descriptions

A.1 Program cipher-gen

Program cipher-gen generates a system of equations for attacking a stream

cipher belonging to the classes NLFG or NLCG as it was described in Chapter

2. The program is implemented in C++ programming language. Library

Synaps [4] was used for the finite field arithmetic, the linear algebra and for

representing multivariate polynomials. The stream cipher has to be defined

in a configuration file. The configuration file has a simple format. For each

LFSR the file contains two lines. First line contains the length of the LFSR

and the initial state of the LFSR (the initial state is not required). The second

line corresponding to the LFSR contains a matrix Lf written by rows. The

matrix Lf represents a feedback function of the LFSR.

Example A.1. Example of the configuration file for the program cipher-gen

for NLCG described in Example 2.1.

2 0 1

0 1 1 1

3 1 1 1

0 0 1 1 0 1 0 1 0

SYNOPSIS:

$ cipher-gen [OPTIONS]
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Switch Description Default

-c combining or filtering function of the cipher

(required)

–

-d maximal degree of equations 2

-h print help –

-i configuration file of the stream cipher –

-l switch on logic output format, input format

for the program poly2cnf

off

-o name of the output file (required) –

-r range of the generated equations (’1,3-7,9,11-

13’)

1

-v verbose mode off

-V print program’s version -

A.2 Program eq-gen

Program eq-gen generates a random system of multivariate polynomial equa-

tions over finite field F. The program is implemented in C programming

language.

SYNOPSIS:

$ eq-gen [OPTIONS]

Switch Description Default

-h print help –

-d maximal degree of equations 2

-f finite field F2

-l switch on logic output format, input format

for the program poly2cnf

off

-n number of generated equations 0

-o name of the output file stdout
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Switch Description Default

-p density of the generated system 1/4

-s generated system will have at least one solu-

tion

off

-v set the number of variables 6

-V print program’s version -

A.3 Program elim

Program elim performs Gaussian elimination. It is implemented in C++

using library Synaps [4] for representing multivariate polynomials over F2.

SYNOPSIS:

$ elim [OPTIONS] [INPUT] [OUTPUT]

Switch Description Default

-h print help –

-H size of the hash table used for linearization 127

-v verbose mode off

-V print program’s version –

A.4 Program poly2cnf

Program poly2cnf is an implementation of the Algorithm 3 – Converting ANF

into CNF. The main algorithm is implemented in Prolog. The input file has

to be in logic input format. Each equation has a dot at the end and variables

are represented by numbers starting with 1. The output of the algorithm is

in the DIMACS format. The DIMACS format is widely accepted format for

representing Boolean expressions in CNF.

Example A.2. Example of the DIMACS format for the Boolean expression

B = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2).

c Boolean expression B

p cnf 3 2
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1 2 3 0

-1 2 0

The first line is a comment and it will be ignored by SAT solver. The second

line defines the number of variables and the number of clauses in B. Every

following line specifies one clause of the Boolean expression B. A positive

literal is represented by the corresponding number, a negative literal is repre-

sented by the corresponding number with minus sign. The last number in the

line representing the clause should be zero.

SYNOPSIS:

$ poly2cnf [INPUT] [OUTPUT]

A.5 Program xl

Program xl is an implementation of the XL algorithm described in Chapter 4.

It is implemented in C++ programming language. We used Synaps library

[4] for representing multivariate polynomials over F2 and for linear algebra.

SYNOPSIS:

$ xl [OPTIONS] [INPUT]

Switch Description Default

-D parameter D 4

-h print help –

-H size of the hash table used for linearization 127

-m Xk used in generation of the new equations

a: k = 1 . . . D − dmax

e: 1 ≤ k ≤ D − dmax and k is even

o: 1 ≤ k ≤ D − dmax and k is odd

l: k = D − dmax

a

-r maximum number of the iterations unlimited

-s print statistics off

-v verbose mode off

-V print program’s version –
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Appendix B

Results for the Simulations of

the XL Algorithm

In the following simulations, we generate a random system of polynomial

equations with at least one solution satisfying defined parameters using pro-

gram eq-gen. Then we use program xl for solving the system.

Notation:

dmax – maximal degree of equations

n – number of variables

m – number of equations

D – parameter D

R – number of generated equations

T – number of monomials of degree ≤ D

RFree – number of linearly independent equations

R′
Free – number of linearly independent equations estimated by Conjecture

4.1
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dmax 3 3 3 3 3 3 3 3 3 3
n 10 10 10 10 10 15 15 15 15 15
m 10 14 20 35 40 15 25 35 125 140
D 4 4 4 4 4 4 4 4 4 4
R 110 154 220 385 440 240 400 560 2000 2240
T 385 385 385 385 385 1940 1940 1940 1940 1940

RFree 110 154 220 385 385 240 400 560 1940 1940
R′

Free 110 154 220 385 385 240 400 560 1940 1940

Table B.1: Table of results for dmax = 3 and D = 4

dmax 3 3 3 3 3 3 3 3 3 3
n 10 10 10 10 10 15 15 15 15 15
m 10 14 20 35 40 15 17 20 40 50
D 5 5 5 5 5 5 5 5 5 5
R 560 784 1120 1960 2240 1815 2057 2420 4840 6050
T 637 637 637 637 637 4943 4943 4943 4943 4943

RFree 560 637 637 637 637 1815 2057 2420 4840 4943
R′

Free 560 637 637 637 637 1815 2057 2420 4840 4943

Table B.2: Table of results for dmax = 3 and D = 5

dmax 2 2 2 2 2 2 2 2
n 10 10 10 15 15 15 32 24
m 10 14 18 15 20 30 32 24
D 5 5 5 5 5 5 3 4
R 1760 2464 3168 8640 11520 17280 1056 7224
T 637 637 637 4943 4943 4943 5488 12950

RFree 634-637 637 637 4943 4943 4943 1056 7224
R′

Free 637 637 637 4943 4943 4943 1056 7224

Table B.3: Table of results for dmax = 2,D = 5
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Appendix C

Results for Reducing Time

Complexity of ANF to CNF

Conversion

In the following simulations, we generate a random system of equations with

predefined parameters and apply Gaussian elimination on the generated sys-

tem. We use our programs eq-gen and elim for simulations (see Appendix A).

Notation:

dmax – maximal degree of equations

n – number of variables

m – number of equations

p – probability that a randomly selected monomial has a non-zero coefficient

in equation

nA – number of xor operation in A
nmax
A – maximal number of xor operation in one equation from A

q = nA
nA′

,

qmax =
nmax
A

nmax
A′
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dmax 2 2 2 2 2
p 1

4
1
4

1
4

1
4

1
4

n 10 10 10 10 10
m 10 20 30 40 50

q 0.55 - 0.81 0.69 - 0.82 0.97 - 1.1 1.64 - 1.91 5.04 - 5.83
qmax 0.54 - 0.92 0.8 - 0.95 1.05 - 1.29 1.33 - 1.83 3.16 - 5

Table C.1: Table of results for dmax = 2 and n = 10.

dmax 3 3 3 3 3
p 1

4
1
4

1
4

1
4

1
4

n 10 10 10 10 10
m 10 30 100 120 150

q 0.54 - 0.69 0.58 - 0.63 0.97 - 1.1 1.5 - 1.59 3.36 - 3.52
qmax 0.48 - 0.62 0.61 - 0.71 1.05 - 1.29 1.44 - 1.8 2.5 - 3.39

Table C.2: Table of results for dmax = 3, n = 10 and p = 0.25.

dmax 3 3 3 3 3
p 1

4
1
4

1
4

1
4

1
4

n 20 20 20 20 20
m 20 200 800 1200 1600

q 0.5 - 0.53 0.58 - 0.59 1.22 - 1.23 4.46 - 4.49 13.4 - 13.75
qmax 0.48 - 0.57 0.61 - 0.62 1.2 - 1.27 4.03 - 4.34 9.82 - 11.14

Table C.3: Table of results for dmax = 3 and n = 20
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dmax 3 3 3 3 3
p 1

4
1
4

1
4

1
4

1
4

n 15 15 15 15 15
m 15 300 400 450 500

q 0.5 - 0.59 1.03 - 1.04 1.6 - 1.64 2.27 - 2.29 3.76 - 3.81
qmax 0.5 - 0.6 0.98 - 1.17 1.55 - 1.7 2.09 - 2.38 3.21 - 3.76

Table C.4: Table of results for dmax = 3, n = 15 and p = 1
4
.

dmax 3 3 3 3 3
p 1

8
1
8

1
8

1
8

1
8

n 15 15 15 15 15
m 15 300 400 450 500

q 0.37 - 0.5 0,51 - 0.52 0.8 - 0.81 1.12 - 1.14 1.83 - 1.9
qmax 0.29 - 0.35 0.55 - 0.63 0.82 - 1.04 1.11 - 1.25 1.76 - 2

Table C.5: Table of results for dmax = 3, n = 15 and p = 1
8
.

dmax 3 3 3 3 3
p 1

12
1
12

1
12

1
12

1
12

n 15 15 15 15 15
m 15 300 400 450 500

q 0.46 - 0.66 0.33 - 0.34 0.53 - 0.54 0.75 - 0.76 1.24 - 1.27
qmax 0.22 - 0.28 0.36 - 0.44 0.59 - 0.68 1.11 - 1.35 1.21 - 1.36

Table C.6: Table of results for dmax = 3, n = 15 and p = 1
12
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Abstrakt

Algebraický útok patrí medzi nové kryptoanalytické metódy súčastnosti.

Jeho hlavnou myšlienkou je hľadanie a následné riešenie systému polynomiál-

nych rovníc nad konečným poľom. V súčastnosti sú algebraické útoky veľmi

úspešné pri aplikácii na vybrané prúdové šifry založené na posuvných regis-

troch s lineárnou spätnou väzbou (LFSR) ako napríklad nelineárne filtrovacie

generátory a nelineárne kombinačné generátory. V tejto práci prezentujeme

hlavné myšlienky algebraického útoku a ilustrujeme ich na príkladoch. Pod-

robne popisujeme metódy generovania systému rovníc pre vybrané triedy

prúdových šifier založených na LFSR. Taktiež v tejto práci študujeme XL

algoritmus na riešenie systému rovníc nad konečným poľom. Experimentálne

sme overili vlastnosti tohto algoritmu. Následne prezentujeme iný prístup rie-

šenia týchto systémov, a to prístup založený na využití programu pre riešenie

SAT problému. V tejto práci prezentujeme našu heuristiku na zrýchlenie kon-

verzie boolovských výrazov v algebraickej normálnej forme do konjuktívnej

normálne formy. Efektivita tejto konverzie je veľmi dôležitá pre úspech prí-

stupu, ktorý je založený na konverzii na SAT problém. Z našich experimentov

vyplýva, že navrhovaná heuristika je veľmi efektívna pre husté systémy. Na-

koniec prezentujeme vylepšenie štandardného algebraického útoku a to rýchly

algebraický útok.

Kľúčové slová: algebraický útok, rýchly algebraický útok, prúdové šifry,

posuvný register s lineárnou spätnou väzbou (LFSR), A5/1, XL algoritmus,

program pre riešenie SAT problému.


