COMENIUS UNIVERSITY BRATISLAVA
FAcULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

ANALYSING REPACKED TELEGRAM AND SIGNAL
WITH USE OF OBSERVABILITY AND SECURITY
TOOLS

DIPLOMA THESIS

2024 Ing. Be. JAKUB SKODA

COMENIUS UNIVERSITY BRATISLAVA
FAcuLTY OF MATHEMATICS, PHYSICS AND INFORMATICS

ANALYSING REPACKED TELEGRAM AND SIGNAL
WITH USE OF OBSERVABILITY AND SECURITY
TOOLS
DIPLOMA THESIS

Study programme: Computer Science

Field of study: Computer Science

Department: Department of Computer Science
Supervisor: doc. RNDr. Daniel Olejar, PhD.
Consultant: Mgr. Peter Kosinar

Bratislava 2024 Ing. Be. Jakub Skoda

92190963

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT
Name and Surname: Ing. Jakub Skoda
Study programme: Computer Science (Single degree study, master II. deg., full
time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak
Title: Analysing repacked Telegram and Signal with use of observability and security

Annotation:

Aim:

Keywords:

Supervisor:
Consultant:
Department:
Head of
department:

Assigned:

Approved:

tools

The aim of the diploma thesis is to analyze repacked version of Signal and
Telegram instant

messaging applications using various observability and security tools. Main
purpose of this

thesis is first to efficiently recognize if an application uses either Telegram or
Signal in the

background, to verify if it performs the same function that legitimate original
application

does and to highlight any non-standard and possibly malicious behaviour.

The aim of the diploma thesis is to analyze repacked version of Signal and
Telegram instant
messaging applications using various observability and security tools.

repackaging attacks, malware, observability tools, security tools, black-box
analysis, behavioral analysis, Signal, Telegram, Linux, Wireshark, strace

doc. RNDr. Daniel Olejar, PhD.

Mgr. Peter KoSinar

FMFI.KI - Department of Computer Science
prof. RNDr. Martin Skoviera, PhD.

08.01.2024

10.01.2024 prof. RNDr. Rastislav Kral'ovi¢, PhD.

Guarantor of Study Programme

Student

Supervisor

I would like to thank my supervisor doc. RNDr. Daniel Olejar, PhD. for helping me with
the choice of topic and all the academic advice.

I also want to thank my consultant Mgr. Peter Kosinar for always finding time for me,
productive discussions and friendly approach.

Abstract

SKODA, Jakub: Analysing repacked Telegram and Signal with use of observability and
security tools. [Diploma thesis] — Comenius University Bratislava. Faculty of Mathematics,
Physics and Informatics; Department of Computer Science. — Supervisor: doc. RNDr.
Daniel Olejar, PhD., Consultant: Mgr. Peter Kosinar, Bratislava: FMPH UNIBA, 2024,
24 p.

The aim of the diploma thesis is to analyze repacked version of Signal and Telegram instant
messaging applications using various observability and security tools. Main purpose of this
thesis is first to efficiently recognize if an application uses either Telegram or Signal in the
background, to verify if it performs the same function that legitimate original application
does and to highlight any non-standard and possibly malicious behaviour. In Chapter 1
we introduce past and current examples of repacking attacks and define functioning of the
attack. We show that it is a frequently used method of distributing malware especially for
Android operating system. In Chapter 2 we focus on various observability and security
tools in Linux ecosystem, clarify the distinction between observability tools and security
tools. We also briefly outline how these concepts used mainly in GNU/Linux environment
adapt to Android. In Chapter 3 we review previous analysis of Telegram, Signal and other
instant messaging apps, highlight most important findings and what has changed since their
publication. We especially focus on methodologies used and which part of them we plan to
reuse or change. Finally, in Chapter 4 we compare official signal-desktop application with
unofficial signal-cli to find out whether signal-cli is a legitmate application or does some
nefarious activity.

Keywords: behavioral analysis, black-box analysis, eBPF, Linux, malware, observability
tools, repackaging attacks, security tools, Signal, strace, Telegram, Wireshark

Abstrakt

SKODA, Jakub: Analyza prebaleného Telegramu a Signalu pomocou pozorovacich a
bezpecnostnych néstrojov. [Diplomova praca] — Univerzita Komenského v Bratislave.
Fakulta matematiky, fyziky a informatiky; Katedra informatiky. — Vedici diplomovej
prace: doc. RNDr. Daniel Olejar, PhD., Konzultant: Mgr. Peter Kosinar, Bratislava:
FMPH UNIBA, 2024, 54 s.

Cielom diplomovej prace je analyzovat prebalené verzie aplikacii na okamzité zasielanie
sprav Signal a Telegram pomocou roznych nastrojov na sledovanie a zabezpecenie. Hlavnym
ciefom tejto prace je najprv efektivne rozpoznat, ¢i aplikacia na pozadi pouziva Telegram
alebo Signal, overit, ¢i vykondva rovnaké funkcie ako legitimna povodna aplikacia a upo-
zornit na pripadné nestandardné a pripadne skodlivé spravanie. V kapitole 1 predstavujeme
minuly a sicasny utok na prebalenie a definujeme fungovanie ttoku. Ukazujeme, zZe ide o
¢asto pouzivani metddu distribicie skodlivého softvéru najma pre operaény systém Android.
V kapitole 2 sa zameriame na rozne nastroje na pozorovanie a zabezpecenie v ekosystéme
Linux, objasnujeme rozdiel medzi nastrojmi na pozorovanie a bezpe¢nostnymi nastrojmi.
Strucne tiez predstavime, ako sa tieto koncepty pouzivané najmé v prostredi GNU/Linux
prispdsobuji systému Android. V kapitole 3 uvadzame predchadzajicu analyzu aplikacii
Telegram, Signal a dalsich aplikacii na okamzité zasielanie sprav. Zdéraznime najdolezitejsie
zistenia a to, ¢o sa odvtedy zmenilo. Zameriavame sa najmé na pouzité metodiky a na to,
ktort ich ¢ast planujeme opéatovne pouzit alebo zmenit. Na zaver, v kapitole 4 porovname
oficialnu aplikaciu signal-desktop s neoficidlnou signal-cli, aby sme zistili, ¢i je signal-cli
legitimna aplikacia alebo vykonava nejaka nekalt ¢innost.

KTacové slova: analyza ciernej skrinky, analyza spravania, bezpec¢nostné nastroje, eBPF,
Linux, malware, nastroje pozorovatelnosti, prebalovaci utok, Signal, strace, Telegram,

Wireshark

License

Copyright © 2024 Jakub Skoda
Except where otherwise noted, this work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

[@NoleN

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Contents
Introduction

1 Existing repackaging attacks
1.1 Rise of repackaging attacks on Android
1.2 Recent repacking attacks 0oL

2 Observability and Security Tools

2.1 Observability tools
2.1.1 strace
2.1.2 tepdump and Wireshark oo
213 eBPF . ..

2.2 Pitfalls of Observability tools

3 Previous analyses of Signal and Telegram

4 Signal analysis

4.1 BCC tool s,
4.2 connect ... oL,
4.3 0PeN
4.4 ©XCC . . .
Conclusion
References

11
11
14

17
19
21
25
26
30

33

36
37
37
39
41

46

48

List of Figures

O W N =

Apps sampled in [3] by market, ©Gibler et al. 2013 12
Apps sampled in [3] by category, ©Gibler et al. 2013 13
Security relevant traceable events [12], ©Brendan Gregg/Netflix 2017 . . . 18
Brendan Gregg, 2021, CC BY-SA 4.0 International 20
Tracing enviromento 21

List of Tables

N O T W N~

Network connections for signal-desktop 38
Network Connections for signal-cli - send message 39
Network Connections for signal-cli - Receive all messages 39
Network Connections for signal-cli - Receive message from single contact . 39
Network Connections for signal-cli - Link 40
exec syscalls of signal-desktop L. 42
exec() syscalls for signal-clisend 44

Introduction

This thesis is concerned with detection of repackaged legitimate instant messaging ap-
plications by analysing how they interact with their environment (system calls, internet

packets), while treating the apps themselves as a black box.

There are two ways to investigate and detect malicious behaviour of software applications.
Either you can get the original source code for the software, usually by reverse engineering,
analyse the code and see if it includes any malware-like pattern for example file operations
such mass encrypting, deletion, sending or altering files that the given application has no
reason to access, running code or downloading payloads that seem to have nothing to do

with the claimed purpose of the software.

The other option that we will look into in this thesis is observing a behaviour of the
software, using various observation tools further explained in Chapter 2, and see if the

software does something it is not supposed to, or at least is suspicious.

We will use this observation approach where we treat software as a black box, inside which
we cannot see, to analyse and detect instances of repacking attack. That is practice of
taking legitimate application and inserting malicious code inside it and then offering it
to the public. Sometimes the attacker poses as the original vendor of the application,
other times it is offered as an improved version of the original software. We explore recent

instances of these attacks in Chapter 1.

Specifically, we will try to analyse various versions of Signal and Telegram. Both Telegram
and Signal are popular instant messaging applications. Signal is well regarded for its
security and open-source approach - everything from text through calls to gifs that you
send are end-to-end encrypted by default, even amount metadata that is visible to Signal
servers is limited to bare minimum. Telegram is mostly open-source as well, offers optional
end-to-end encrypted chat and most importantly is a frequent target of the recent repacking

attack.

First, we build standard behaviour pattern of legitimate versions of both Telegram and

Signal. We analyse and document system calls they use, internet packets that they send

9

and receive as well as any other distinct interaction that observation tools we use will be
able to notice. Then, we do the same observation and analysis for modified applications
and compare the results. In the end, we try to build an automatized way to detect these

modified apps.

Readers should be already familiar with Linux operating system, basics of malware termi-

nology and networking.

10

1 Existing repackaging attacks

Repackaging attack is use of repackaged versions of legitimate applications with malicious
payloads. First part of the attack consists of obtaining a legitimate app, disassembling it
enclosing additional (often malicious) payloads, and then re-assembling. For open source
and source-available software, or in cases when source code is leaked, situation is even easier
as the whole reverse engineering part can be skipped. In the second part of the attack
targeted users must be tricked or enticed to download and install modified (malicious) app

instead of the legitimate version. [1], [2]

Not all of these repacked applications are malicious. Many are form of application plagiarism,
where paid or simply popular apps are repacked, paid advertisements and in-app purchases
are included. Such plagiarized applications are then distributed by the repackager to
generate income. [2], [3] Authors that are targeted lose on average 14% of their advertising
revenue to application plagiarism assuming the users who downloaded the plagiarized
versions would have used the original app instead. However, sometimes repacking might
be even completely legitimate such as rebranded apps (apps from the same developer with

high code similarity) [3] or just white label apps or a fork of existing open source projects.

1.1 Rise of repackaging attacks on Android

Repackaging attack was popular during the rise of Android mobile operating system. In
2012 [1] callected 1,260 malware samples from various Android markets - stores which
distribute and sell applications for Android operating system. Out of these 1,083 (or 86.0%)

were repackaged versions of legitimate applications with malicious payloads.

In 2013 [3] crawled 265,359 free applications from 17 Android markets around the world
(73.7% of the apps are from the official Google Play market, 14.7% are from 9 third-party
English markets, 13.8% are from 6 third-party Chinese markets, and 0.46% are from 2
Russian markets). Out of the sampled apps, 44,268 (16.7 %) were cloned apps. Authors
define cloned application as “an app that is a modified copy of another app, and thus

shares a significant portion of its application code with the original”, which is rather

11

interchangeable with our term “repacked apps”.

= o
=} N
Q —e— Number of cloned apps o
=}] 0
™ —+— Percentage of apps that are clones
%]
2
— X O
FS =
8 ¥ 0
Q o g
[y 8_ ©
3 & 2 T
2 -5 £
m -—
5 8
O —
“— Q
=) o ©
— —oo =
o 3 Q ©
O o - Q
£ © o
> o g
Z o 3
— Q
S o
S - 9
n (0]
o
P
— L- g
© o
A R U N N A A A A
o [< kel
T gcd® o8 P=900 55 g csg8o
= 0 0 5 o g o 08 9 T = D x©
o o 2o ox = > 0 £ S o
< IS @ © O T w o) o © 2 O
S o 2 EEODOGg a2 £ 8 c ¢
n 9 =i o O = O e “6 O © Xx 3
o o o < 28 dan o2 83
o o] o © © = o g T
c o 8 i=)
(] = 9
©
&
Market

Figure 1: Apps sampled in [3] by market, ©Gibler et al. 2013

Figure (1) showing the popularity of different app markets in clone clusters by [3]. The
absolute number of clone apps from each market is represented by the axis labelled “Number
of cloned apps”. The axis labelled “Percentage of apps that are clones” is simply result of
number of cloned apps from a specific market divided by the total number of apps from

that market in the entire database.

As most of the sampled apps came from Google Play, around 195,570 out of 265,359, it is
not surprising that in absolute terms the bigger number of cloned apps was identified here.
Almost 30,000 cloned apps, which is somewhat over 10% of sampled Google Play apps.
However, in relative terms Google Play had one of the lowest percentage of cloned apps.
Outside Google Play, [3] sampled around 69,790 apps. Out of these samples AndroidSoft
had most cloned apps, almost 50% of the sample. It was followed by Chinese markets
AndroidOnline, GoApk, and AppChina, that had each almost 30% of cloned apps in their

respective samples.

12

8000
]
25%

I —o— Number of cloned apps
—s— Percentage of apps that are clones
(%]
2
. 25
8 8] q ©
a Q o
c © «
3 R
0] | o
5 i
o [%)]
o ©
o 8 %
= <
=) o ®©
— 700 "’6
[0} —
£ g
[=]
> S+ g
Z & 52 g
NS
—
0]
o
- L2
e)
APUE I A A A A A A O G R
Q5 ELCO0520B8ES0E0E 820
EESCE532525a86828328%5
SE2eNgL2ZoZ2onprcecx> 50 88°
8 2®ga o € i o <£=
h mcm L0 2 ° v
° (@] 1= =
sk : &
o 3
Category

Figure 2: Apps sampled in [3] by category, ©Gibler et al. 2013

Figure (2) is fairly similar to the previous one, just displays apps based on category, what
they are used for, instead of market. “Number of cloned apps” axis represents the absolute
number of cloned apps in each category. “Percentage of apps that are clones” is result of
number of cloned apps for a specific category divided by the total number of apps from

that category in the entire database.

Games are the most frequently cloned category with in both absolute terms, over 7,000
apps, and relative terms, around 18% of games in the database were clones. Other popular
category is Reference, which includes Books & Reference, E-books, Ebooks & Reference,
Reference, with around 17% of cloned apps. And also, a vague category of Other with
around 16%, which include Developer/Programmer, Home & Hobby, Other, Religion.
Then Personalization, which includes Personalization and Wallpapers, with above 15% of
cloned apps. Rest of the categories had between 7% to 15% of clones, namely the category

Communication had around 11% of clones.

13

1.2 Recent repacking attacks

In the last five years trend of malicious repacked app continues on Android. As security
measures on Google Play tighten, attackers can now be frequently seen persuading users
to download malicious apps from sources outside of applications markets such as website
mimicking legitimate website of the app or Telegram channels. However, there are still
numerous examples of malicious repacked apps on Google Play and other stores. Frequently

their aim is to steal cryptocurrency funds or just a part of more focused spear-head attack.

In 2023 there was a large group repackaged Telegram and WhatsApp apps targeting mainly
Chinese users as both apps are banned in China. Threat actors set up Google Ads leading
to fraudulent YouTube channels (reported by authors of [4] and now taken down by Google),
which included links to copycat Telegram and WhatsApp websites. [4]

Maliciously repacked versions of both Telegram and WhatsApp targeted cryptocurrency
funds using malware called clippers. According to authors this is the first instance of
clippers built into instant messaging apps. In addition, some of the maliciously modified
Telegram apps used optical character recognition (OCR) to read text in screenshots and
photos to steal a seed phrase used for recovering cryptocurrency wallets — this is the first
instance of Android malware using OCR. Other monitored Telegram for keywords related
to cryptocurrencies and sent the attacker the full message if the keyword is recognized.
In some cases, they even exfiltrated internal Telegram data and basic device information.
Beside Android attackers also targeted Windows where malicious Telegram used remote

access trojans (RATs) that enabled full control of the victim’s system. [4]

Clippers mentioned above are a type of malware that steals or modifies the contents of
the clipboard. It is well suited for stealing cryptocurrency because addresses of online
cryptocurrency wallets are composed of long strings of characters, which are mostly copied
and pasted using the clipboard instead of being typed manually. Malware simply switches
the victim’s cryptocurrency wallet address for the attacker’s address in chat communication,
with the addresses either being hardcoded or dynamically retrieved from the attacker’s
server. [4] Current clippers work despite that for Android versions 10 and higher clipboard
data can be accessed only by the default input method editor (IME) or the app that

14

currently has focus. [5]

Many malicious applications are often promoted via various Telegram Channels. This
is also the case of WhatsApp mod that is offering users additional features, which
was not malicious from the start, but later became infected trojan with called Trojan-
Spy.AndroidOS.CanesSpy. It was active from mid-August 2023 to at least around October
2023. It was promoted on Telegram channels, where the most popular channel had almost
two million subscribers. Telegram channels were mostly in Arabic and Azeri languages and

impacted regions were mainly Azerbaijan, Saudi Arabia, Yemen, Turkey, and Egypt. [6]

In some cases, a repacked application can pose as a completely different service. This is the
case of trojanized Telegram active in November 2021 that included StrongPity backdoor
code and posed as an official app of random-video-chat service Shagle. Shagle is a real
service that provides encrypted communications between strangers, however, Shagle’s
service is only accessible through their official website and Shagle does not provide an
Android app. Malicious app was distributed via copycat website, mimicking the Shagle
service. The StrongPity backdoor is modular, all necessary binary modules are encrypted
using AES and downloaded from C&C server. It has 11 dynamically triggered modules,
which are responsible for recording phone calls, collecting SMS messages, lists of call logs,
contact lists, and much more. [7] StrongPity is name of used malware as well as name of
the group responsible for the attack. More frequently they use the name PROMETHIUM,

and are focused on espionage. They have been active since at least 2012. [§]

Google Play is still viable channel for repackaged malware as well, especially for various
Telegram clippers. Other applications also appear such as malicious repacking of WhatsApp

and Signal as well as of crypto wallets and VPNs.

From June 2020 to January 2021 there was malicious version of Telegram under name
FlyGram on Google Play and got over 5,000 installations. It was also available on Samsung
Galaxy Store and dedicated websites. Using Android BadBazaar espionage code can extract
basic device information, contact lists, call logs and the list of Google Accounts. Surprisingly,
it can extract only limited information and settings related to Telegram. Telegram’s contact

list and messages are not included unless users enable a specific FlyGram feature that

15

allows them to back up and restore Telegram data. This sends back up data to a remote
server controlled by the attackers, giving them full access excluding only the collected

metadata. [9]

From July 2022 to May 2023 there was malicious version of Signal called Signal Plus
Messenger on Google Play. It used the same Android BadBazaar espionage code and
distribution channel as Flygram. Signal Plus Messenger seems to have been more focused
on spying on communication than Flygram. It can extract the Signal PIN number that
protects the Signal account, and it misuses the link device feature that allows users to link

Signal Desktop and Signal iPad to their phones. [9]

Other Telegram based malware on Google play had descriptions in traditional Chinese,
simplified Chinese and Uighur, telling us a lot about targeted region. They included
full-fledged spyware capable of stealing the victim’s entire correspondence, personal data,
and contacts. Code of these malicious apps was only marginally different from the original

Telegram code, which helped them pass the security checks to get to Google Play. [10]

16

2 Observability and Security Tools

A slight complication with repacking attack is that knowing the application is repacked
is not enough. The application in suspicion often openly claims to be a modified version
of an original and sometimes such modifications are made with a genuinely good intent,
non-malicious and even useful. Application must be caught red-handed to proof that it

truly is a case of repacking attack.

There are two ways to investigate and detect malicious behaviour. Get the code for both
original and modified app and compare them, see if there is any malware-like code in
the modified part. Or observe behaviour of the app and watch if it does something that

original app never does.

The first approach usually involves reverse engineering as often source code is not available.
Even if the source code for modified app is available, it cannot be trusted (unless Repro-
ducible builds/deterministic compilation is used) as attacker could be including additional
malicious code into a final build that they are not sharing. The biggest drawback is that
you have to be well-versed in language that the application is written in, which might be a
problem if you plan to investigate wide range of different applications. Sometimes after
updates parts of application are rewritten in different, for example Signal moving protocol,

cryptography and rest of the backend libraries from Java to Rust. [11]

With the second approach we try to identify anomalous or unexpected behaviour of the
repackaged applications. This includes monitoring system calls, network traffic, and file
interactions which are crucial for understanding the runtime activities of repackaged ap-
plications. Unlike reverse engineering, which often involves static analysis of compiled
code, observability tools allow dynamically monitor the execution of repackaged applica-
tions. This allows us to observe the application’s behaviour in various contexts, including

interactions with the operating system, network, and other applications.

However, it is most likely not feasible to observe and then to analyse all aspects of
application’s behaviour. We need to choose aspects of the behaviour that we wish to watch.

Figure (3) provides a diagram of place in operating where we can look and examples of

17

S saqe
ssh authentication 1 usag

sudo usage
shell commands crypto initialization libpam events
\ Operating System /
Applications ;
A new processes
file open | System Libraries ’ process exec
file create System Call Interface e ptrace
file unlink = VFS Sockets | Scheduler
change mode File Systems TCP/UDP4 \ Privileges <«—— Setuid
Volume Manager IP A\ Virtual capability usage
Block Device Interface Ethernet Memory —__ page fault errors
== Dovide Dri
. T i evide Drivers \ \ process crash
partition table writes
/ invalid packets \
socket bind

kernel module load TCP active connections
TCP passive connections ICMP suspicious packets
TCP port refused
UDP connections

Figure 3: Security relevant traceable events [12], ©Brendan Gregg/Netflix 2017

what kind of events we find there. Interesting events depend on the application, however,

checking interaction with files, internet connection and used process forms a good basis.

Traffic analysis is represented in the diagram by the green stack. It lets us identify
communication patterns between repackaged applications and external servers or command
and control servers. Analysing network traffic can identify connections to malicious servers,
data exfiltration attempts, or other network-based attack vectors. To limit overheads it is
important to track a low-frequency event, especially in context of security. Therefore, it is

better to track TCP connection init rather than TCP send/receive.

VFS (Virtual Filesystem Switch) handles system call related to file manipulations. By
observing it, it can tell us about files that are opened, copied or deleted. Maybe it is

reading files that it is not supposed to or maliciously modifying configuration files.

System call interface tells us when processes are launched. Here we can also observe when

application requests something from a kernel via a system call.

18

Watching the application layer itself we can see shell commands, ssh authentication, crypto
initialization, sudo usage, su usage. Usage of system libraries is easy to trace as the
libpam events has a good API for that. Interesting might be the usage of cryptographic
libraries as they might be use by ransomware or in decryption of obfuscated malicious
code, however, we need to keep in mind that most internet connected applications use

cryptography nowadays for secure communication.

Below we review a few of the selected observability tools and explore some part of their
inner workings; then pitfalls of observability tools and why specialized security tools are

needed. Finally, we introduce selected security tools.

2.1 Observability tools

In computer engineering the word observability is used to describe the tools (for reading
state), data sources (metrics and logs), and methods for understanding (observing) how a
technology is operating. Unlike benchmarks and other performance tools that change the
state of the system to understand it, observability tools look at the system ideally without
changing it. [13]

A perfect observability tool would just look at the system without touching at all. However,
real tools still have impact on the system. Their execution consumes resources, usually

negligible, but in some cases it is enough to perturb the target of study. [13]

We can split Linux tracing systems into tracing frontends (the tool we actually interact
with to collect/analyse data), mechanisms for collecting data for the frontends and

data sources (where the tracing data comes from).

Tracing frontends are command line or GUI applications in which user types commands
and gets corresponding output. Wide variety of them is listed in Figure (4) as the bold text
next to start of the arrows. As we can see from the diagram, each tool has its specialized
use and focuses on tracing different part of operating system. There are also some more
general tools mentioned on the left of the diagram (perf, Ftrace, BCC, bpftrac, LT Tng)

that can observe many parts of the operating system.

19

Linux Performance Observability Tools

strace Operating System Hardware Various:
ltrace ss nstat sar /proc
opensnoop \ / // dmesg dstat
A icati
lsof Applications gethostlatency
fatrace
filelife - - execsnoo
pcstat i] System leranes/ // mpstat P t;llrblc;sta:
System Call Interface profile Showooos
perf X\ \‘ 4 “/ // runglen rdmsr
E-tIE?ce VES Sockets Scheduler # offcpl_ltime
Bec? File Systems TCP/UDP softirgs
bpftrace Volume Manager IP Virtual _—_—
i i Memory W top atop S
extadist 4 Block Dewcef Net Device A y ps pidstat
y extdslower / Device Drivers \ X tipt
(& for btrfs 1pPtop
/ orf vmstat orf
nfs,xfs,zfs) P tcplife slabtop P
mdflush tiptop | tcpdump P
. —> tcpretrans free
iostat - udpconnect DRAM
biosnoop I/O Bridge hardirgs
biolatency criticalstat
biotop [1 tat
blktrace | 1/O Controller | | Network Controller | numasta
N nicstat
| netstat
[Disk | [Disk | [Disk | [Port | [Port] [Port &~ ip
SCSl log swapon ethtool snmpget lldptool h“p//wwmzszrnfghr,eﬁ?58?1/

Figure 4: Brendan Gregg, 2021, CC BY-SA 4.0 International

Mechanisms for collecting data get the data from the data source and serve them to the front
end. Only ftrace, perf and eBPF are official part of Linux kernel being integrated directly
into the Linux kernel source code. While LTTng, dtrace, SystemTap or sysdig work as
out of tree Loadable Kernel Modules, which are developed and maintained separately from
Linux kernel and kernel can load and link these Loadable Kernel Modules at runtime.
Beside eBPF all here mentioned share names with their respective tracing frontend, eBPF
frontends includes BCC and bpftrace. Many of these mechanisms also use other mechanisms
for collecting additional data as you can see in Figure (5). For example perf uses its own
sysem call perf_open() as well as tracefs, a specialized file system used by ftrace. Many

of these forntends are also currently working on implementing use of BPF.

There are just four official data sources: kprobes, uprobes, tracepoints, perf events.
However, the way that the mechanism processes these data sources can differ drastically,
for example eBPF does all data processing inside the kernel and only sends final filtered

result to the user-space, which makes it highly efficient.
First, we look at two commonly used tools. For looking at System Call Interface we will use

20

Tracing Frontends

LTTng ‘ ‘ stap (SystemTap) trace-cmd (ftrace) perf ‘ bpftrace

Mechanisms|for Collecting Data

perf_open() ‘ sys_bpf()

v .
eBPF (JIT)

)

function hooks (ftrace)

LTTng mod ‘ ‘ SystemTap mod tracefs
perf events

v
%cs uprobes
trace events
\“ po—— /

Figure 5: Tracing enviroment

strace. For Net Device we will use tcpdump which is internally also used by Wireshark.
After exploring some parts of their inner workings and related drawbacks we will look at

some more efficient tools that are using eBPF or perf.

For more detailed overview of observability tools see [14] and [15] For history overview see

[16] and for minimal code examples see [17].

2.1.1 strace

strace is a system call tracer for Linux. It shows us most of the actions that are in Figure
(4) under “System Call Interface”. It was developed by Paul Kranenburg in 1991 for SunOS
[18] and ported to Linux a year later.

Kernel feature known as ptrace() (process trace) is used by strace to pause the target
process at the beginning and the end of each syscall, so strace can read state. This way
that strace works in the background, is also its biggest drawback. Pausing an application
twice for each syscall, and context-switching each time between the application and strace

slows down the whole application considerably. [19] There is an infamous example of strace

21

making process 42 times slower.

$ dd if=/dev/zero of=/dev/null bs=1 count=1M 2>&1 | grep -v records
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.668768 s, 1.6 MB/s

$ strace -f -qq -e signal=none -e trace=fchdir \
dd if=/dev/zero of=/dev/null bs=1 count=1M 2>&1 | grep -v records
1048576 bytes (1.0 MB, 1.0 MiB) copied, 28.0445 s, 37.4 kB/s

Thankfully, strace is still in active maintenance and evolving. Many improvements involve
limiting ptrace() syscalls or replacing them completely. An older but clear example of
this is 2012, when they started to use process_vm_readv instead of PTRACE_PEEKDATA to
read data blocks such as filenames and data passed by 1/O syscalls. PTRACE_PEEKDATA
gets one word per syscall, which is very expensive. For example, in order to print fstat
syscall, we need to perform more than twenty trips into kernel to fetch one struct stat.
Now used process_vm_readv() can copy data blocks out of process address space. For

more examples of such small improvements see [20].

Major speedup occurred in version v5.3 (September 2019), when they added Seccomp-
assisted (Secure Computing Mode-assisted) system call filtering, which automatically
generates and attaches a BPF program to filter system calls. This makes execution
of untraced system calls (those that we did not specify in strace filter) two orders of

magnitude faster. [21]

We get this speedup as system calls are allowed to run more or less normally with use of
ptrace__cont (ptrace continue), only once we have syscall of interest seccomp-stop stop the
programme, strace is called and then the process is restart with ptrace syscall. The dd
process that we traced before is with use of --seccomp-bpf flag only 1.10 times slower

than the same untraced process instead of 42 times slower as it was before. [21]

$ strace --seccomp-bpf -f -qq -e signal=none -e trace=fchdir \
dd if=/dev/zero of=/dev/null bs=1 count=1M 2>&1 | grep -v records
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.736511 s, 1.4 MB/s

22

However, to make further improvements in strace, ptrace () itself must be improved. This
is problematic as already in 2010 development of ptrace() was considered “frozen”. There
were new features or improvements added, only bugfixes. https://lwn.net/Articles/371505/
Therefore, any improvement of ptrce() seems unlikely. There were also attempts to
replace ptrace() completely with something new. Doing so seems even more difficult
as ptrace() is a standard function of Linux kernel Applications Binary Interface. This
cannot be removed from the kernel, unless “everybody” stops using it. This would mean
that at first “everybody” would have to replace ptrace() with working alternative — be it
in standard tool such as strace or GDB, as well as custom proprietary code used internally
in some major companies, and only after that it could be removed from kernel. This would
require to include alternative to ptrace() in kernel, while keeping ptrace() there as well.
Doing that is possible but it is a really unpopular option among Linux kernel developers.

It would results in need to maintain two tracing interfaces instead of just one. [22]

This whole situation resulted in deadlock in ptrace() development, which goes almost
completely standstill. This would not be a problem if ptrace() was good enough, however,
ptrace() is far from that. The ptrace() system call is considered to be one of the worse
parts of the Unix interface due to inelegant and complicated design. The design problems
include strange semantics (it reparents the traced process to the tracer), so badly defined
interactions with jctl (job control) that the current behaviors are broken to the point where
achieving transparency with userland work-arounds is impossible. For example, a task
which is running under strace can be stopped with ~Z as usual, but the shell will be
unable to restart it as tracers have currently no way to know that the real parent has tried

to start a stopped process. [24].

The general purpose of ptrace() is to allow one process to monitor and modify the state of
another. It was originally intended for interactive debuggers such as GDB debugger but
now is used in various sandboxing schemes, in strace as well as for internal management

of user-mode Linux. [22]

Whenever system calls have to work with extended state within the kernel the preferred

mechanism, which ptrace() does not use, for referring to that state in user space is

23

https://lwn.net/Articles/371505/

the file descriptor. With file descriptors there are well-defined mechanisms for event
multiplexing and system calls behave “naturally”. Instead of using file descriptors, ptrace ()
unfortunately depends on rather arcane mechanism. A process to be traced is removed
from its normal place in the process tree; the process doing the tracing becomes its new
parent. In other words, ptrace() sets up a sort of temporary foster home for children
under scrutiny. The new parent can then learn about events in the child through the

wait () system call. [22]

In Linux process can only have one parents [25], because of this any given process can
be traced by only one other process at any given time. Usually this is not a problem as
rarely someone debugs a process with two debuggers at once. However, this limitation
often causes problems for developers of debugging tools. Because strace() is also used

for sandboxing using strace or debugger is often not possible either. [22]

This limitation also allows to check if they are debugged or observed with strace or
debugger. Malicious bug can just call ptrace() on its own malicious process and if
ptrace() fails simply assume that is already observed by someone else ptrace() and
refrain from malicious action during the time of observation. [26] As ptrace() allows
control over processes, it also has malicious uses and was used in several real-world attacks
and exploitations. This includes the DirtyCow [27] bug exploitation. CVE-2011-4327,
where ptrace() allowed local users to obtain sensitive key information. And also remote

access trojan called Puppy uses ptrace(). [2§]

Furthermore, ptrace() system call is also defined as a complex, multiplexer call (see the
man page for details) which is hard to understand and hard to use efficiently. User-space
code which uses ptrace() tends to become encrusted with non-portable workarounds as

ptrace() is hard to implement correctly and consistently. [22]

For more information about strace we recommend illustrated “strace zine” [29] and critical

introduction with list of many drawbacks by [31].

strace is a great tool held by arcane ptrace(). For behavioural analysis it might be

problematic that strace is fairly easy to detect and cannot be used on many sandboxed

24

applications. There are multiple alternatives to strace use eBPF such as opensnoop, or
perf system calls and other some of which we mention below. In the future strace itself

might start to use eBPF and solve most of it ptrace related problems with that.

2.1.2 tcpdump and Wireshark

Tepdump is a tool for capturing network traffic and packet analysis. It was developed in
1992 by Steven McCanne and Van Jacobson for SunOS as alternative for default etherfind.
etherfind was based on Unix find command and it was getting the computer overwhelmed
because its user-space process was unable to process all incoming packets. tcpdump solved
this problem by filtering packets with in-kernel virtual machine BPF (see Chapter 2.1.3)
that was developed alongside tcpdump. At the end of the development the compiler system
and filtering engine was put out of the tcpdump and an API and reusable library called
libpcap was created. A common file format called pcap was also created, which as an
elaboration of tcpdump flag -w, write data into a file, such as tcpdump -w http.pcap
port 80. [32]

Beside tcpdump, the most prominent project using libpcap is Wireshark. All Wireshark
tools use libpcap for packet sniffing and can also use tcpdump filter syntax as capture
filter. [33] Wireshark in addition offers more advance filtering, features as connecting TCP
packets from the same connection and GUI. As Wireshark uses same library as tcpdump,
it is possible to capture packets with tcpdump -c¢ 100 -w my_packets.pcap dest port
8080 and than later open it with Wireshark using wireshark -k -i -. This might be
especially useful if we are capturing packets on remote host where Wireshark is not installed,
where we can use something like ssh some.remote.host tcpdump -pni any -w - -sO

-U port 8888 | wireshark -k -i -.

If for some reason you do not want to or cannot use tcmpdump but still have just a command
line application with no GUI, Wireshark come with collection of terminal tools as well.
There is TUI version of Wireshark called tshark. Both tshark and Wireshark have mostly
equivalent functionality when, just Wireshark’s GUI user can select which packets to save,

tshark will record everything.

25

Then tshark itself runs another command line tool from Wirshark developers called
dumpcap, which is a small program whose only purpose is to capture network traffic, while
retaining advanced features like capturing to multiple files. In most cases you will just
tshark instead, [34] but as tshark just runs dumpcap, their performance should be the

same. [35]

For more information about Wireshark and tcpdump see [36].

2.1.3 eBPF

BPF was developed by Steven McCanne and Van Jacobson alongside tcpdump as its kernel
module, a virtual machine model that would run in the kernel. Now eBPF makes the Linux
kernel programmable without need for modifying kernel code or creating kernel modules.
Thanks to this eBPF tools form a basis of many versatile and efficient observability tools

such as bece, bpftrace or Cilium. [37]

In 1992 BPF was introduced as BSD Packet Filter, a pseudomachine that can run filters
to determine whether to accept or reject a network packet. Filters for BPF are written as
programs using the BPF instruction set, a general-purpose set of 32-bit instructions that

closely resembles assembly language. [38], [39]

Bytecode as written in 1992 article The BSD Packet Filter: A New Architecture for

User-level Packet Captur

1dh [12]

jeq #ETHERTYPE IP, L1, L2
L1: ret #TRUE

L2: ret #0

code output of sudo tcpdump -d -i wlanO -n ip, -d flag outputs the bytecode.

(000) 1dh [12]

(001) jeq #0x800 jt 2 jf 3
(002) ret #262144

(003) ret #0

26

Both of these examples of instruction set filters out packets that are not Internet Protocol
(IP) packets, leaving only IP traffic in the output. The first instruction 1dh loads a 2-byte
value starting at byte 12 in from an Ethernet packet. The instruction jeq compares this
2-byte value with the value that represents an IP packet. If it matches, execution jumps to
the instruction labeled L1, and the packet is accepted by returning a nonzero value #TRUE.

If it does not match, the packet is not an IP packet and is rejected by returning 0. [40]

As BPF’s name implies, BPF implementation came from BSD with BSD license and it was
used as a packet filter. Packet filters make network monitoring more efficient by discarding
unwanted packets in kernel and copying to the user-space only data that user is actually
interested in. BPF has register-based filter evaluator with a non-shared buffer model. It

was meant as replacement for Unix’s default stack-based filter evaluator.

Later BPF started to be called Berkeley Packet Filter (BPF). Nowadays, in order to avoid
confusion with newer version of BPF, it is also called classic BPF (¢BPF). [41]

c¢BPF got it in Linux in 1997 in version 2.1.75. For long time it was only used as socket

filter by packet capture tool tcpdump (via libpcap). [42]

Using the same principle of doing most operations in the kernel and only sending the final
result to user space could speed up many other processes beside packet filtering. However,
for almost 15 years in-kernel virtual machine went unnoticed. ¢cBPF capability to run
untrusted programs in a privileged context was underutilized, despite providing a secure

alternative to Kernel modules.

Things started to change in 2011 when just-in-time (JIT) compiler was added for ¢cBPF on
x86. This made customized network-packet filtering extremely fast. [16], [43]

First non-networking use case (probably even first outside of libpcap) appeared in 2012, in
Linux kernel version 3.5, when seccomp-bpf was introduced. It is a system call filtering
program that uses a configurable policy implemented through BPF instructions. For
example, it is used in Linux version of Chrome as the main layer-2 sandbox, designed
to shelter the kernel from malicious code executing in userland. [42], [44] seccomp-bpf

is improvement upon seccomp (SECure COMPuting Mode) introduced into the Linux

27

kernel in version 2.6.12 (8th March 2005). Whereas seccomp restricts the system calls
available to a process to only read, write, _exit and sigreturn, seccomp-bpf uses BPF
programs to filter on arbitrary syscalls and their arguments (constants only, no pointer
dereference). [45] Additionally, according to The Linux Kernel documentation “BPF makes
it impossible for users of seccomp to fall prey to time-of-check-time-of-use (TOCTOU)
attacks that are common in system call interposition frameworks”. [46] After that BPF
was also implemented in Kernel 3.9 as iptables module xt_bpf [47] and in Kernel 3.13 [48]
“cls_bpf” classifier for traffic shaping (QoS) [49]. Use of BPF was slowly getting traction.

Developer Alexei Starovoitov in 2014 created extended (eBPF) to make BPF programs
applicable to other parts of kernel, including tracing. [16]

In March 2014, eBPF replaced classic BPF (cBPF) in-kernel when it was accepted by David
S. Miller, the primary maintainer of the Linux networking stack. Since then the Linux
kernel internally translates classic BPF (cBPF) calls into the into the eBPF instructions,
in order to provide backwards compatibility. [50], [51]

The eBPF brought major changes compared to classic BPF. The BPF instruction set was
completely overhauled to be more efficient on 64-bit machines; the interpreter was entirely
rewritten; the eBPF verifier was added to ensure that eBPF programs are safe to run; new
data structure for sharing information between BPF programs and user space called ‘maps’

were introduced; bpf () system call was added to the user space; and many other changes.

In 2015 ability to attach eBPF programs to kprobes was also added. [40]

This extended use of eBPF beyond packet filtering also caused a formal name change,
where eBPF is no longer considered to be an acronym and is used just a proper name,

sometimes even just referred to BPF as well.

Interesting topic that is beyond scope of this thesis is why has Linux kernel developer
decided to reinvent whole infrastructure of virtual machines, JITs and scripting languages
when well establish solutions already exist outside of kernel word. For example, in past there
were active initiatives to get Lua in kernel. [52] The answer, why eBPF succeeded where

these other initiatives did not, maybe lies in fact that eBPF is based on component that is

28

already in Linux kernel since 1997. And it is much easier to persuade kernel developers

to allow extending this already well tested and trusted tool rather than introducing a

completely new thing to kernel.

To make use of eBPF you need BPF bytecode that tells the virtual machine what to do.

Thankfully, usually it is not needed to write it directly but there are multiple front-ends

with their own scripting languages.

Best start for beginners is bpftrace, which is suitable for one-liners and short scripts.

bpftrace/eBPF Tools

opensnoop statsnoop bashreadline gethostlatency
Syncsnoop \ |
A syscount
icati killsnoo;
vEscount Applications P
vEsstat Runtimes
System Libraries
writeback \ execsnoop
System Call Interface . — pidpersec
P
bpftrace X VES Sockets cpuwalk
\
A Scheduler runglat
xfsdist —— I File Systems TCP/UDP \ q
Volume Manager IP S offcputime
mdflush > Virtua ‘\
. 3 Memory
™ Block Devi Net Device ;
biosnoop — e alss oomkill
biolatenc q f
v bitesize y Device Drivers
tcpconnect tcpaccept Other:
tcpretrans tcpdrop capable

Diagram by Brendan Gregg, early 2019. https://github.com/iovisor/bpftrace

For more complex tools and daemons BCC is recommended. Libraries from bcc are also

internally used by bpftrace.

29

Linux bce/BPF Tracing Tools

c* java* node* php* mysqld_gslower
python* ruby* dbstat dbslower gethostlatency
| bashreadline memleak

ucalls uflow
uobjnew ustat

\ uthreads ugc
\

opensnoop statsnoop
syncsnoop

filetop

/ sslsniff
A rfilelife fileslower o + / syscount
vEscount vfsstat Applications killsnoop
cachestat cachetop Runtimes / execsnoop

dcstat dcsnoop exitsnoop

pidpersec

A

mount snoop \ System Libraries ¥
cpudist cpuwalk
trace \)4 runglat runglen
;Eggizznt \ System Call Interface runqi lgweg
| / cpuunclaime
funcslower \ VES Sockets A deadlock
funclatency : :
stackcount) Scheduler offcputlmg wakeupt_::l.me
profile I File Systems TCP/UDP A 4+— offwaketime softirgs
. slabratetop
btrfsdist /) :
btrfsslower)/Olume Manager/ P Virtual ‘_/Sg::l:t;il gi:iizk
ext4dist extdslower Y i . Memory P P
nfsslower nfsdist 4 Block Device Net Device hardirgs
xfsslower xfsdist -) < criticalstat
 / :2221‘;:3‘7 / / Device Drivers ttysnoop
mdflush biotop biosnoop tcptop tcplife tcptracer
her: biolatency bitesize tcpconnect tcpaccept tcpconnlat 11estat |CPUs
Other: tcpretrans tcpsubnet tcpdrop — 1y
capable sofdsnoop tcpstates

https://github.com/iovisor/bcc#tools 2019

For many generic tasks there is no need to write own script as many are already readily

available, especially for BCC.

To learn more see https://brendangregg.com/ebpf.html and https://andreaskaris.github.io
/blog/networking /bpf-and-tcpdump/. For full timeline see https://en.wikipedia.org/wiki/
EBPF#History. These two videos can be also helpful to learn more about history of BPF.
Videos https://www.youtube.com/watch?v=DAvZH13725] Kernel Recipes 2022 - The
untold story of BPF eBPF and Kubernetes: Little Helper Minions for Scaling Microservices
- Daniel Borkmann, Cilium https://www.youtube.com/watch?v=99jUcLt3rSk

2.2 Pitfalls of Observability tools

Of course problems with tools above are that they are meant as observability tools not as
security tools. While useful for quick initial analysis, they are designed to have the lowest
overhead possible, as they are used for analysing live production systems which introduces
many trade-offs. Detection by observability tools might be avoided by overwhelming system,

time-of-check-time-of-use attacks (TOCTOU) and other techniques.
Even simple 1s (1) can be avoided by putting escape characters such as \n newline character,

30

https://brendangregg.com/ebpf.html
https://andreaskaris.github.io/blog/networking/bpf-and-tcpdump/
https://andreaskaris.github.io/blog/networking/bpf-and-tcpdump/
https://en.wikipedia.org/wiki/EBPF#History
https://en.wikipedia.org/wiki/EBPF#History
https://www.youtube.com/watch?v=DAvZH13725I
https://www.youtube.com/watch?v=99jUcLt3rSk

carriage return \r or backspace \b into a filename. top(1) relies on “comm” field (the
command name) to display process information. An attacker might change the names of
malicious processes to resemble innocent or common process names to avoid detection.
tepdump(8) that we use for analysis will drop packets if the system is overloaded, resulting
in incomplete visibility. Advanced attacker could overwhelm the system with mostly
innocent packets, or wait for the moment when system is overwhelmed, and only sent
malicious packets at that time. In a similar way strace could be overwhelmed by simple

fork bomb : O{ :1:& };: or injecting code into legitimate processes or libraries.

As we compare suspicious app to its legitimate version most basic techniques of simply
overwhelming system would automatically raise a flag, but it is good to keep this in mind.
They secure strict non-repudiation it is possible to set kernel to halt immediately if it
could not log an event. There are also less drastic ways such as at least logging the failure
of logging as well specialized security tools better suited for such analysis. Adapting
observability tools into security tools generally increases overhead by for example adding
extra probes. Good security tools need to be built differently. Ideally, security tool should
be integrated directly into the Linux Security Modules framework, use a plugin model
instead of standalone CLI tools, support configurable policies for event drop behaviour,

have optimized event logging and more.

Linux Security Modules hooks are used to add Linux kernel extra security checks and
controls that go beyond what the base kernel provides. Being integrated directly into the
Linux Security Modules framework leverages the existing security infrastructure in the

Linux kernel and integrate security tool more tightly with the system’s security mechanisms.

Plugin model involves designing the security tool to be extensible through plugins or
modules. Instead of a monolithic standalone tool, a plugin model allows users to add
or customize functionality through separate modules. This approach provides flexibility,
as users can choose the specific features or modules they need, and it allows for easier

maintenance and updates.

Configurable policies for Event Drop Behavior allows users to define rules for when certain

events should be dropped or allowed. For example, users might want to configure the tool

31

to drop specific types of events under certain conditions while allowing them under different
circumstances. This can help in mitigating attacks aimed at overwhelming system resources,
obfuscating logs, or masking malicious activities. To defend against overwhelming attacks
administrators might set thresholds for the number of events per second or per minute. If
the incoming events exceed these thresholds, the system could be configured to drop or

ignore excessive events, preventing the attacker from overloading the logging system.

Optimizing event logging includes minimizing the impact on system performance, imple-
menting mechanisms to handle high event volumes without losing critical information and

ensuring appropriately detailed logs. [53]

Observability tools might at first glance be instantly reusable as security tools. While
observability tools might give us a good many pieces of useful pieces of information and

sometimes even detect malware, these tools fall easily to purposeful evasion techniques.

32

3 Previous analyses of Signal and Telegram

Most of the results on what is the legitimate behaviour of the instant messaging application
comes from studies that with use of device and network forensic methods tried to learn
something about the legitimate applications. They tried to access data and metadata from
often encrypted database and determine type of activity based on visible network traffic.
Their aim was not to directly asses legitimate behaviour of the application, they assumed
that they work with the legitimate version, but to undertake planned forensic analysis they
had to identify location in file system, servers that app connects to and other data useful

for us.

Most of the available studies focus on the device forensics [54], with the main focus on the
internal structure of databases stored on the devices but also including analysis of the file
structure and extraction of useful information from artifacts. Analyses of encrypted file

structures and databases is less studied [55].

Network forensics traces communications through the network packets to identify the traces
of the app’s activity. For instant messaging there are already studies that can identify
connection establishment, an encryption protocol, and payload sizes for analysis and some

can also distinguish behaviour such as calling, texting and similar.
For the more complex literature overview we recommend [56], [57].

Unsurprisingly most available studies are focused on WhatsApp as it is the most used
instant messaging application. There are also numerous Telegram studies available [58].

Number of forensic Signal studies is surprisingly low.

Research on Telegram has spanned various aspects, including device forensics across

different platforms.

The 2017 study on Telegram for Windows Phone provided a comprehensive overview of
the app’s architecture and user data file management, which remains relevant beyond
the discontinued Windows 10 Mobile platform. It included useful description of general

concepts related to Telegram such as the TL (Type Language), names of user data files as

33

well as detailed guide of how to get information from these data files. [54] Most information
in the paper seems to be applicable for other platforms and therefore is useful even though
Windows 10 mobile is no longer supported since December 10, 2019 [59] and Microsoft is

not developing another mobile operating system. [60]

Another study in 2017 analyzed network traffic from Telegram as well as Facebook and
Twitter on the now-obsolete Firefox Mobile OS, revealing insights into the app’s server
connections and data transmission patterns. Firefox Mobile OS simulator was used.
Generated traffic was sniffed by Wireshark, resulting in the list of IP addresses, ports,
domains, and subdomains used by these apps. Key takeaways for Telegram are that
generating the registration key Telegram connects to us-west-2.compute.amazonaws . com
(analysis was done in the USA therefore domain name ends with us-west-2, this would
change depending on the location) which was used to push and generate the registration
key for Telegram, and unsurprisingly to telegram.org. After registration Telegram mostly
connects just to telegram.org but also received traffic from github.map.fastly.net
when received a message from another contact. When sharing location with contacts traffic
comes from IPs associated with Google Internet Authority and when playing a song received

from another contact Telegram connects to .us-west-2.compute.amazonaws.com. [58]

A 2017 investigation into Telegram on a virtualized Android device unearthed significant
forensic data, determined the structure and format of these artifacts, and implemented
the corresponding decoding procedures in a Java program and mapped the data stored
by Telegram Messenger to the user actions that generated it. Using the above mapping,
they also show how to recover the account used with Telegram Messenger, and how to
reconstruct the contact list of the user, the chronology and contents of both textual and
non-textual messages, and the log of the voice calls done or received by the user. It is also
offering to serve as a detailed template for similar forensic analyses thanks to its thorough

and well readable layout. [61]

The 2018 research compared data extraction methods on Telegram, WhatsApp, Viber and
WeChat across both rooted and un-rooted Android devices, uncovering the specific file

storage practices of Telegram and other messaging apps. Android Debug Bridge (adb)

34

commands pull for rooted phones or backup for un-rooted phones was used to extract the
data. Telegram files were only accessible on rooted devices with the use of pull command. It
found out that Telegram in version 4.5.1 stored encrypted SQLite database of chat messages
at /data/data/org.telegram.messenger/files/Cache4.db, details about account used
/data/data/org.telegram.messenger/shared prefs/userconfing.xml, profile photo
/data/media/0/Android/data/org.telegram.messenger/cache and copies of files sent
and received /data/media/telegram. Paper also offers a brief description of different

kinds of chats available in Telegram and used encryption. [55]

Forensic analyses of Signal is an understudied field. 2021 study offers extensive traffic
analysis of the Signal on Android phone with traffic capture and filtering done by dedicated
firewall. Study revealed the obscured design of Signal app and was able to identify different
activities of the Signal app such as calls, text or typing indicator. [56] This study also
highlights how dynamic field is the forensic analysis of Instant Messaging as many domain
names and other information have already managed to change, since the publication of

this study.

35

4 Signal analysis

The main aim of the thesis was to compare and analyse repacked version of applications. We
have compared official Signal application with unofficial one called signal-cli. Official Signal
for Linux signal-desktop uses Electron framework as the GUI, which uses Chromium

browser engine in the background.

We tested version 7.0.0-1 which we got from the stable branch of Manjaro repository [62],
[63].

The signal-cli is a commandline interface for the Signal messenger. The intended use of
signal-cli claimed by developer is to be used on servers to notify admins of important events
but there are also mutliple TUI applications available. It occupies an important niche as it
is the only unofficial commandline interface for Signal messenger and the official Signal

developers do not provide one.

Signal-cli is based on custom patched libsignal-service the official Signal-Android source
code, which also includes Signal officials platform agnostic libsignal, which handles all the

cryptography and protocols. [64]

We tested v0.13.3 of signal-cli, specifically signal-c1i-0.13.3-Linux-native.tar.gz,

which we got from the official developer’s repository. [65]

In both signal-desktop and signal-cli we tested receiving and sending messages and
traced TCP active connections via connect () syscalls, opened files via open() syscalls,
new processes via exec () syscalls with custom BPF Compiler Collection (BCC) code. We

compared this output in order to evaluate whether it is a legitimate one.

For signal-desktop we started tracing, then started signal-desktop with command

signal-desktop and after that we received and sent messages inside the GUI.

With signal-cli we have traced and performed all these operations separately because
the commandline interface easily allows this. In these logs we have replaced the real
numbers with a randomly generated fake ones where +421 909 104 930 is phone number

of the user of signal-cli, and +421 909 543 173 phone number of other user with whom

36

we interact. We first linked our device with the main Signal app on Android phone with
./signal-cli link -n +421909104930 (this also needs to be done on signal-desktop but
we did not capture this process there), ./signal-cli -u +421909104930 receive to get
the list of contacts and groups from the main device, ./signal-cli -u +421909104930
send -m "Hello, how are you?" +421 909 543 173 to send the message to +421 909
543 173 and ./signal-cli -u +421909543173 receive to check if there is new message
from +421 948 413 685 and receive them if there are any.

When reading this analysis keep in mind that we collected this data by running a single
tracer programme in the background with no noticeable effect on performance and we can

easily generate them again for any other software.

4.1 BCC tool

In order to perform the analysis we had to use a suitable tracing tool. We described
available options in Chapter 2 and to use eBPF with help of the BCC toolkit. BCC
performs majority of its tracing in-kernel which significantly speeds up tracing, which is

the main reason why we choose it.

We have taken the structure of the provided BCC Tools as the starting point but restructur-
ing it into the main function, additional function and classes in order to increase readability
and maintainability. In contrast with the tool provided by in BCC repository also traces
all the system calls that we were interested in at once as it would be suboptimal having to

repeat the same tracing multiple times.

The final code that we used for tracing can be found at https://github.com /TacobusKopiir
efuto/anbako-BCC.

4.2 connect

According to the signal-desktop discussion on SignalComunity forum and dns.ts file the
current production domain names that Signal should connect to are chat.signal.org,

storage.signal.org, cdsi.signal.org, cdn.signal.org, cdn2.signal.org and

37

https://github.com/IacobusKopiirefuto/anbako-BCC
https://github.com/IacobusKopiirefuto/anbako-BCC

PID COMM DADDR DPORT | QUERY

13646 | signal-deskt 2600:9000:a61f:527c: 443 chat.signal.org
dbeb:a431:5239:3232
13646 | signal-deskt 2606:4700:4400::ac40:966¢ 443 cdn2.signal.org
13646 | signal-deskt 2606:4700:4400::ac40:966¢ 443 cdn2.signal.org
13646 | signal-deskt 2606:4700:4400::ac40:966¢ 443 cdn2.signal.org

13646 | signal-deskt 2a00:1450:4014:80e::2013 443 storage.signal.org
13646 | signal-deskt 2600:9000:a61f:527c: 443 chat.signal.org
dbeb:a431:5239:3232
13646 | signal-deskt 2600:9000:2611:9200: 443 cdn.signal.org
1d:4£32:50c0:93al
13646 | signal-deskt 2600:9000:a61f:527c: 443 chat.signal.org
dbeb:a431:5239:3232
448 | NetworkManag | 2a01:4f8:¢0c:51£3::1 80 ping.manjaro.org
448 | NetworkManag | 116.203.91.91 80 ping.manjaro.org

Table 1: Network connections for signal-desktop

create.signal.art and TCP port 443 and all UDP ports are used. [66], [67]

So, if Signal applications connect to some other domains they might suggest a suspicious

activity.

Below we can see the log of connect () syscall where PID is process ID of the application
making the connection, COMM is command or application name making the network request,
DADDR is destination address, i.e., the server’s IP address, DPORT is destination port,
commonly 443 for HT'TPS connections and 80 for HT'TP, QUERY domain name queried.

The original log also includes IP - the IP protocol version used for the connection (6 for
IPv6, 4 for IPv4) and SADDR source address, i.e., the local machine’s IP address which we

omitted for better readability.

In Table 1 we can see that official signal-desktop does only the expected connections.
The ping.manjaro.org is just a standard background noise which occurs even when no
application is running and is not related to the Signal app itself but to the operating

system.

Beside the fact that the signal-cli uses IPv4 addresses instead of the IPv6, the domain

names to which it connects remain the same. Interesting fact is that which is shown by

38

PID COMM DADDR DPORT | QUERY
11234 | signal-cli 13.248.212.111 443 chat.signal.org
11234 | .signal.org/ | 13.248.212.111 443 chat.signal.org

Table 2: Network Connections for signal-cli - send message

PID | COMM DADDR DPORT | QUERY

11084 | signal-cli 13.248.212.111 443 chat.signal.org
11084 | .signal.org/ | 13.248.212.111 443 chat.signal.org
11084 | .signal.org/ | 13.248.212.111 443 chat.signal.org
11084 | tokio-runtim | 2603:1030:7::1 443 cdsi.signal.org
11084 | signal-cli 104.18.37.148 443 cdn2.signal.org
11084 | pool-6-threa | 3.161.119.11 443 cdn.signal.org
11084 | pool-6-threa | 142.251.36.147 443 storage.signal.org

Table 3: Network Connections for signal-cli - Receive all messages

Table 2 that sending requires just two connections to chat.signal.org while linking your
desktop device with your main device, receiving all messages or just messages from a single

user require the same number of connections.

4.3 open

We also tracked open() syscall to monitor what files it tries to access. Both signal-desktop
and signal-cli are expected to mainly access their own confing files and various libraries

as well as content in /usr/share/ and ~/.local/share

The signal-desktop tries to access document mostly connected to form their own files
and configuration files /usr/lib/signal-desktop/, ~/.config/Signal but most of

directories are connected to visuals of the GUI such as fonts and icons /usr/share/fonts,

PID COMM DADDR DPORT | QUERY
448 | NetworkManag | 116.203.91.91 80 ping.manjaro.org
448 | NetworkManag | 2a01:4f8:c0c:5113::1 80 ping.manjaro.org
11413 | signal-cli 76.223.92.165 443 chat.signal.org
11413 | .signal.org/ 76.223.92.165 443 chat.signal.org
11413 | .signal.org/ 76.223.92.165 443 chat.signal.org
11413 | pool-6-threa 142.251.36.147 443 storage.signal.org

Table 4: Network Connections for signal-cli - Receive message from single contact

39

PID | COMM DADDR DPORT | QUERY

10958 | .signal.org/ 13.248.212.111 443 chat.signal.org
448 | NetworkManag | 116.203.91.91 80 ping.manjaro.org
448 | NetworkManag | 2a01:4f8:c0c:51£3::1 80 ping.manjaro.org
10958 | signal-cli 76.223.92.165 443 chat.signal.org
10958 | signal-cli 76.223.92.165 443 chat.signal.org
10958 | signal-cli 76.223.92.165 443 chat.signal.org
10958 | .signal.org/ 76.223.92.165 443 chat.signal.org
10958 | signal-cli 3.161.119.11 443 cdn.signal.org
10958 | pool-9-threa 142.251.36.147 443 storage.signal.org

Table 5: Network Connections for signal-cli - Link

~/.local/share/fonts/, ~/.fontconfig, /.cache/fontconfig/, , ~/.icons/,
~/.local/share/icons. Then there are directories such as /usr/share/locale/,
various libraries from /usr/1lib/. Log of syscall also shows that the application uses
Chromium based Electron framework as it uses /dev/shm/.org.chromium.Chromium. *
and /tmp/.org.chromium.Chromium.* and also in this version Vulkan 3D graphics API
~/.local/share/vulkan/ and /usr/share/vulkan/ API and open standard for 3D
graphics and computing. It also accesses /etc/passwd which could hint an enumeration
attempt if it was a malicious software but given that this is the official app and no other

signs of enumeration have been caught we can consider this legitimate.

The signal-cli again proofs to be a legitimate app, which is actually much easier to monitor

than the signal-desktop, mainly because it does not have GUI and so produces less noise.

In the same way as signal-desktop it accesses /etc/passwd, /dev/urandom,
/etc/1ld.so.cach, /etc/nsswitch.conf, /etc/resolv.conf, /sys/devices/system/cpu/possible,

/proc/stat, /proc/self/maps, /proc/self/fd /run/systemd/machines/chat.signal.org.

From the general directories that we listed as being accessed by signal-desktop only
the /usr/1ib/ was accessed by signal-cli. Therefore, we can assume that rest of the
directories accessed by signal-desktop were required by the Electron framework GUI and
were not needed for the core Signal functionality. The signal-cli also accesses its own local
directory ~/.local/share/signal-cli and instead of Chromium temporary directory it

creates a shared object file (.s0) related to SQLite JDBC driver inside temporary directory

40

which is likely used for Java database connectivity with SQLite. It also tries to ensure data
integrity by creating a corresponding lock file to prevent multiple processes from accessing

this shared object.

Overall all activity by signal-cli seems legitimate, it mostly accesses the same files as
signal-desktop and even thank to been simple command line software it actually accesses

much fewer files than the signal-desktop.

4.4 exec

The final part of the analysis is whether signal-desktop and signal-cli execute additional
software only when they really need it; or they do something nefarious such as deleting
files or running some commands with strange settings. Most of such actions should be
already shown when tracing open() syscalls but this serves as a way to double check
it. Furthermore, this analysis shows us in detail what arguments are used to start this

commands.

In Table 6 we can see which programs are executed by signal-desktop. In signal-desktop
(PIDs 13546, 13549, 13550) Signal Desktop application launch and child processes for zygote,
where a zygote process is the one that listens for spawn requests from the main process and
forks itself in response. The fact that it disables ~—no-zygote-sandbox reduces security
by allowing broader access to system resources but it is not seriously concerning. The
xdg-settings (PIDs 13566, 13582) sets the default URL scheme handlers for Signal. Ma-
nipulating URL handlers can be risky if misused by other applications, but in this context,
it appears to be a legitimate configuration for Signal. Finally the exe - /proc/self/exe
(PIDs 13616, 13646, 13679) represent various utility types being run (network service, ren-
derer, and audio service), likely from within Signal. Here again there are flags for disabling
of features like HardwareMediaKeyHandling and SpareRendererForSitePerProcess, and
flags such --no-sandbox and --enable-crash-reporter reduce security. For example
disabling sandbox might be exploited via the rendering engine or enabling crash reports

might leak sensitive data. [68]

41

Table 6: exec syscalls of signal-desktop

PID | COMM PPID | RET | ARGS

13541 | fish 1 0 " /usr/bin/fish'

13545 | flatpak 13541 0 " /usr/bin/flatpak" "-installations"

13546 | signal-desktop | 13541 0 " /Jusr/bin/signal-desktop"

13549 | signal-desktop | 13546 0 " Jusr/lib/signal-desktop/signal-desktop' —
type=zygote" "—no-zygote-sandbox"

13550 | signal-desktop | 13546 0 " Jusr/lib/signal-desktop /signal-desktop' —
type=zygote"

13566 | xdg-settings 13546 0 " /usr/bin/xdg-settings" "set" "default-url-scheme-
handler" "sgnl" "signal.desktop"

13582 | xdg-settings 13546 0 " Jusr/bin/xdg-settings" "set" "default-url-scheme-
handler" "signalcaptcha" "signal.desktop"

13616 | exe 13546 0 " /proc/self/exe" "—type=utility" "—utility-

sub-type=network.mojom.NetworkService"
"—lang=en-US" "—service-sandbox-type=none"
"—enable-crash-reporter=f7e9ea8d-135d-4de5-
a67¢-95010fb400d7,no_ channel" "—user-data-
dir=/home/jackie/.config/Signal" "—shared-
files=v8 context snapshot_data:100" oofi
eld-trial-handle=0,i,1517941057698749295
9,17697197405601602943,262144" "-enable-
features=kWebSQLAccess" "--disable-features=Ha
rdwareMediaKeyHandling,SpareRendererForSite

non

PerProcess" "-variations-seed-version"

42

Table 6 continued from previous page

PID

COMM

PPID

RET

ARGS

13646

exe

13546

0

" /proc/self/exe" "—type=renderer" —
enable-crash-reporter=f7e9ea8d-135d-4de5-
a67¢-95010fb400d7,no_ channel" "—user-
data-dir=/home/jackie/.config/Signal'
"—app-path=/usr/lib/signal-

desktop /resources/app.asar” "—no-
sandbox" "—no-zygote" "—enable-blink-
features=CSSPseudoDir,CSSLogical" "--disa
ble-blink-features=Accelerated2dCanvas,Accel
eratedSmallCanvases" "first-renderer-process"
"—disable-gpu-compositing" '“lang=en-US"
"num-raster-threads=2" "—enable-main-frame-

before-activation" "-renderer-client-id=4"
time-ticks-at-unix-epoch=-1715236720975010"
"—launch-time-ticks=25421136890" "—shared-
files=v8 context snapshot data:100" "o fi
eld-trial-handle=0,i,1517941057698749295
9,17697197405601602943,262144" "—enable-
features=kWebSQLAccess" "'

43

Table 6 continued from previous page

PID

COMM

PPID

RET

ARGS

13679

exe

13546

0

" /proc/self /exe" "—type=utility" "—utility-
sub-type=audio.mojom.AudioService' '
lang=en-US" '—service-sandbox-type=none"
"—enable-crash-reporter=f7e9ea8d-135d-4de5-

a67¢-95010fb400d7,no channel" "—user-data-
dir=/home/jackie/.config/Signal "—shared-
files=v8 context_snapshot_data:100" oo fi
eld-trial-handle=0,i,1517941057698749295
9,17697197405601602943,262144" "-enable-
features=kWebSQLAccess" "--disable-features=Ha
rdwareMediaKeyHandling,SpareRendererForSite

PerProcess" "—variations-seed-version"

Table 7: exec() syscalls for signal-cli send

PCOMM | PID | PPID | RET | ARGS
signal-cli | 11234 | 10307 0 " /signal-cli -u +421909104930 send -m Hello, how
are you?+421909543173"
sh 11237 | 11234 0 ' /usr/bin/sh -c stty -a < /dev/tty"
stty 11239 | 11237 0 " /usr/bin/stty -a"
sh 11240 | 11234 0 '/usr/bin/sh -c stty -a < /dev/tty’
stty 11241 | 11240 0 ' Jusr/bin/stty -a"
uname | 11242 | 11234 0 ' /usr/bin/uname -o"

As we can see in Table 7 the signal-cli does fewer and much less complex steps than

signal-desktop, the same as with the connect () and open() syscalls. It initiates a shell

sh (PIDs 11237, 11240) to execute further commands. Then it executes stty (PIDs 11239,

11241), stty -a to be precise, which gets all settings for the current terminal. It uses

44

uname (PID 11242), uname -o, which gets the name of the operating system. As all actions
end here, we can assume that these operations are done just to use correct setting for given
operating system. For linking devices and receiving messages the same commands are

executed.

45

Conclusion

The primary goal of the thesis was to conduct a comparative analysis between the official
Signal application and its unofficial command-line counterpart, signal-cli. This study
focused on their behavior concerning system interactions captured through syscalls while

performing basic operations like sending and receiving messages.

We looked at the repacked attack and the way it can be detected through black-box analysis

by using observability tools already available in the Linux environment.

We attempted the deep-dive review of these observability tools, explored their mechanism
in order to evaluate strengths as well drawback of each tool. We reached conclusion that
the eBPF - the in-kernel extend Berkeley Packet Filter, originally used only the tcpdump
for packet filtering but now with overgrowing uses from sandboxing in browsers to tracing
of almost any part of the OS - is the best choice. Not only because it allows us to use
single tool to do all the tracing but also because it does all its tracing in kernel and sends
final result to the user space which speeds up tracing significantly and makes running of
software while tracing it virtually as fast as running it without tracing, unlike tool like

strace which slow programs sometimes to the point of failure.

Deciding to use eBPF, we have used the BCC toolkit for BPF-based Linux IO analysis,
networking, monitoring to create our tracing script available at https://github.com /Tacob

usKopiirefuto/anbako-BCC.

Finally, we applied all this knowledge in order to find whether only application which
allows using Signal Messenger via commandline interface, the signal-cli, only performs
the intended function of sending and receiving Signal messages or does something at least
suspicious. Our analysis have proven not only that siganl-cli but thank to having no GUI

it has also does fewer system call making monitoring of its activity much easier.

With our BCC tool we explored the differences between the official Signal application,
which operates on the Electron framework incorporating the Chromium browser engine,
and its unofficial command-line counterpart, signal-cli, which utilizes a custom patched

version of libsignal-service from the Signal-Android source code. The official Signal desktop

46

https://github.com/IacobusKopiirefuto/anbako-BCC
https://github.com/IacobusKopiirefuto/anbako-BCC

version tested was 7.0.0-1 sourced from the stable Manjaro repository, while the signal-cli
was evaluated at version 0.13.3 from the official developer’s repository. The analysis
involved tracing system interactions through syscalls such as connect, open, and exec using
custom BPF Compiler Collection (BCC) code to assess each application’s operations and
system interactions. Signal-desktop displayed more complex, interconnected operations due
to its GUI-based framework, whereas signal-cli facilitated more straightforward, discrete
command-line operations, allowing for more granular analysis. Both applications were
confirmed to only communicate with official Signal service endpoints over secure connections,

adhering to expected operational standards without any indication of malicious activities.

The analysis confirms that both the official Signal desktop application and the unofficial
signal-cli adhere to expected operational standards and communicate securely with desig-
nated servers. Signal-cli provides a robust alternative for command-line based interactions
with Signal services, particularly valuable for automated or backend processes on servers.
The thorough syscall tracing and analysis reinforce the integrity of both applications, with

no significant security concerns detected under normal usage conditions.

This research underscores the importance of syscall monitoring as a tool for validating
application behavior, particularly in verifying that networked applications like Signal
engage only with intended services and perform expected actions without undue exposure

to the underlying system.

Future recommendations include continuous monitoring of syscall patterns with updates
and patches, especially for applications like Signal-desktop that rely on complex frameworks

such as Electron, which are frequently updated to address security vulnerabilities.

We can state that the main aim of our diploma thesis has been achieved.

47

References

1]

Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolu-

tion,” in 2012 IEEE symposium on security and privacy, 2012, pp. 95-109. doi:
10.1109/SP.2012.16!

H. Rafigq, N. Aslam, M. Aleem, B. Issac, and R. H. Randhawa, “AndroMalPack:
Enhancing the ML-based malware classification by detection and removal of repacked
apps for android systems,” Scientific Reports, vol. 12, no. 1, p. 19534, Nov. 2022,
doi: 10.1038/s41598-022-23766-w?2. Available: https://doi.org/10.1038/s41598-022-
23766-w

C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi, “AdRob:
Examining the landscape and impact of android application plagiarism,” in Pro-
ceeding of the 11th annual international conference on mobile systems, applications,
and services, in MobiSys 13. New York, NY, USA: Association for Comput-
ing Machinery, 2013, pp. 431-444. doi: 10.1145/2462456.2464461%. Available:
https://doi.org/10.1145/2462456.2464461

L. Stefanko and P. Strycek, “Not-so-private messaging: Trojanized WhatsApp
and Telegram apps go after cryptocurrency wallets.” https://www.welivesecuri
ty.com/2023/03/16 /not-so-private-messaging-trojanized-whatsapp-telegram-
cryptocurrency-wallets/, Mar. 16, 2023.

Android Open Source Project, “Privacy changes in Android 10.” https://developer.
android.com/about/versions/10/privacy/changes#clipboard-data, 2023.

D. Kalinin, “Analysis of a spy module inside a WhatsApp mod.” https://securelist
.com/spyware-whatsapp-mod /110984 /, Nov. 02, 2023.

L. Stefanko, “StrongPity espionage campaign targeting Android users” https:
//www.welivesecurity.com/2023/01/10/strongpity-espionage-campaign-targeting-
android-users/, Jan. 10, 2023.

MITRE, “PROMETHIUM, StrongPity, Group GO0056 | MITRE
ATT&CK® — attack.mitre.org” https://attack.mitre.org/ver
sions/v14/groups/G0056/, Oct. 22, 2020.

48

https://doi.org/10.1038/s41598-022-23766-w
https://doi.org/10.1038/s41598-022-23766-w
https://doi.org/10.1145/2462456.2464461
https://www.welivesecurity.com/2023/03/16/not-so-private-messaging-trojanized-whatsapp-telegram-cryptocurrency-wallets/
https://www.welivesecurity.com/2023/03/16/not-so-private-messaging-trojanized-whatsapp-telegram-cryptocurrency-wallets/
https://www.welivesecurity.com/2023/03/16/not-so-private-messaging-trojanized-whatsapp-telegram-cryptocurrency-wallets/
https://developer.android.com/about/versions/10/privacy/changes#clipboard-data
https://developer.android.com/about/versions/10/privacy/changes#clipboard-data
https://securelist.com/spyware-whatsapp-mod/110984/
https://securelist.com/spyware-whatsapp-mod/110984/
https://www.welivesecurity.com/2023/01/10/strongpity-espionage-campaign-targeting-android-users/
https://www.welivesecurity.com/2023/01/10/strongpity-espionage-campaign-targeting-android-users/
https://www.welivesecurity.com/2023/01/10/strongpity-espionage-campaign-targeting-android-users/
https://attack.mitre.org/versions/v14/groups/G0056/
https://attack.mitre.org/versions/v14/groups/G0056/

[9]

[10]

[11]

[12]

[13]

[19]

[20]

[21]

L. Stefanko, “BadBazaar espionage tool targets Android users via trojanized Signal
and Telegram apps.” https://www.welivesecurity.com/en/eset-research /badbazaar-
espionage-tool-targets-android-users-trojanized-signal-telegram-apps/, Aug. 30,
2023.

I. Golovin, “Spyware Telegram mod distributed via Google Play — securelist.com.”
https://securelist.com/trojanized-telegram-mod-attacking-chinese-users/110482/,
Sep. 08, 2023.

A. Hart, Leptopoda, and Y. Lu, “What’s with the protocol using Rust?” https:
//community.signalusers.org/t/whats-with-the-protocol-using-rust/18957, Dec. 20,
2020.

B. Gregg, “BSidesSF 2017: Security monitoring with eBPF.” https://www.brenda
ngregg.com/Slides/BSidesSF2017__BPF _security__monitoring, 2017.

B. Gregg, “What is Observability.” https://brendangregg.com/blog/2021-05-
23 /what-is-observability.html, May 23, 2021.

J. Evans, “Linux tracing systems & how they fit together.” https://jvns.ca/blog/2
017/07/05/linux-tracing-systems/, 2017.

B. Gregg, “Choosing a Linux Tracer (2015).” https://brendangregg.com/blog/2015-
07-08/choosing-a-linux-tracer.html, 2015.

J. Edge, “Unifying kernel tracing.” https://lwn.net/Articles/803347/, 2019.
Terenceli, “Linux tracing - kprobe, uprobe and tracepoint.” https://terenceli.github
10/ NE6%8A%80%E6%ICTHAF /2020/08/05 /tracing-basic, 2020.

P. Kranenburg, “Strace - an alternative syscall tracer, Part01/04.” https://stuff.mi
t.edu/afs/sipb/project/eichin/cruft /machine /sun/sun-Strace, 1992.

B. Gregg, “Strace Wow Much Syscall.” https://www.brendangregg.com/blog/2014-
05-11/strace-wow-much-syscall.html, May 11, 2014.

E. Syromyatnikov, “FOSDEM 2020 - strace: Fight for performance.” https://archiv
e.fosdem.org /2020 /schedule/event /debugging strace_ perfotmance/, Feb. 02, 2020.
D. Levin, “FOSDEM 2020 - Postmodern strace.” https://archive.fosdem.org/2020/
schedule/event/debugging strace _modern/, Feb. 02, 2020.

49

https://www.welivesecurity.com/en/eset-research/badbazaar-espionage-tool-targets-android-users-trojanized-signal-telegram-apps/
https://www.welivesecurity.com/en/eset-research/badbazaar-espionage-tool-targets-android-users-trojanized-signal-telegram-apps/
https://securelist.com/trojanized-telegram-mod-attacking-chinese-users/110482/
https://community.signalusers.org/t/whats-with-the-protocol-using-rust/18957
https://community.signalusers.org/t/whats-with-the-protocol-using-rust/18957
https://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_monitoring
https://www.brendangregg.com/Slides/BSidesSF2017_BPF_security_monitoring
https://brendangregg.com/blog/2021-05-23/what-is-observability.html
https://brendangregg.com/blog/2021-05-23/what-is-observability.html
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
https://brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html
https://brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html
https://lwn.net/Articles/803347/
https://terenceli.github.io/%E6%8A%80%E6%9C%AF/2020/08/05/tracing-basic
https://terenceli.github.io/%E6%8A%80%E6%9C%AF/2020/08/05/tracing-basic
https://stuff.mit.edu/afs/sipb/project/eichin/cruft/machine/sun/sun-Strace
https://stuff.mit.edu/afs/sipb/project/eichin/cruft/machine/sun/sun-Strace
https://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html
https://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html
https://archive.fosdem.org/2020/schedule/event/debugging_strace_perfotmance/
https://archive.fosdem.org/2020/schedule/event/debugging_strace_perfotmance/
https://archive.fosdem.org/2020/schedule/event/debugging_strace_modern/
https://archive.fosdem.org/2020/schedule/event/debugging_strace_modern/

[26]

[27]

[28]

[30]

[31]

[32]

[33]

[34]

[35]

J. Corbet, “Replacing ptrace().” https://lwn.net/Articles/371501/, 2010.

T. Heo, “Proposal for ptrace improvements.” https://lwn.net/Articles/430373/,
2011.

J. Corbet, “Improving ptrace().” https://lwn.net/Articles/432114/, 2011.

M. Miiller, “Can a process have multiple parents? Why or why not?” https:
/ /stackoverflow.com/questions/42333659 /can-a-process-have-multiple-parents-
why-or-why-not, 2017.

Andrew, “Bypassing ptrace in gdb.” https://stackoverflow.com/questions/33646927
/bypassing-ptrace-in-gdb, 2015.

OffSecServices, “OffSec’s Exploit Database Archive — exploit-db.com.” https:
//www.exploit-db.com/exploits /40839, 2016.

Y. Shafet, “The Race to Limit Ptrace.” https://www.rezilion.com/blog/the-race-to-
limit-ptrace/, 2020.

J. Evans, “A zine about strace.” https://jvns.ca/blog/2015/04/14/strace-zine/,
2015.

S. Abdalla, “Say this five times fast: Strace, ptrace, dtrace, dtruss.” https://dev.to
/captainsafia/say-this-five-times-fast-strace-ptrace-dtrace-dtruss-3elb, 2019.

N. Abda, “Understanding ptrace — abda.nl.” https://abda.nl/posts/understanding-
ptrace/, 2019.

S. McCanne, G. Combs, and L. Degioanni, “SHARKFEST ’11 Keynote Address.”
https://sharkfestus.wireshark.org/sharkfest.11/, 2011.

tshepang, “Difference between sniffer tools — networkengineer-
ing.stackexchange.com.” https://networkengineering.stackexchange.com/a/10075,
2017.

wireshark, “Tools - Wireshark Wiki — wiki.wireshark.org.” https://wiki.wireshark
.org/Tools, 2020.

user862787, “Performance and efficiency comparing between dump tools: Tepdump,
tshark, dumpcap.” https://stackoverflow.com/a/22234865, 2014.

J. Evans, “Let’s learn tcpdump!” https://wizardzines.com/zines/tcpdump/, 2017.

50

https://lwn.net/Articles/371501/
https://lwn.net/Articles/430373/
https://lwn.net/Articles/432114/
https://stackoverflow.com/questions/42333659/can-a-process-have-multiple-parents-why-or-why-not
https://stackoverflow.com/questions/42333659/can-a-process-have-multiple-parents-why-or-why-not
https://stackoverflow.com/questions/42333659/can-a-process-have-multiple-parents-why-or-why-not
https://stackoverflow.com/questions/33646927/bypassing-ptrace-in-gdb
https://stackoverflow.com/questions/33646927/bypassing-ptrace-in-gdb
https://www.exploit-db.com/exploits/40839
https://www.exploit-db.com/exploits/40839
https://www.rezilion.com/blog/the-race-to-limit-ptrace/
https://www.rezilion.com/blog/the-race-to-limit-ptrace/
https://jvns.ca/blog/2015/04/14/strace-zine/
https://dev.to/captainsafia/say-this-five-times-fast-strace-ptrace-dtrace-dtruss-3e1b
https://dev.to/captainsafia/say-this-five-times-fast-strace-ptrace-dtrace-dtruss-3e1b
https://abda.nl/posts/understanding-ptrace/
https://abda.nl/posts/understanding-ptrace/
https://sharkfestus.wireshark.org/sharkfest.11/
https://networkengineering.stackexchange.com/a/10075
https://wiki.wireshark.org/Tools
https://wiki.wireshark.org/Tools
https://stackoverflow.com/a/22234865
https://wizardzines.com/zines/tcpdump/

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

eBPF Foundation, “eBPF Projects.” https://ebpf.foundation/projects/.

M. Steve, “Shark fest 2011 keynote.” https://sharkfestus.wireshark.org/sharkfest.11
/, 2011.

S. McCann, “The BSD packet filter: A new architecture for user-level packet capture.”
http://www.tcpdump.org/papers/bpf-usenix93.pdf, 1992.

L. Rice, “Learning eBPF — chapter 1.” https://www.oreilly.com/library/view/lea
rning-ebpf/9781098135119/ch01.html, 2023.

Linux Kernel, “BPF licensing.” https://www.kernel.org/doc/html/latest/bpf /bpf

_ licensing.html.

A. Starovoitov, “BPF in-kernel virtual machine.” https://netdevconf.info/0.1/sess
ions/15.html, 2015.

E. Dumazet, “Re: [PATCH v2] net: Filter: Just in time compiler.” Email to David
Miller, Apr. 03, 2011. Available: https://lore.kernel.org/netdev/1301838968.2837.2
00.camel@edumazet-laptop/

Chromium Project, “The seccomp sandbox.” Online. Available: https://chromi
um.googlesource.com/chromium /src/+/HEAD /docs/linux /sandboxing. md#The-
sandbox-1

A. Chapman, “Seccomp and Seccomp-BPF.” https://ajxchapman.github.io/linux/2
016/08/31 /seccomp-and-seccomp-bpf.html, 2016.

Kernel Documentation, “Seccomp BPF (SECure COMPuting with filters).” Online.
Available: https://www.kernel.org/doc/html/latest/userspace-api/seccomp_ filter.
html

Linux Kernel Developers, “Source code of xt_ bpf.c in linux kernel v3.9.” Online, 2013.
Available: https://elixir.bootlin.com/linux/v3.9/source/net /netfilter /xt_bpf.c
Linux Kernel Developers, “Source code of cls_ bpf.c in linux kernel v3.13.” Online,

2014. Available: https://elixir.bootlin.com/linux/v3.13/source/net/sched/cls_bpf.c
Kernel Documentation, “Linux socket filtering aka berkeley packet filter (BPF).”
Online, 2024. Available: https://www.kernel.org/doc/html/latest/networking/filter.

html

o1

https://ebpf.foundation/projects/
https://sharkfestus.wireshark.org/sharkfest.11/
https://sharkfestus.wireshark.org/sharkfest.11/
http://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/ch01.html
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/ch01.html
https://www.kernel.org/doc/html/latest/bpf/bpf_licensing.html
https://www.kernel.org/doc/html/latest/bpf/bpf_licensing.html
https://netdevconf.info/0.1/sessions/15.html
https://netdevconf.info/0.1/sessions/15.html
https://lore.kernel.org/netdev/1301838968.2837.200.camel@edumazet-laptop/
https://lore.kernel.org/netdev/1301838968.2837.200.camel@edumazet-laptop/
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/sandboxing.md#The-sandbox-1
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/sandboxing.md#The-sandbox-1
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/sandboxing.md#The-sandbox-1
https://ajxchapman.github.io/linux/2016/08/31/seccomp-and-seccomp-bpf.html
https://ajxchapman.github.io/linux/2016/08/31/seccomp-and-seccomp-bpf.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://elixir.bootlin.com/linux/v3.9/source/net/netfilter/xt_bpf.c
https://elixir.bootlin.com/linux/v3.13/source/net/sched/cls_bpf.c
https://www.kernel.org/doc/html/latest/networking/filter.html
https://www.kernel.org/doc/html/latest/networking/filter.html

[55]

[56]

D. Borkmann, “Re: [PATCH net-next v4 0/9] BPF updates.” Email to David Miller,
Mar. 28, 2014. Available: https://lore.kernel.org/netdev/1396029506-16776- 1-git-
send-email-dborkman@redhat.com/

Wikipedia contributors, “History of eBPF.” Wikipedia, The Free Encyclopedia, May
2024. Available: https://en.wikipedia.org/wiki/EBPF#History

Polynka, “Lua in the kernel?” https://lwn.net/Articles/831083/, 2020.

B. Gregg, “eBPF observability tools are not security tools.” https://brendangregg.c
om/blog/2023-04-28 /ebpf-security-issues.html, 2023.

J. Gregorio, A. Gardel, and B. Alarcos, “Forensic analysis of telegram messenger
for windows phone,” Digital Investigation, vol. 22, pp. 88-106, 2017, doi: https:
//doi.org/10.1016/;.diin.2017.07.004. Available: https://www.sciencedirect.com/
science/article/pii/S1742287617301032

K. Rathi, U. Karabiyik, T. Aderibighe, and H. Chi, “Forensic analysis of en-
crypted instant messaging applications on android,” in 2018 6th international
symposium on digital forensic and security (ISDFS), 2018, pp. 1-6. doi: 10.1109/IS-
DFS.2018.8355344*

A. Afzal, M. Hussain, S. Saleem, M. K. Shahzad, A. T. S. Ho, and K.-H. Jung,
“Encrypted network traffic analysis of secure instant messaging application: A
case study of signal messenger app,” Applied Sciences, vol. 11, no. 17, 2021, doi:
10.3390/app11177789°. Available: https://www.mdpi.com/2076-3417/11/17/7789
K. Gupta, D. Oladimeji, C. Varol, A. Rasheed, and N. Shahshidhar, “A comprehen-
sive survey on artifact recovery from social media platforms: Approaches and future
research directions,” Information, vol. 14, no. 12, 2023, doi: 10.3390/info14120629°.
Available: https://www.mdpi.com/2078-2489/14/12/629

52

https://lore.kernel.org/netdev/1396029506-16776-1-git-send-email-dborkman@redhat.com/
https://lore.kernel.org/netdev/1396029506-16776-1-git-send-email-dborkman@redhat.com/
https://en.wikipedia.org/wiki/EBPF#History
https://lwn.net/Articles/831083/
https://brendangregg.com/blog/2023-04-28/ebpf-security-issues.html
https://brendangregg.com/blog/2023-04-28/ebpf-security-issues.html
https://doi.org/10.1016/j.diin.2017.07.004
https://doi.org/10.1016/j.diin.2017.07.004
https://www.sciencedirect.com/science/article/pii/S1742287617301032
https://www.sciencedirect.com/science/article/pii/S1742287617301032
https://www.mdpi.com/2076-3417/11/17/7789
https://www.mdpi.com/2078-2489/14/12/629

[58]

[59]

[60]

[61]

[63]

[64]

[65]

[66]

[67]

M. N. Yusoff, A. Dehghantanha, and R. Mahmod, “Chapter 5 - network traffic
forensics on firefox mobile OS: Facebook, twitter, and telegram as case studies,”
in Contemporary digital forensic investigations of cloud and mobile applications,
K.-K. R. Choo and A. Dehghantanha, Eds., Syngress, 2017, pp. 63-78. doi:
https://doi.org/10.1016/B978-0-12-805303-4.00005-8. Available: https://www.sc
iencedirect.com/science/article/pii/B9780128053034000058

“Windows 10 Mobile End of Support: FAQ.” Microsoft, 2019. Available: https:
//support.microsoft.com/en-us/windows/windows- 10-mobile-end-of-support-fag-
8c2dd1cf-ab71-00f0-0881-bb83926d05¢5

C. Reilly, “Goodbye, Windows 10 Mobile, tweets Joe Belfiore — cnet.com.” https:
//www.cnet.com/tech/mobile/windows-10-mobile-features-hardware-death-
sentence-microsoft/, 2017.

C. Anglano, M. Canonico, and M. Guazzone, “Forensic analysis of telegram
messenger on android smartphones,” Digital Investigation, vol. 23, pp. 31-49,
2017, doi: https://doi.org/10.1016/j.diin.2017.09.002. Available: https:
//www.sciencedirect.com/science/article /pii/S1742287617301767

kpeyrd, “Arch Linux - signal-desktop 7.8.0-1 (x86_64) — archlinux.org.” https:
//archlinux.org/packages/extra/x86_ 64 /signal-desktop/, 2024.

signal, “Signalapp/Signal-Desktop.” https://github.com/signalapp/Signal-Desktop,
2024.

Signal, “Signal-Android/libsignal-service.” https://github.com/signalapp/Signal-
Android/tree/main/libsignal-service, 2023.

AsamK, “Release v0.13.3 - AsamK/signal-cli.” https://github.com/AsamK/signal-
cli/releases/tag/v0.13.3, 2024.

Herohtar, “URLs for Prioritizing on my firewall.” https://community.signalusers.or
g/t /urls-for-prioritizing-on-my-firewall /38553 /4, 2023.

Signal, “Firewall and Internet settings.” https://support.signal.org/hc/en-us/article
$/360007320291- Firewall-and-Internet-settings.

53

https://doi.org/10.1016/B978-0-12-805303-4.00005-8
https://www.sciencedirect.com/science/article/pii/B9780128053034000058
https://www.sciencedirect.com/science/article/pii/B9780128053034000058
https://support.microsoft.com/en-us/windows/windows-10-mobile-end-of-support-faq-8c2dd1cf-a571-00f0-0881-bb83926d05c5
https://support.microsoft.com/en-us/windows/windows-10-mobile-end-of-support-faq-8c2dd1cf-a571-00f0-0881-bb83926d05c5
https://support.microsoft.com/en-us/windows/windows-10-mobile-end-of-support-faq-8c2dd1cf-a571-00f0-0881-bb83926d05c5
https://www.cnet.com/tech/mobile/windows-10-mobile-features-hardware-death-sentence-microsoft/
https://www.cnet.com/tech/mobile/windows-10-mobile-features-hardware-death-sentence-microsoft/
https://www.cnet.com/tech/mobile/windows-10-mobile-features-hardware-death-sentence-microsoft/
https://doi.org/10.1016/j.diin.2017.09.002
https://www.sciencedirect.com/science/article/pii/S1742287617301767
https://www.sciencedirect.com/science/article/pii/S1742287617301767
https://archlinux.org/packages/extra/x86_64/signal-desktop/
https://archlinux.org/packages/extra/x86_64/signal-desktop/
https://github.com/signalapp/Signal-Desktop
https://github.com/signalapp/Signal-Android/tree/main/libsignal-service
https://github.com/signalapp/Signal-Android/tree/main/libsignal-service
https://github.com/AsamK/signal-cli/releases/tag/v0.13.3
https://github.com/AsamK/signal-cli/releases/tag/v0.13.3
https://community.signalusers.org/t/urls-for-prioritizing-on-my-firewall/38553/4
https://community.signalusers.org/t/urls-for-prioritizing-on-my-firewall/38553/4
https://support.signal.org/hc/en-us/articles/360007320291-Firewall-and-Internet-settings
https://support.signal.org/hc/en-us/articles/360007320291-Firewall-and-Internet-settings

[68] Chromium, “Chromium Docs - docs/linux/zygote.md.” https://chromium.googles
ource.com/chromium/src/+/HEAD/docs/linux/zygote.md.

54

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/zygote.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/zygote.md

	Introduction
	Existing repackaging attacks
	Rise of repackaging attacks on Android
	Recent repacking attacks

	Observability and Security Tools
	Observability tools
	strace
	tcpdump and Wireshark
	eBPF

	Pitfalls of Observability tools

	Previous analyses of Signal and Telegram
	Signal analysis
	BCC tool
	connect
	open
	exec

	Conclusion
	References

