
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Algorithms for dynamic assembly of
nanopore reads

Diploma Thesis

2024
Bc. Jana Černíková

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Algorithms for dynamic assembly of
nanopore reads

Diploma Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Applied Informatics
Supervisor: doc. Mgr. Tomáš Vinař, PhD.

Bratislava, 2024
Bc. Jana Černíková

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Jana Černíková
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Algorithms for dynamic assembly of nanopore reads
Algoritmy pre dynamické zostavovanie nanopórových čítaní

Anotácia: Jednou z výhod nanopórového sekvenovanie je, že sekvenačné čítania sú
produkované postupne počas celého sekvenačného behu a na základe ich
priebežnej analýzy je možné prispôsobiť vlastnosti sekvenačného behu. Cieľom
práce je preskúmať možnosti vytvorenia algoritmov, ktoré by dokázali skladať
a dynamicky upravovať zostavenie sekvencií na základe sekvenačných čítaní
tak, ako pribúdajú v reálnom čase pri nanopórovom sekvenovaní.

Vedúci: doc. Mgr. Tomáš Vinař, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 15.12.2022

Dátum schválenia: 28.04.2023 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Jana Černíková
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Algorithms for dynamic assembly of nanopore reads

Annotation: One of the great advantages of nanopore sequencing is that the sequencing
reads are produced continuously and it is possible to adjust parameters of the
sequencing during the sequencing run. The goal of the thesis is to explore
possibilities of designing algorithms that can perform and dynamically update
partial sequence assembly from the sequencing reads in real time as they are
produced by the nanopore sequencer.

Supervisor: doc. Mgr. Tomáš Vinař, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

doc. RNDr. Tatiana Jajcayová, PhD.

Assigned: 15.12.2022

Approved: 28.04.2023 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

vii

Acknowledgments: I would like to thank my supervisor doc. Mgr. Tomáš Vinař,
PhD. and doc. Mgr. Broňa Brejová, PhD. for their patience, a lot of helpful advice and
guidance. I am also thankful to the people from M-25 lab for their emotional support.

ix

Abstrakt

Jednou z výhod nanopórového sekvenovania je, že sekvenované čítania sú dostupné v
reálnom čase a je možné upravovať parametre sekvenovania počas behu na základe
ich priebežnej analýzy. Preskúmali sme možnosti vytvorenia algoritmov ktoré by
mohli byť použité na dynamické zostavovanie sekvencií zo sekvenovaných čítaní v
reálnom čase a implementovali sme nástroj, ktorý uchováva reprezentatívnu vzorku z
čítaní, dynamicky zostavuje čítania počas sekvenačného behu a zobrazuje výsledky z
dostupných dát používateľovi v reálnom čase.

Kľúčové slová: zostavovanie genómov počas sekvenačného behu, nanopórové
sekvenovanie, monitorovanie sekvenovania

xi

Abstract

One of the advantages of nanopore sequencing is that the sequencing reads can be
accessed as they are produced, and it is possible to adjust the parameters of the
sequencing during the sequencing run. We have explored the possibilities of designing
algorithms that can dynamically perform the sequence assembly from the sequencing
reads in real time as they are produced by the nanopore sequencer and implemented
a pipeline that maintains a representative sample of the data and dynamically
assembles the reads to provide the information to the user in real time.

Keywords: real-time genome assembly, nanopore sequencing run, sequencing run
monitoring

Contents

Introduction 1

1 Assembly of nanopore sequencing reads 3
1.1 Problem definition . 3

1.1.1 Sequencing and Oxford Nanopore Technologies 3
1.1.2 Nanopore sequencing reads . 4
1.1.3 Genome assembly as a problem in bioinformatics 4

1.1.3.1 Shortest common superstring 5
1.1.3.2 Overlap-layout-consensus 6
1.1.3.3 De Bruijn graphs . 7

1.2 Minimap and Miniasm . 8
1.2.1 Before Minimap . 8
1.2.2 Minimap . 10
1.2.3 Minimap2 . 11
1.2.4 Miniasm . 12

1.3 Problem of real-time incremental assembly 15

2 Sampling reads for efficient assembly 17
2.1 Finding sufficient coverage for Miniasm assembly 17
2.2 The representative sample . 18

2.2.1 The goal of the sampling process 18
2.2.2 Contig coverages . 19
2.2.3 Limitations of average coverage metric 20
2.2.4 Sum of mapping lengths vs. read length 21
2.2.5 Repetitive sequences . 22

2.3 Sampling strategies . 23
2.3.1 Incremental sample . 24
2.3.2 Mapping new reads to assembly to detect overhangs 25
2.3.3 Reducing the bias towards the reads from the start of the run . 26
2.3.4 Preferring longer reads . 28

2.4 Summary . 29

xiii

xiv CONTENTS

3 Building a real-time assembly pipeline 31
3.1 Pipeline structure and components . 31

3.1.1 Reads in the pipeline iteration 31
3.1.2 The pipeline components . 32

3.2 Pipeline output for an iteration . 34
3.2.1 Statistics . 34

3.3 Time efficiency . 36
3.4 Technical details of pipeline implementation 37

4 Results 41
4.1 The data and the reference assembly 41
4.2 Assembly evaluation metrics . 42
4.3 Determining sufficient coverage threshold 43
4.4 The quality of the assembly . 45
4.5 Running time . 53
4.6 Batch size . 58

5 Future work 63
5.1 Using the reads selected by Miniasm 63
5.2 The order of the reads . 63
5.3 Speeding up Minimap2 all-vs-all alignment 64
5.4 Different assemblers . 64
5.5 Limitations . 65
5.6 User interface . 65

Conclusion 67

Appendix A 71

List of Figures

1.1 Read length distribution of reads from Saprochaete ingens sequencing
run. 5

1.2 Mapping classification in Miniasm . 14
1.3 Unitigs in a transitively reduced assembly graph 15
1.4 Merged paths of the unitigs in a transitively reduced assembly graph . 15

2.1 N50, number of contigs and reference coverage for assemblies of random
samples of different sizes from the whole dataset 18

2.2 Coverage of mtDNA of Saprochaete ingens yeast reference genome. . . 19
2.3 Coverage of contig4 of Saprochaete ingens yeast reference genome. . . . 20
2.4 Coverage of contig1 of Saprochaete ingens yeast reference genome. . . . 21
2.5 Read lengths at different stages of the run. 26

3.1 An iteration of the real-time pipeline 32
3.2 Assembly contig lengths plot. 35
3.3 Average coverage of the assembly contigs by the reads in the sample. . 35
3.4 Per-base coverage of the assembly contigs by the reads in the sample. . 38
3.5 Assembly to reference alignment dotplot. 39
3.6 Per-base coverage of the reference genome by the reads from the sample. 40

4.1 Maximum corrected N50 score for different coverages (per iteration) . . 44
4.2 Maximum portion of reference genome covered by assembly for different

coverages (per iteration) . 45
4.3 Maximum corrected N50 score achieved for each coverage-strategy

combination. 46
4.4 Maximum percentage of reference covered by assembly achieved for each

coverage-strategy combination. 47
4.5 Corrected N50 score of the assemblies for the runs with 20x coverage

threshold (per iteration). 48
4.6 Corrected N50 score of the assemblies for the runs with 30x coverage

threshold (per iteration). 49

xv

xvi LIST OF FIGURES

4.7 Assemblies for iterations in runs with 30x coverage threshold, corrected
N50 score visualization. 51

4.8 Percentages of reference genome length covered by assembly for 20x
coverage threshold. 52

4.9 Number of contigs per iteration for 30x threshold runs 53
4.10 Running times per iteration for different sampling strategies (coverage

threshold 30x, batch size 10). 54
4.11 Total running times of the pipeline including basecalling. 56
4.12 Cumulative running times of the pipeline for coverage threshold 10000

including basecalling (per iteration). 57
4.13 Cumulative running times of the B-c sampling strategy for different

coverage thresholds including basecalling (per iteration). 57
4.14 Running times per iteration for the different sampling strategies

(coverage threshold 30x, batch size 20). 59
4.15 Corrected N50 score of the assemblies for the runs with 30x coverage

threshold and batch size 20 (per iteration). 60
4.16 Number of contigs per iteration for 30x threshold runs with batch size 20 60
4.17 Assemblies for iterations in runs with 30x coverage threshold, corrected

N50 score visualization for batch size 20. 61
4.18 Percentages of reference genome length covered by assembly for 30x

coverage threshold and batch size 20 (per iteration). 62

Introduction

Nanopore sequencing is a rapidly developing third-generation sequencing technology.
One of the advantages of nanopore sequencing is that the sequencers commonly used for
nanopore sequencing can output the sequenced data in real time as they are produced.
This suggests a possibility of performing genome assembly dynamically from the reads
produced in real-time during the sequencing run.

This thesis aimed to explore such options and design an algorithm that could be
used for the dynamic assembly of nanopore reads. We have designed and implemented
a real-time pipeline that maintains a representative sample from the available data and
assembles the reads, providing the user with real-time results.

The first chapter describes the principles of genome assembly, the Miniasm
assembler and the reasoning behind our approach. In the second chapter, we focus on
the approaches for selecting a representative sample of the reads needed for
the assembly. The third chapter describes the real-time pipeline we have
implemented, and the fourth chapter discusses the results. The last chapter contains
some additional notes about other options and future work.

1

2 Introduction

Chapter 1

Assembly of nanopore sequencing
reads

This chapter describes the methods and principles of genome assembly and introduces
some commonly used algorithms and heuristics for genome assembly from nanopore
data.

1.1 Problem definition

1.1.1 Sequencing and Oxford Nanopore Technologies

Sequencing is the process of determining the order of nucleotides in a DNA (or RNA)
molecule. There are multiple steps between the preparation of the sequencing sample
in the laboratory and the string of bases produced in the computer.

Sequencing technologies development over time is commonly divided into three
generations. The development started with the oldest approaches requiring a lot of
laboratory work, such as Sanger sequencing in the first generation; in the second
generation, the sequencers producing short reads with high quality came (from which
the Illumina sequencers are probably the most known). The third generation is
the generation of nanopore technologies, mostly represented by the Oxford Nanopore
technologies and Pacific Biosciences sequencing devices. [6]

One of the sequencing devices provided by Oxford Nanopore Technologies (ONT)
[18] is MinION. Its main advantage is that it can produce sequenced reads in real-time
during the sequencing run, which allows us to analyse the data as the run progresses.
Such analysis can be helpful for deciding when to terminate the sequencing run.

As a final result of the nanopore sequencing process, short sequences of bases A, C,
G or T are produced from the molecules traversing the nanopores. The short sequences
are called reads.

3

4 CHAPTER 1. ASSEMBLY OF NANOPORE SEQUENCING READS

The raw results of the nanopore sequencing process are the values of electric
current measured when a molecule traverses the nanopore. A set of reads along with
some additional information is produced from the raw data in the basecalling process.
The additional information includes the quality of the bases, a name (ID) for each
read, and the time when it was produced by the sequencer. Such set of reads is then
processed bioinformatically to get the desired results.

One of the typical applications of sequencing is the use of the technology to
determine the genome sequence of an organism. The bioinformatics term for
determining the genome sequence from the reads is genome assembly. If the complete
genome sequence is unknown and we have no other supporting information except
the reads, we call it de novo genome assembly.

In our work, we want to analyse and assemble the data from the sequencing run in
real time to determine when there is enough data for de novo genome assembly.

1.1.2 Nanopore sequencing reads

Even though the development of sequencing technologies (especially nanopore) has been
progressing quickly in recent years, the maximal length of a read is limited. The exact
length of the reads and frequency of sequencing errors depends on the sequencing
technology. The third-generation sequencing technologies can produce reads of length
up to 4 Mbp (the longest read reported by a MinION user to date). [18] However,
the length of reads varies during the sequencing run, and the reads usually do not
span the entire genome regions (i.e., we do not have a single read covering the whole
chromosome of a yeast). The read lengths depend on multiple factors that may be hard
to predict. For example, the distribution of read lengths of the reads from one nanopore
sequencing run of Saprochaete ingens yeast (which we will use for testing later) is shown
in Figure 1.1. As we can see, most of the reads have lengths less than 0.075 Mbp (75000
base pairs), which is far from the theoretical maximum. The reference genome of this
yeast is 21.2 Mbp long. [7]

The length of the reads compared to the length of the genome is an important
factor when considering the genome assembly problem. The assembly result also highly
depends on the coverage of the genome by the sequencing reads, which we will discuss
later.

1.1.3 Genome assembly as a problem in bioinformatics

Various definitions of genome assembly can be found in bioinformatics research
papers. From the biological perspective, the goal is to determine the whole sequence
of the genome of the sequenced organism.

1.1. PROBLEM DEFINITION 5

Figure 1.1: Read length distribution of reads from Saprochaete ingens sequencing run.

Because of the specific biological aspects that have to be considered, there is no
straightforward way to define the problem of genome assembly as a problem in
bioinformatics considering all the specifics of the task. Therefore, some extrapolation
is necessary to define genome assembly as a theoretical problem.
The basic definitions we will need are the representation of nucleotides and reads:
Let Σ = {A,C,G, T} be the alphabet of nucleotides. A DNA sequence or read is a
string s = a1a2...an over alphabet Σ. The length of the sequence or length of the read
is the length of the string s.

1.1.3.1 Shortest common superstring

The first and probably the most straightforward way to define the genome assembly
problem is the problem of the shortest common superstring.

Definition:(shortest common superstring) Given a set of reads S, find
the shortest possible string g which contains all the reads from S as contiguous
substrings.

Note that the minimality of the superstring is required. Otherwise a simple solution
for any S would be a concatenation of all the reads from S one after the other, which
is usually not the result the biologist is looking for.

However, this definition does not fully consider the biological aspects of
the problem. For example, it is quite common that there are regions of the genome
that consist of repetitive sequences (repeats). If there is no read spanning the whole
repeat sequence, this definition will give us assembly without that part of
the genome. Also, the definition does not consider sequencing errors, which are
always present in the reads. They cause that the assembly defined this way can not

6 CHAPTER 1. ASSEMBLY OF NANOPORE SEQUENCING READS

be created correctly (without very precise error correction). Another problem is that
the genomes are typically organized into chromosomes, so the result should not be a
single sequence but a set of sequences for chromosomes.

Also, the problem of the shortest common superstring, formulated this way, is
NP-hard. Some approximation algorithms exist for this task, but the properties that
can be guaranteed by them are not sufficient for biological applications (we may, for
example, find a string that is two times longer than the genome, and such
information is not useful for the biologist). [5]

Since the straightforward formulation of the problem is NP-hard and the task of
defining the problem is complex, multiple heuristic approaches were developed.

1.1.3.2 Overlap-layout-consensus

The most common and widely used approach to genome assembly is the overlap-layout-
consensus (OLC) heuristic. As the name of this procedure suggests, it comprises three
steps: overlap, layout, and consensus.

Overlap The aim of the overlap phase is to find overlaps between the given reads
and form longer sequences (contigs) from them.[5] The overlaps can be found by
aligning the set of reads onto themselves using a similarity search (alignment) tool
such as Minimap (or Minimap2). The contig-building strategies differ in various
implementations. Some of them will be discussed in more detail in the next sections
of this chapter.

Layout In the layout phase, we are trying to determine the relative orientation of and
position (distances) between the contigs. In this phase, we should address problems
such as sequencing gaps or repetitive sequences, which were not resolved in the overlap
phase. Sequencing gaps are the result of the sequencing process in which we commonly
have no guarantee that the reads we get cover the whole genome – there may be some
parts of the genome that are not covered by the reads we have. These are then replaced
by the sequences of N s, meaning that the nucleotide at the position is unknown to us,
although we know there should be one.

Other issues can be caused by repetitions or ambiguous information from the overlap
phase. Pair-end reads may be helpful in the process of resolving these issues – they
are useful for connecting the contigs or determining the length of repetitions. Also,
they are a lead for determining the relative orientation of the contigs. The result of
the layout phase is a set of supercontigs. [5]

1.1. PROBLEM DEFINITION 7

Consensus The last step of the genome assembly process is consensus. In
the previous steps, we have built the supercontigs, which give us the information how
all the reads can be assembled – but we focus on them mostly as some parts that
have to be put together, not on a single-base level. In the consensus step, we want to
polish the result, taking into account that we have more reads covering one position,
and we can use this information. The mapped reads for a position may differ in a
particular base, which may be caused either by a sequencing error or a
polymorphism. However, knowing the possibilities for a particular base, we can
choose one that is the most probable by some kind of consensus rule. [5]

1.1.3.3 De Bruijn graphs

Another commonly used approach to genome assembly are de Bruijn graphs. A de
Bruin graph consists of vertices representing k-mers (short parts of the sequences of
length k) and oriented edges representing the overlaps between the k-mers in
the vertices. The k-mers are constructed from the reads by taking substrings of
length k for each read of length n, starting at positions 1, 2, ..., n− k in the read.

In a simplified scenario, considering a graph for a single contig (that has only
one component and meets the conditions for the existence of the Eulerian trail in
a directed graph), the Eulerian trail in the de Bruin graph represents the genome
assembly. According to known theoretical results, the problem of finding the Eulerian
trail in a directed graph (if the trail exists) is solvable in O(n + m) time, where n is
the number of vertices and m is the number of edges.

With this approach, some information from the data is discarded, as we are splitting
the sequence into fixed-length k-mers. However, it is a properly defined informatics
problem that is also easily solvable.

The problem with this approach is that the de Bruijn graph constructed from
the reads may not meet the properties for the existence of the Eulerian trail in a
directed graph (or its component). Also, the results may contradict the read sequences
we have, since we are discarding some information in the graph construction process.
Furthermore, there is typically a number of contigs, and depending on the size of the
k-mers (and multiple other factors), the components of the graph may not correspond
to the contigs in the genome. Instead, we can have more components for a single contig,
or a component that connects two contigs together (which can be hard to resolve).

The existence of the trail depends on the start and end vertex we are considering
(unless there is an Eulerian cycle). The Eulerian trail from vertex u to v exists iff
after we add the edge from v to u to the graph, then the graph is strongly connected
(every vertex of the graph is reachable 1 from any other vertex), and the indegrees and

1Vertex v is reachable from w, iff a directed path from w to v exists

8 CHAPTER 1. ASSEMBLY OF NANOPORE SEQUENCING READS

the outdegrees are equal for each vertex. [5]
If there is exactly one pair of start and end vertices for which the trail exits, we

have some solution. However, there can be multiple such pairs, which means there are
multiple Eulerian trails in the graph, and we do not know which one to choose. It
can also happen that there is no such pair of vertices for which the trail exists. Those
issues can be, in some cases, resolved by heuristic approaches that preprocess the graph
in some way after it is created from the reads, or they can be addressed directly in
the algorithm that looks for the trail.

1.2 Minimap and Miniasm

Miniasm is one of the most used tools for genome assembly in the bioinformatics field.
It is indeed directly linked with Minimap2, which is used for computing the read
mappings (alignments) that are the input for Miniasm.

In the overlap-layout-consensus assembly approach, which is also the case of
the combination of Minimap and Miniasm, finding read mappings or overlaps is
typically the first and crucial step of the process. It is also the most time-consuming
step in assemblers implementing the OLC approach.

Most of the practically used algorithms for read mapping are heuristics because
the non-heuristic approaches are too slow and space-inefficient for common
applications. One example of such algorithm is the Smith-Waterman dynamic
programming algorithm, which performs local sequence alignment and has quadratic
time and space complexity. This makes it, without applying additional heuristics,
unusable for large-scale problems like genome assembly.

In the next section, we will briefly introduce the evolution of alignment heuristics
up to the time when Minimap2 was created. Then, we will discuss the algorithms of
Minimap2 and Miniasm and how they utilize the ideas from the described similarity
search tools.

1.2.1 Before Minimap

Before 2015, when Minimap was released, multiple similarity search tools were
developed. We will briefly introduce some of them: BLAST, BLAT, DALIGNer, and
MHAP.

BLAST BLAST and BLAT are some of the most popular sequence similarity search
tools even these days. The core idea of the tools is that several high-scoring segments
are found, and then a dynamic programming approach similar to the Smith-Waterman
algorithm is performed on them to obtain an optimal alignment. [1] Basically, they

1.2. MINIMAP AND MINIASM 9

hash k-mers at positions 1, w + 1, 2w + 1, .. of the target sequence using a k-mer hash
function h : Σk → Z and store them into a hash table. Then, they use the same hash
function on every k-mer in the query sequence and look for potential matches. [2] [15]

There are several types of BLAST (Basic Local Alignment Search Tool). It can
compare all combinations of nucleotide or protein queries with nucleotide or protein
databases. BLAT (BLAST-Like Alignment Tool) and BLAST are similar. The main
difference is that while BLAST builds an index of the query sequence and then scans
linearly through the database, BLAT builds an index of the database first and then
scans linearly through the query. There is also a difference in how they can handle
the hits that are close to each other (BLAT can handle more at once) and how they
handle the intron sequences (there is a special code for introns in BLAT). Another
difference is that BLAT needs an exact (or nearly exact) match to find a hit, while
BLAST can also find more distant matches. In terms of speed, BLAT is faster. [9]

DALIGNer DALIGNer [17] builds lists of k-mers and uses a highly cache-efficient
sorting and merging algorithm instead of a hash table.

It is designed with respect to the high error rates in the long reads. The DALIGNer
algorithm uses highly optimized threaded radix sorts in order to obtain high speed as
opposed to other commonly used structures such as the BWT index, which is has
various applications in bioinformatics. The main drawback of the BWT index (or
Suffix Arrays) highlighted by the authors is the cache incoherence of the structures.
Therefore, they decided to replace it with their own sorting approach.

The authors of the algorithm also analyse the possibilities of de novo
reconstruction of a genome and its accuracy based on the technology used.
They state that using the PacBio RS II sequencer, even though the error rate is
relatively high (ϵ = 12− 15% error), if
(a) the reads are long enough
(b) without repetitive genome elements confounding assembling the reads
(c) given enough coverage
(d) the set of reads produced by the sequencer is a nearly Poisson sampling of
the underlying genome
(e) errors are distributed randomly within the reads
then it is, in principle, possible to reconstruct the genome de novo at any level of
accuracy.

The authors highlight the importance of looking for all the local alignments and not
for overlaps only (alignments for which the suffix of one read is mapped to the prefix
of the other) since this gives us more information we may be interested in to achieve
better assemblies, especially for solving repeats or handling chimeric reads.

10 CHAPTER 1. ASSEMBLY OF NANOPORE SEQUENCING READS

MHAP MHAP (MinHash Alignment Process) [3] is an algorithm for overlapping
noisy long reads. It uses probabilistic locality-sensitive hashing.

The MHAP algorithm was used as a part of Celera Assembler, designed for
high-noise single-molecule sequencing (PacBio RSII, Oxford Nanopore MinION). It
enabled the researchers to assemble genomes of organisms such as Saccharomyces
cerevisiae, Arabidopsis thaliana, and Drosophila melanogaster de novo, resulting in
highly accurate and contiguous assemblies.

MHAP uses MinHash, a dimensionality reduction technique that was originally
developed for determining the similarity of web pages. It allows a more compact
representation of the sequencing reads. The principle of the MinHash technique is that
it reduces a string into a small set of fingerprints called sketches. This approach was
successfully applied in multiple fields – it can be used to determine the similarity of
documents, images and sequences, or it can be used even for metagenomic clustering.

A sketch of a DNA sequence can be created from the k-mers in the sequence using
a set of randomized hash functions. The functions are used to convert each of
the k-mers into integer fingerprints. From those fingerprints, only the minimal one,
called min-mer, is taken for each hash function. The set of these min-mers is
the sketch of the sequence. Then, the Jaccard similarity of two sets of k-mers is
estimated by computing the Hamming distance 2 of their sketches. The authors claim
that the resulting estimate of Jaccard similarity is strongly correlated to the fraction
of shared k-mers. Hence, the technique can be used for sequence similarity
estimation. Moreover, as the sketches are small compared to the sequences,
the technique is also computationally efficient.

1.2.2 Minimap

The author of Minimap [15], Heng Li, used the methods and principles he found
advantageous in all the algorithms mentioned in the previous Section and developed
his own algorithm for sequence similarity search – Minimap. For the genome
assembly, the overlaps are the most important, but Minimap is designed not only as a
read overlapper but also as a read-to-genome and genome-to-genome mapper, which
extends its applications.

Minimap stores the k -mers in a hash table in an analogous way to BLAST or
BLAT and MHAP. It also uses a sorting algorithm similar to the one in DALIGNer.
The author adopted the idea of sketch from MHAP, but instead of using all the k-mers,
he uses only minimizers, yielding to even more reduced representation. Minimizers
are specially selected k-mers that satisfy a property that for two strings that have a
significant exact match, at least one of the k-mers chosen from one will also be chosen

2number of elements at which they are different

1.2. MINIMAP AND MINIASM 11

from the other. [19] Minimizers can be generated by applying a special hash function
to the k-mers and selecting the ones that have the minimal hashing value.

Minimap first computes the sets of minimizers. This set forms a sketch of the read.
A set of minimizers for a string s is computed in close to O(|s|) time in the average
case. The next step is indexing. The minimizers of all target sequences are kept in
a structure that serves as a hash table, with minimizers serving as keys. The values
in the hash table are 64-bit integers; the sequence index, position of the minimizer
and the strand are packed into the integer value. In fact, the 64-bit integers are not
directly put in a hash table – instead, they are stored in an array. The array is sorted
after the collection of all the minimizers and the hash table keeps only the intervals
on the sorted array. This approach is more cache efficient and, therefore, faster than
inserting the values directly into a hash table.

The hash table is then used in the mapping process. Given the hash table and
the query sequence, the algorithm first collects the minimizer hits (minimizers for
which there exists a matching hash value in the target sequence) and then clusters
the hits that are collinear (mapped without gaps or mismatches) within a band of
a given width. Such clustering is then used for identifying long collinear matches.
The clustering procedure is inspired by Hough Transformation, a method commonly
used in image processing for the detection of shapes such as lines, circles and ellipses.[20]

Minimap in its original version [13], with the latest release in 2015, was marked by
its author as deprecated in December 2017 and was completely replaced by Minimap2
in all its applications.

1.2.3 Minimap2

Minimap2 [16] is a versatile alignment program for nucleotide sequences. It can be
used as a read mapper, long-read overlapper or a full-genome aligner. The capabilities
were extended and speed and memory usage were improved compared to Minimap.

Minimap2 uses a similar seed-chain-align procedure as Minimap. It collects
minimizers of the reference sequences and stores them into a hash table where
the hashes of the minimizers serve as keys and locations of minimizer copies are
stored as values. Then, for each query sequence, Minimap takes minimizers of
the query as seeds and finds sets of anchors (exact matches) that form the chains.

One of the key improvements made in Minimap2 compared to Minimap is
the better accuracy of the chaining algorithm – the chaining score is calculated using
dynamic programming and also a new heuristic was introduced to accelerate
the chaining process. In the chaining process, Minimap2 introduces a new heuristic
for finding optimal chaining scores and uses backtracking to avoid reusing anchors in
multiple chains. Furthermore, the chains are split into two categories – primary and

12 CHAPTER 1. ASSEMBLY OF NANOPORE SEQUENCING READS

secondary, from which the former is important and considered in the next steps.
The aim is to avoid significant overlaps caused by the repeats in the reference –
ideally, each query segment should be mapped to only one place in the reference.
However, the chains may have significant or complete overlaps due to the repetitions.
The heuristic for the primary chain identification tries to find the primary chains that
do not greatly overlap on the query, which reduces the number of sequences being
mapped to multiple positions.

Another improvement is that number of minimizers is reduced using an approach
that compresses homopolymers within sequences – the idea of homopolymer
compression (HPC) is that the homopolymers in the sequences are contracted into a
single base. For example, a string s = GAATTTCCA will be contracted to
HPC(s) = GATCA and GAT will be the first 3-mer for HPC(s), instead of GAA for
s. With this approach, they achieved higher sensitivity, using a smaller number of
k-mers, which is a remarkable result.

Minimap2 can also produce base-level alignment and is able to align spliced
sequences. For the base-level alignment, Minimap2 applies dynamic programming
with two-piece affine gap scoring cost to extend from the ends of chains and to close
regions between adjacent colinear matches (anchors) in the chains. Some additional
heuristics were used for improvements in speed and accuracy. In the spliced
alignment mode, Minimap2 distinguishes chaining gap cost for insertions to
the reference and deletions from the reference.

Based on whether per-base alignment is requested or not, Minimap2 provides two
different file formats of the alignments. The SAM format (or BAM, which is a binary
variation of SAM) contains per-base alignment information. The PAF format is simpler
and faster to compute – it contains only the basic information about the alignments:
positions where the alignment starts and ends in each of the sequences, the length of
the sequences, relative strand (orientation) of the sequences, number of matches and
the length of the alignment block.

Both Minimap and Minimap2 are available as command-line tools. For the purpose
of the genome assembly process, Minimap2 can be used for mapping a set reads of reads
onto themselves. Such mapping is then used as the input for Miniasm which performs
the assembly.

1.2.4 Miniasm

Miniasm [15] [12] is a de novo assembler built on the overlap-layout-consensus principle.
However, it does not have the typical overlap-layout-consensus structure as described
in Section 1.1.3.2, since it does not implement the consensus step. Miniasm takes read
mappings produced by Minimap2 as an input and outputs the assembly graph in GFA

1.2. MINIMAP AND MINIASM 13

format. Instead of the consensus step, Miniasm simply takes and concatenates pieces
of reads into the final sequences called unitigs. Miniasm uses Minimap2’s result from
mapping a set of reads onto themselves as an input.

To understand the Miniasm assembly process further, we have to define
the assembly graph. For the assembly graph definition, we also have to define
the sequence overlap and assembly graph properties. The definitions are based on
the work of Heng Li, the author of Minimap, Minimap2 and Miniasm. [15]
Definition (Sequence overlap): Let v, w be two DNA sequences. We say that v

overlaps w if the suffix of v can be mapped to the prefix of w. We denote the overlap
as v → w or (v, w).
Definition (Watson-Crick complete graph): Let V be a set of DNA sequences, let E
be a set of overlaps between the sequences from V. Let l : E → R+ be the edge length
function. Then graph G = (V,E, l) without multi-edges is said to be Watson-Crick
complete iff (i) ∀v ∈ V : v ∈ V and (ii)∀(v, w) ∈ E : (w, v) ∈ V

Definition (containment-free graph): Let V be a set of DNA sequences, let E be a set
of overlaps between the sequences from V. Let l : E → R+ be the edge length function.
Then graph G = (V,E, l) without multi-edges is said to be containment-free iff for any
v, w ∈ V , the sequence v can not be mapped to a substring of w.
Definition (Assembly graph): Let V be a set of DNA sequences, let E be a set of
overlaps between the sequences from V. Let l : E → R+ be the edge length function.
Then graph G = (V,E, l) is an assembly graph iff it is Watson-Crick complete and
containment-free.

Miniasm algorithm operates in four steps: read filtering and trimming of the reads,
assembly graph generation, graph cleaning, and unitig sequences generation.

The first filter is applied when reading the PAF file – only some of the mappings are
stored. The mappings for which the whole sequence aligns to another with no overlap
are marked as contained (see Figure 1.2) and they are discarded.

Next, the PAF mappings are filtered in two phases that mainly differ only in the way
how strong the filter is (the first one is firm; in the second one, most of the reads
are discarded). The filtering is guided by the read trimming process. The goal of
the trimming is to remove artefacts such as untrimmed adapters or chimera that may
be present in raw sequencing reads. The read-to-read mappings are examined and based
on good mappings against other reads, per-base coverage is computed for each read
using dynamic programming. [12] Then, bases outside the longest region of the read
having coverage of three or more are trimmed. The trimmed mappings are then used
in the next steps. If the trimmed region is too short, the mapping is discarded.

After the trimming step is done, each trimmed mapping is classified into one of
the five groups: internal match, first read contained, second read contained, first to

14 CHAPTER 1. ASSEMBLY OF NANOPORE SEQUENCING READS

second read overlap or second to first read overlap (see Figure 1.2). Only the mappings
from the overlap groups are added to the assembly graph. Also, for each pair of reads,
only the longest overlap is taken, which ensures that no multi-edges will be created in
the graph.

Figure 1.2: Mapping classification in Miniasm. (a) first contained (b) second contained
(c) internal match (d) first to second read overlap (e) second to first read overlap. Only
the overlaps ((d) and (e)) are considered when building the assembly graph.

In the graph cleaning phase, Miniasm removes the transitive edges in the graph,
trims tipping unitigs composed of few reads and pops small bubbles in the graph.
The bubble detection is based on Khan’s topological sorting algorithm [8]. Multiple
research groups have independently developed algorithms for the detection and removal
of bubbles similar to the one used in Miniasm. [15]

Next, the unitig sequences are generated from the assembly graph. As the graph
does not contain multi-edges, for a particular path, the sequence we are looking for
is the concatenation of substrings in the vertices forming the path, taken in the order
defined by the path. The paths Miniasm is looking for, called unitigs, are defined as
follows:

Definition (unitig): Let G = (V,E, l) be a transitively reduced assembly graph.
Then unitig is a path v1 → v2 → ... → vk such that deg+(vi) = deg−vi+1 and at
least one of the following conditions is satisfied: (i) v1 = vk or (ii) deg−(v1) ̸= 1 and
deg+(vk) ̸= 1.

Simply said, the unitigs are the paths that can be unambiguously merged into one
vertex without affecting the connectivity of the original graph – so there are no
ambiguous paths to other vertices that would prevent generating a sequence. A
simplified example of a transitively reduced assembly graph is in Figure 1.3.
The graph with resulting merged vertices for the unitigs is in Figure 1.4.

The unitig sequences are returned to the user in GFA format. The format includes
the information about the resulting sequences, but it also contains some additional
information about the selected segments of the reads, their overlaps and paths in

1.3. PROBLEM OF REAL-TIME INCREMENTAL ASSEMBLY 15

the graph. The GFA output from Miniasm can be directly converted to FASTA format,
which contains only the resulting sequences (contigs).

v1 v2
7

v4

2

v3
5

v5
11 v6

4 v7
5 v8

9 v9
6 v10

2 v11

v12

4

6

v13
4

v14
5

4

Figure 1.3: A simplified example of a transitively reduced assembly graph. The paths
v1 → v2 =: utg1, v4 → v5 → v6 → v7 → v8 → v9 =: utg2, v10 → v11 =: utg3,
v12 → v13 =: utg4 and also the vertices v3 =: utg5 and v14 =: utg6 by itself are unitigs.
Those are the maximal paths that can be unambiguously merged without affecting
the connectivity of the graph. For example the path utg3 can not be extended to
v9 → v10 → v11 → v14. We can not include the vertex v9 into the path, because
deg+(v9) = 2 and deg−(v10) = 1, which does not satisfy the condition deg+(vi) =

deg−(vi+1). Also, we can not prolong the path by adding the vertex v14, because
deg−(v14) = 2 ̸= deg+(v11) = 1.

utg1

utg2

utg5

2

5

utg3

2

utg4

6
utg6

5

4

Figure 1.4: Merged paths of unitigs in a transitively reduced assembly graph
corresponding to Figure 1.3

The consensus step is not implemented in Miniasm. Therefore, Miniasm does not
correct sequencing errors and the error rate of the unitigs is the same as the error rate
of the input reads.

1.3 Problem of real-time incremental assembly

Minimap2 and Miniasm expect the whole input to be given at once, after
the sequencing is completed. In our work, we were looking for a way how to
efficiently perform the genome assembly dynamically. After investigation of

16 CHAPTER 1. ASSEMBLY OF NANOPORE SEQUENCING READS

the algorithms of Minimap2 and Miniasm, we have concluded that modifying those
algorithms to update the structures inside Minimap2 and Miniasm dynamically may
not be a feasible approach.

For Minimap2, it might be possible to store the minimizers for the reads that were
produced up to the given point of the sequencing run and compute only the minimizers
for the new, unseen reads. Whether it is possible to extend the rest of the algorithm
for dynamic assembly is unclear. The underlying data structures were not designed in
a way that they could be extended dynamically. Therefore, we have decided not to
investigate this option further.

For Miniasm, adding mappings to the assembly graph dynamically would be
complicated, because in the early steps of the algorithm, Miniasm performs
coverage-based filtering and trimming of the reads based on the coverage. Therefore,
a dynamic extension of Miniasm would either require a potentially large amount of
additional memory to store the additional information, or we would not get
significant speed improvements with such extension. Also, Miniasm is highly
optimized and fast enough for real-time assembly, and it is not the bottleneck of the
data processing needed for the genome assembly. The time bottleneck of the
Minimap2 and Miniasm assembly is the Minimap2 read alignment.

With the above in mind, we have decided to utilize Minimap2 and Miniasm in a
pipeline which runs them as they are. However, running the analysis on the whole
dataset would be too time-consuming if we would do that regularly – instead, we
want to maintain a minimal representative sample of all the already seen reads from
the sequencing run and use the sample for the assemblies along with new reads produced
in the run.

Chapter 2

Sampling reads for efficient assembly

This chapter focuses on the approaches for selecting a representative sample of
the reads needed for the assembly. First, we discuss the reasoning behind this
approach and the biological and sequencing-specific aspects that we have to consider.
Then we describe the sampling strategies we decided to implement in our pipeline.

2.1 Finding sufficient coverage for Miniasm assembly

When building an assembly, we do not need all of the data from the sequencing run.
After achieving some coverage threshold for each contig, we can assemble most of
the contigs from the data.

To determine the sufficient coverage for Miniasm with its default parameters for
Oxford Nanopore reads, we have created the Miniasm assembly with multiple different
fractions of data from the Saprochaete ingens yeast sequencing run. First, we have
selected a random sample of 90% of the reads from the run (9/10 for the whole dataset),
then 8/9 from the 90% random selection to form the 80% of all data in the dataset,
and down to 10% in a similar way.

For each of these samples, we have assembled the reads using Minimap2 and
Miniasm, calculated the N50 score 1 of the assembly compared to the reference
genome, and average coverage of the reference genome. The resulting N50 scores,
corresponding coverages and numbers of contigs are shown in Figure 2.1. Based on
the N50 score and number of contigs, it seems that we can build most of the assembly
from 40% of data, corresponding to approximately 30x coverage of the reference
genome.

Even though this is only a rough estimate, it suggests that keeping a representative
sample of reads for each contig of size smaller than the whole dataset may be sufficient

1the sequence length of the shortest contig we need for 50% of the reference length, if we sort
the contig lengths in the assembly from longest to shortest and take the longest contigs

17

18 CHAPTER 2. SAMPLING READS FOR EFFICIENT ASSEMBLY

Figure 2.1: N50, number of contigs and reference coverage for assemblies of random
samples of different sizes from the whole dataset

for preserving the most of the information for the assembly, since we can build most of
the assembly using only a fraction of the data. Also, using a sample that is not chosen
in a completely random way can help us to improve this result further.

2.2 The representative sample

2.2.1 The goal of the sampling process

Keeping a smaller sample of the data defined by some coverage threshold might be a
plausible approach to minimize the amount of data that have to be processed multiple
times in dynamic assembly process. The results from pre previous Section show that
if we keep only a part of the reads, we can preserve most of the information for the
assembly. However, taking a completely random sample from the data would cause
that we will preserve the differences in coverage within the parts of the genome, and
consequently leave out the data from the parts of the genome for which the coverage
is low.

We want the sample to be representative in sense that we should keep the data
that give us the most information. To do this, we should take into account the fact
that the coverage may differ for different contigs in the reference genome. We may also
want to prefer longer reads over the short ones, as they can be more informative for
the assembly.

Since we are designing the pipeline for de novo assembly, we can not determine
the coverage using a reference genome. Instead, we can only rely on the partial assembly
we have up to the given point in the time of the sequencing run. The ultimate goal
is to preserve the assembly we have with a smaller amount of data (sample) and to
improve it further with the new data that will come later in the next iterations. This
can be achieved by sampling the reads we already have for each contig in the assembly
up to the given coverage threshold so that the coverage for each contig is sufficient.

2.2. THE REPRESENTATIVE SAMPLE 19

Figure 2.2: Coverage of mtDNA of Saprochaete ingens yeast reference genome. First
3500, 65000, 95000 and all of the reads from the sequencing run were aligned to
the contig and per-base coverage values were calculated. The coverage is significantly
higher than for the chromosomal contigs.

2.2.2 Contig coverages

It is essential to create a separate sample for each contig, not for the whole assembly,
since the coverages between the contigs differ. The most significant difference can
be seen when comparing chromosomal contigs and mitochondrial DNA, but it also
varies between the chromosomal contigs. For example, in the data we have used for
testing, the chromosomal contigs have around 60x coverage, and the mitochondrial
contig has around 7000x. The coverages for different amounts of data during the run
for the mitochondrial contig of Saprochaete ingens yeast are shown in Figure 2.2.

Since the mitochondrial contigs are usually significantly shorter (for the Saprochaete
ingens yeast, the mtDNA contig has less than 0.2% of the genome length) compared
to the chromosomal contigs, the impact of the reads from the mitochondrial contigs
on the average coverage when it is calculated as a sum of alignment lengths divided
by the assembly length for the whole assembly is not too high. However, in the early
stages of the run, the difference between the number of reads for chromosomal contigs
and for the mitochondrial contigs would cause issues if we did not separate them.

Also, at the start of the run, there are lot of reads that do not align to any assembled
contig from the data up to that point, so we have to separate the unaligned reads from
the reads that align to the already assembled contigs. We want to keep all the unaligned

20 CHAPTER 2. SAMPLING READS FOR EFFICIENT ASSEMBLY

Figure 2.3: Coverage of contig4 of Saprochaete ingens yeast reference genome. First
3500, 65000, 95000 and all of the reads from the run were aligned to the contig, and
double moving average of the coverage values was calculated with window size 50000.
We can see the uneven coverage in this plot. The region around the 2.1-millionth
position is an rDNA repeat.

reads, since the fact that they are unaligned means that we do not have enough data to
build a contig from them. However, they have to belong somewhere. From the aligned
reads, we may have more than necessary amount of data for the contigs, so we can
sample the reads for each contig to a given coverage threshold.

2.2.3 Limitations of average coverage metric

The commonly used metric for evaluating the amount of data from the sequencing
run is the average coverage. We are using the average coverage as a guiding metric
when considering the amount of data we have for each assembled contig. However,
the average does not incorporate all information that could be useful for efficient
sampling, because the number of reads mapped to a position can vary even within a
single contig.

An example of this is contig4 [7] of the Saprochaete ingens yeast, which we will later
use for testing. We have computed the coverage using Minimap2 per-base alignment of
all the reads in different stages of the run and plotted the moving average of the coverage
values. The resulting plot is shown in Figure 2.3. We can observe that in the region
around 2.1-millionth position, the coverage is significantly higher (500 at the end of
run) than in the rest of the contig (less than 100). It is caused by the fact that there
is a long rDNA repeat in this region.[7] For the other contigs, the variance in coverage
is lower. The coverage plot for contig1 (Figure 2.4) is provided as an example.

2.2. THE REPRESENTATIVE SAMPLE 21

Figure 2.4: Coverage of contig1 of Saprochaete ingens yeast reference genome. First
3500, 65000, 95000 and all of the reads from the run were aligned to the contig, and
double moving average of the coverage values was calculated with window size 50000.
We can see that the coverage variance for this contig is lower than for contig4.

The use of the average coverage metric is a limitation of our approach. For
the strategies to work reliably using the average coverage metric, we would need an
assumption that for each contig, the coverage is evenly distributed across the contig.
In some cases, this assumption is not met, and therefore, we can have lower than
desired coverage in some regions of the contigs in which the reads are not distributed
evenly. If the coverage threshold is high enough, or the regions with high coverage are
short compared to the contig length, it may not be a big issue. If the threshold is low,
it can cause that the contigs that have uneven coverage will not be fully assembled
from our sample.

It is genome-specific how much the coverage varies and whether it is significant,
but regions with different (too low or too high) coverages by the reads do cause issues
when assembling genomes in general. To address this issue, we would have to consider
the coverage in a per-base or at least per-region manner. It could be possible to identify
the high-coverage regions in a more complex way, but since it would likely be too slow
for real-time sampling, we did not implement such approach.

2.2.4 Sum of mapping lengths vs. read length

When calculating the coverage of a sequence by a given set of reads, a common and
fast approach is to simply divide the sum of the lengths of all reads by the length
of the given sequence. However, such approximation may be too far from reality for
smaller assembled sequences. At the start of the run, when we do not have much data,

22 CHAPTER 2. SAMPLING READS FOR EFFICIENT ASSEMBLY

this approach may overestimate the average coverage value and cause us to downsample
some of the data we need.

There can also be a problem with per-contig coverage estimation caused by
the chimeric reads. Some sequences may join and be sequenced as a single read. They
often cause issues with assembly, since they can create unwanted bubbles and
ambiguous paths in the assembly graph. These problems are resolved to some extent
by Miniasm in its filtering and graph cleaning phase. However, in the sampling
process, the chimeric reads in the correctly assembled contigs can cause issues when
computing per-contig coverage considering read lengths only, because there may be
chimeric reads that join the molecules from two different contigs. Such reads can be
significantly longer than their alignments to different contigs. This issue is not that
significant when considering coverage for the whole assembly – in that case, a read
spanning multiple contigs is not a problem. However, it matters if we count
the coverage for the contigs separately because, in this case, it can lead to
overestimation of the coverage and downsampling of too many reads.

We want to avoid overestimation of the average coverage, which may lead to a
sample with a smaller actual average coverage than we want. Too small coverage may
cause that we will not be able to rebuild the assembly from the sample. Because
of this, we are considering the sum of alignment lengths from Minimap2 for each
read and contig combination instead of simply taking the read length. This reduces
the overestimation of coverage and gives us a better estimate of the actual coverage.

Aligning the reads to the new assembly in each iteration is necessary because we
have to identify the sets of reads for each contig. Therefore, we need the Minimap2
alignments of the reads to the assembly. We can use the same alignment to separate
the reads to sets for contigs and to count alignment lengths, so considering
the alignment lengths does not require an additional time compared to considering
read lengths only.

2.2.5 Repetitive sequences

Repetitive sequences often cause problems in genome assemblies since resolving them
from short reads is hard. For the sampling process, if there is a long repetitive sequence
in the assembly, the reads spanning a part of the repeat can align to multiple positions
in the repetitive region of the assembly. Therefore, Minimap2 with its default settings
outputs a lot of alignments for such regions. Miniasm then considers each of these
alignments in its coverage-based filtering step, so keeping too many short reads for
the repetitive region is unnecessary. Instead, we should keep the longer reads from
the region. The issue with highly covered repetitive regions can be partially avoided
by not using the secondary alignments in the reads to assembly mapping for coverage

2.3. SAMPLING STRATEGIES 23

computation – but even without the secondary alignments, the coverage is significantly
higher for the repetitive regions.

The correct approach for sampling reads for repetitive regions is unclear. If we
do not implement some additional heuristic for detecting and handling such regions
(which may be hard to do in real-time and is a common problem in assemblers in
general), the best option that intuitively seems to be reasonable, is to prefer long reads
in the whole dataset. This way, we expect that for the repetitive regions, we will have
a higher number of longer reads and lower coverage generated by the reads that align
to multiple positions of a repeat. Also, this can overall improve the resulting assembly,
since the longer reads can provide us more information about how the reads should be
connected.

For this purpose, also using the sum of aligned lengths for each read instead of read
lengths (as mentioned in the previous section) is more accurate, as it is more consistent
with how Miniasm handles the coverage.

2.3 Sampling strategies

In order to monitor how sequence assembly evolves during the sequencing run, we
have implemented a pipeline that iteratively processes the new reads from the run and
maintains a sample of the reads seen up to the given point in the run. The exact
structure of the pipeline will be discussed in more detail in Chapter 3. In this section,
we describe the approaches (sampling strategies) for creating the sample from the reads
in the run.

In all the strategies, we are creating the samples per contig due to reasons mentioned
in Sections 2.2.1 and 2.2.2. At the end of the sampling process for each iteration,
the sampled reads for the contigs are merged into a single sample. Since the contig
sequences change in each iteration, keeping the reads separated among the contigs is
not useful, unless we would compare the assemblies between the iterations.

It may be possible to try to align the old contigs to the new ones to avoid re-
aligning the reads from the sample to the new assembly, since the assemblies between
two iterations are similar. It could, however, introduce some further issues. Also it
probably would not improve the running time a lot, since mapping sampled reads to
an assembly does not take too much time, while mapping assemblies to each other and
comparing the reads in the samples between iterations would require additional time.
Therefore, we have decided not to implement such strategy.

Sometimes, Miniasm can generate two contigs that align to each other. This can
cause the coverage in this region to be higher, which we do not want. This issue also
has to be addressed.

24 CHAPTER 2. SAMPLING READS FOR EFFICIENT ASSEMBLY

2.3.1 Incremental sample

The first approach to sampling reads from the run we have implemented builds a sample
during the run in a way that a read that is added to the sample set at any point of
time stays in the sample set for the whole time. In other words, the sample is built
incrementally as the run progresses.

Let ri be the sum of the lengths of alignments of read i to given contig c. Let
ℓc be the length of contig c and nc be the number of reads mapped to the contig c.
We can also denote the set of indices of mapped reads to contig c as Mc. We want
the coverage at each position to be approximately at a given threshold t. Computing
the coverage at each position in a deterministic way would be too slow, therefore, we
have implemented a probabilistic sampling approach.

For each contig c, we want to select a sample of reads Sc ⊆ Mc, for which

∑
j∈Sc

rj ≈ t · ℓc (2.1)

To achieve that the expected sum of alignment lengths for selected reads will be
approximately ℓc · t, we are selecting each read i from Mc with probability

pi = min(
ℓc · t · ri∑
j∈Mc

r2j
, 1)

Then, the expected sum of alignment lengths will be at most

∑
i

piri =
∑
i∈Mc

ℓc · t · ri∑
j∈Mc

r2j
ri =

ℓc · t∑
j∈Mc

r2j

∑
i∈Mc

r2i = ℓc · t

So the coverage generated by this model satisfies the condition (2.1).
Also, since the value of ℓc · t divided by the sum of squares of alignment lengths is

a constant for each contig, longer reads for the sample will have higher probability to
be selected.

The reads are added in this way to the sample incrementally, so in the new iteration,
we always have to consider the coverage that the assembled contig has from the reads
sampled in previous iterations; it can be calculated from the alignment of the reads
sampled in previous iterations to the new contigs. The coverage threshold is then
lowered for each contig accordingly based on the coverage information, so that the new
resulting coverage is not too high.

We also have to address the issue of reads aligning to multiple contigs, since we
do not want to have higher coverage for the intersecting contigs. To solve this issue,
we sample the reads for contigs in order from the longest to the shortest contig, and
if there are reads mapped that were sampled for longer contigs, the desired coverage
threshold for the contig is lowered accordingly.

2.3. SAMPLING STRATEGIES 25

The drawback of this sampling approach is that it can result in higher coverage
in the parts of the contigs that were assembled earlier, because in each iteration, we
are adding the reads randomly for each contig, and we do not consider the coverage
distribution within the contig in the sampling process.

At the beginning of the run, when the contigs are short, we may in some cases
downsample more reads, because some of the values for the fraction in the definition of
pi will be greater than 1, but the probabilities pi for those reads will be set to 1. The
expected value of the sum of the alignments is overestimated in that case. This effect
will be investigated in more detail in Chapter 4.

2.3.2 Mapping new reads to assembly to detect overhangs

The sampling strategy from the previous Section can be further improved by some
heuristics. If we already have a contig built from Miniasm that has sufficient coverage,
it is not necessary to add new reads that align only to the inner part of that contig.
Instead, we can use and sample only those new reads that extend beyond the ends of
already assembled contigs (we will call them overhangs), since those are the reads that
can give us new information.

However, it is not sufficient to only take the lowest amount of reads from which
a contig can be built using Miniamp2 and Miniasm because by adding new reads, we
would obtain higher coverage at the ends of the contig, and lower coverage somewhere in
the middle. This would result in problems with the assembly in the following iterations.
To address this problem, we have implemented a strategy that takes all aligned reads
for each contig until it achieves coverage given by the threshold, and after that, we
keep the new overhangs only, not all the new reads that align to the contig. Also, we
limit the number of overhangs so that coverage of contig ends is only slightly higher
than threshold. More precisely, we select the longest overhanging reads for the contig
ends.

Compared to the approach from Section 2.3.1, this strategy can also reduce
the coverage variance within a contig, because if there is an uneven coverage in
the already assembled part of the contig, no more reads will be added to the region
where the coverage is high. Also, the parts of the contigs assembled earlier that
already satisfy the coverage threshold will not get any new reads; instead, the new
reads will be added to the ends.

26 CHAPTER 2. SAMPLING READS FOR EFFICIENT ASSEMBLY

2.3.3 Reducing the bias towards the reads from the start of

the run

In the strategies from Sections 2.3.1 and 2.3.2, the assembly is built mostly from
the reads at the start of the run. Sometimes, the newer reads can give us some
additional information, even though the coverage is sufficient.

One of the reasons for this is that it is known that during the nanopore sequencing
run, the read lengths increase over time, and the read qualities decrease over time. To
illustrate this, we have counted the average read lengths per file (500 reads each) for
the data from the Saprochaete ingens sequencing run and plotted the result (Figure
2.5). The reads are slightly longer towards the end of the run, but there are also some
points in the run, where the reads in a number of consecutive files are significantly
shorter. The files with shorter reads are caused by the flow cell cleaning process during
the sequencing run, which is done regularly in a fixed time intervals (approximately
1.5 hour).

Figure 2.5: Read lengths at different stages of the nanopore sequencing run. Average
read length for each file was computed. The values are plotted in order in which the files
were produced in time, each file containing 500 reads.

With this strategy, we aim to form a less biased sample. To achieve this without
causing the sample to grow over time even after we reach the coverage threshold, we
have to allow replacement of the reads in the sample. Also, we want to ensure that
the new reads have similar probability of being selected for the sample compared to
the older ones. To do this, we assign a random number p from interval ⟨0, 1⟩ to each
new read. The value for the read stays the same during the whole run. Then, for each
contig, we sort the reads aligned to the contig according to these values in descending
order. We compute prefix sums of lengths of alignments for this sorted array and find
the value of pt for which, if we take all the reads for contig that have greater or equal

2.3. SAMPLING STRATEGIES 27

p, we will get the desired coverage. All the reads for the contig that have p greater
than or equal to pt are then added to the sample. The reads that were not selected for
the sample are discarded and not considered in the subsequent iterations. We expect
the thresholds for p values for contigs to increase over time, since we will keep only
the reads with the highest values. This means that the reads which did have lower p

would not get into the sample anyway, so we do not need to keep them.

Even though the reads are selected based on their random values, there is still some
bias towards the reads from the start of the run, because the first partial assemblies were
build from the first reads. However, this bias is reduced over time, since there are new
reads in the sample in each iteration, forming a new assembly – in each iteration, the
assembly is built using the new reads from the batch and the sampled reads. The exact
ratio of how many new and old reads we use for assembly is influenced by the batch
size and the coverage threshold.

The drawback of this strategy is that it may take more time than the strategies
from previous sections, and it can be harder to implement some further possible time
improvements of the pipeline on top of this strategy, since the sample can change
gradually during the run. To use some information from the previous iteration, we
would have to look for an intersection between the old and new sample, which can take
some time. In the previous strategies, we have this information directly.

Overlapping contigs and chimeric reads

There may be intersections between the sets of reads for different contigs that have
different threshold values. The intersections may be caused by chimeric reads between
the contigs, or they can occur if Miniasm builds two contigs that map to each other,
especially if the region has higher coverage. It can also be caused by the sequencing
errors or by the chimeric reads within the contig that can cause ambiguous paths in
the Miniasm assembly graph.

Since the p values are set per-read, they are not independent for different contigs.
Therefore, it may not be necessary to check whether there is some coverage for
the contig by the reads sampled for the contigs that were processed before. However,
the assumption may be wrong in some cases.

Consider a long contig c for which we take all of the reads as its sample Sc, since it
has low coverage (so the pt threshold for this contig will be 0). For some other contig d,
that is shorter than c and has higher coverage, we take some set of reads Sd, in which
all the reads have the values of p above or equal to some threshold q > 0. Let Sxd be
the set of reads mapped to contig d that have p value lower than q. Then, if Sxd ∩ Sc

is non-empty, there will be some additional coverage for contig d from the reads in
the intersection.

28 CHAPTER 2. SAMPLING READS FOR EFFICIENT ASSEMBLY

In case Sd−Sc is non-empty, the additional coverage can be avoided by considering
the coverage from longer contigs before sampling reads for the shorter ones. In some
specific scenarios, when there are multiple contigs that align to each other, this may
help to reduce the uneven coverage caused by those contigs. Also, this approach reduces
the number of misassembled contigs, because the scenario described above is typical
for them – they align to some other contig (have some reads with it in common), but
they are also built from some other reads, that do not align to the correctly assembled
contig.

We can modify the strategy to process the contigs in order from the longest to
the shortest, and explicitly check for the coverage that we already have for a contig
from the reads that were selected for the longer ones. Then we can lower the thresholds
for the shorter contigs accordingly and sample only from the reads that were not used
for the longer contigs in order to complete the smaller contig samples.

2.3.4 Preferring longer reads

We can also use a strategy similar to strategy from Section 2.3.3 with a different goal.
If we use the sums of alignment lengths instead of random values of p, we can get a
sample that favors the reads with longer alignment lengths. These values for reads
can change over time, since the new contigs can be assembled, but this should not be
a problem. Also, the values for the same reads may be different for different contigs,
but not completely unrelated. This way we can get a sample consisting of reads with
the longest mappings, which can give us the most useful information we can get from
the data. Also, this approach is deterministic, which has some further benefits.

2.4. SUMMARY 29

2.4 Summary

Considering the aspects of the data from the sequencing runs discussed in Sections 2.1
and 2.2, we have designed and implemented six sampling strategies.

For the strategies that build the sample incrementally, the strategy from Section
2.3.1 will be referred to as strategy A, the strategy from Section 2.3.2 will be denoted as
strategy A-map. The strategies that aim to reduce the bias towards the start of the run
will be labeled strategy B-u for the first strategy from Section 2.3.3 that relies on
the assumption that the p values are not independent (it does not consider the coverage
generated by the reads from longer contigs for the contig we are considering) and
strategy B-c for the strategy that does not rely on the assumption that the p values are
not independent, and explicitly checks the coverage from the already selected reads for
the sample.

The modified versions of the B-u and B-c strategies that consider the mapping
lengths instead of the randomly generated p values for each read (Section 2.3.4) will
be denoted as strategy D-u and strategy D-c, similarly to B-u and B-c.

Table 2.1 provides a summary of the properties of the strategies.

30 CHAPTER 2. SAMPLING READS FOR EFFICIENT ASSEMBLY

Sec-
tion
(1)

deter-
ministic
(2)

sample
changes (3)

cons.
longer
contigs
cov.
(4)

overlaps
only
after
thr.
(5)

all
reads
until
thr.
(6)

A 2.3.1 No
(probability
based on the
alignment
length)

incrementally
(reads added to
the sample can
not be replaced)

Yes No No

A-map 2.3.2 No
(probability
based on the
alignment
length)

incrementally
(reads added to
the sample can
not be replaced)

Yes Yes No

B-u 2.3.3 No (random
choice of
reads)

randomly after
the threshold is
reached

No No Yes

B-c 2.3.3 No (random
choice of
reads)

randomly after
the threshold is
reached

Yes No Yes

D-u 2.3.4 Yes (reads
with the
longest
alignments)

if there are new,
longer reads,
they replace
shorter

No No Yes

D-c 2.3.4 Yes (reads
with the
longest
alignments)

if there are new,
longer reads,
they replace
shorter

Yes No Yes

Table 2.1: Properties of sampling strategies.
(1) Section in which the strategy is described,
(2) whether the strategy is deterministic,
(3) how the sample changes during the run,
(4) whether it considers the coverage from the reads sampled for longer contigs when
sampling for a contig
(5) whether the strategy considers overlaps only (Yes) or all the reads (No) from the
batch after the threshold is reached,
(6) whether all reads from the run are stored until the threshold is reached.

Chapter 3

Building a real-time assembly pipeline

This chapter discusses the principle, structure, and implementation of our real-time
assembly pipeline.

3.1 Pipeline structure and components

The pipeline iteratively processes the data as they are produced during the sequencing
run. In each iteration, we process a new set of reads (batch) from the run, and we
use the new information we have from them for the assembly along with a selection of
reads (sample) from the previous iterations.

The goal is to provide the user with real-time information about whether there is
enough data from the sequencing run for the genome assembly. At the start of the run,
when we have only a small amount of data, we can build the assembly from all the
available data in real time. However, as the run progresses, the amount of sequenced
data grows, and assembling all the available data from the run would take too much
time. Therefore, we want to limit the amount of data we have to process in each
iteration, which can be achieved using the sampling strategies from Chapter 2.

3.1.1 Reads in the pipeline iteration

The reads processed in an iteration can be divided into three main categories: new
reads from the batch (N), reads previously included in the sample (S), and previously
unmapped reads (U).

During the iteration, we first compute a genome assembly using the reads included
in the N, S and U sets. Using the iteration assembly, we produce two new sets of reads,
that will be used in the next iterations:

• The iteration sample (Snew): Reads selected as a representative sample for
the contigs in assembly for the current iteration. These include a subset of
reads from N , S, and U .

31

32 CHAPTER 3. BUILDING A REAL-TIME ASSEMBLY PIPELINE

Figure 3.1: An iteration of the real-time pipeline. There are some minor differences
in the exact implementation of the components that depend on the sampling strategy
that is used for the run.

• The iteration unmapped reads (Unew): Reads from the current iteration that did
not map to any contig in the assembly for the current iteration. Any reads from
N , U , or even from S may end up in this set. If there are reads from S, it means
that some contig that was assembled in the previous iteration was not assembled
in the current iteration. This can happen, since we may sometimes leave out a
read that was important for the assembly and not include it in the sample. This
is a drawback of the probabilistic or heuristic sampling approaches.

In the subsequent iteration, the new set Snew of sampled reads form this iteration
will be used as set S, and the new set Unew of unmapped reads will be used as set U .
The S and U read sets are dynamically updated by the pipeline in this way during
the sequencing run. The purpose of keeping the unmapped reads separated from
the sampled reads is that depending on the sampling strategy used, they may be
handled differently in the sampling step.

For each iteration, the assemblies and list of read IDs for the reads in the sample
are stored, so that they can be used for statistics computation and further analysis.

3.1.2 The pipeline components

The pipeline consists of several components that repeat in each iteration: batch
preparation, (optional) read filtering, Minimap2 alignment and Miniasm assembly,
Minimap2 alignment for sampling, the sampling process and statistics computation.
The overview of the pipeline iteration is in Figure 3.1.

3.1. PIPELINE STRUCTURE AND COMPONENTS 33

Batch preparation At the start of the iteration, the pipeline first loads the new
reads for the iteration (set N from Section 3.1.1) – the new batch is prepared for
processing. This is done by linking the specified number of files (that were not seen
by the pipeline up to this point) from the input directory to the pipeline’s working
directory. At the end of the iteration, the links are cleared.

Mapping reads to assembly After the batch is prepared, if we are using the
sampling strategy A-map from Chapter 2, the reads from the set N are aligned to the
previous iteration assembly and only the reads that align to the ends of the contigs
are kept (the strategy aims to preserve the existing assembly with the sample, and it
considers only overhangs for the contigs as the new reads – hence, we want to keep
only the new reads that extend beyond the ends of the already assembled contigs,
and filter out the rest). The alignment is done by Minimap2. The resulting PAF file
is parsed in the pipeline, and only the overhangs are kept for further processing of
the batch.

For all the strategies except A-map, the set N of reads from the batch proceeds
unchanged to the next step – the reads from the batch are directly used in Minimap2
and Miniasm assembly.

Minimap2 and Miniasm assembly We are building the assembly in two steps.
First, we align the reads onto themselves using Minimap2. For the alignment, all the
reads from the sets N , S and U are used (except for the A-map sampling strategy, for
which only a subset of N is used instead of N). Then the assembly is created using
Miniasm. Before the alignment, a temporary file with reads is created by merging the
three sets of the reads, since both Minimap2 and Miniasm expect a single file with
reads in FASTQ or FASTA format as an input. The result from Minimap2 is a set of
alignments in PAF format that can be directly used as the input for Miniasm. Miniasm
outputs the assembly in GFA format, so we have to convert it to FASTA format for
further processing.

Aligning reads to assembly and sampling After the new assembly in FASTA
format is obtained, we have to align the reads from which the assembly was built to
the assembly. This is done either separately for the sample from the previous iteration
and for the unmapped and new reads (for the strategies A and A-map from Chapter
2), or in one Minimap2 run for all the reads from which the assembly was built (for the
rest of the strategies). Then, the PAF files are parsed and sampling is performed by one
of the sampling strategies. The sampling step is crucial for the real-time performance,
since it ensures that the amount of data between the iterations will not grow after we
reach a certain coverage threshold.

34 CHAPTER 3. BUILDING A REAL-TIME ASSEMBLY PIPELINE

Statistics When assembly and sampling is finished, we compute the statistics that
the user can view in real time during the sequencing run. The statistics can be
computed either sequentially or in parallel with the rest of the pipeline (this is a
user-configurable option). However, computing statistics in parallel may require too
many resources, since it will cause multiple instances of Minimap2 to run
simultaneously.

3.2 Pipeline output for an iteration

At the end of the pipeline iteration, we have an assembly, the new sample set S (sample
of the reads aligned to the assembly that will be used in the next iteration), the new
set of unmapped reads U , and we compute the statistics that are provided to the user
in real-time during the sequencing run.

3.2.1 Statistics

In the general case, when the reference genome for the data we are assembling is
unknown, we can compute statistics such as assembly length, number of reads, number
and length of the assembled contigs, and contig coverages. The contig lengths (Figure
3.2) and the average coverages for contigs (Figure 3.3) are provided to the user as bar
plots. An example of the summary numeric statistics for an iteration follows.

processed files: 190
processed reads:95000
num of files in input directory:223
catch-up:85.20%
run time:
start time: 2024-04-16 23:45:24.083492
end time: 2024-04-16 23:50:18.570348
duration: 0:04:54.486856
stats end: 2024-04-16 23:53:48.263965
stats duration: 0:03:29.693617

sample/assembly statistics:
contigs: 9
subsampled reads: 39141
unmapped reads: 7314
sum length of contigs: 20609398
sum length of reads: 663134420
avg coverage (crude) [sum of read
lengths/assembly length]: 32.18
N50 (raw assembly): 2640274 (only if
reference genome is given)

We are computing average coverages per contig, but we also want to show a per-
base coverage plot to the user (an example is in Figure 3.4). One option would be to
compute the per-base coverage using Minimap2 in BAM format. However, in that case,
Minimap2 completes the per-base alignments precisely using dynamic programming,
and the computation is too slow for real-time results. Plotting such results also does
not give an easily readable information to the user, since there are typically large

3.2. PIPELINE OUTPUT FOR AN ITERATION 35

Figure 3.2: Assembly contig lengths plot.

Figure 3.3: Average coverage of the assembly contigs by the reads in the sample.

differences between the coverage values on per-base level. Therefore, we are using
the PAF alignments only, and we are computing the coverage based on the mapped
regions from the PAF file.

If the reference genome is given, the pipeline can also compute the statistics using
the reference. In case the user has enough resources to run two instances of
Minimap2 simultaneously, the reference-based statistics can be computed in parallel
with the statistics without the reference genome, since they are independent
(otherwise, when we are limited by the resources, the statistics can also be computed
sequentially). In addition to the statistics without the reference genome, if
the reference is given, we are computing the N50 score of the assembly with respect
to the reference genome.

To get more precise information about the assembly fragmentation compared to

36 CHAPTER 3. BUILDING A REAL-TIME ASSEMBLY PIPELINE

the reference genome, we align the assembly to the reference using Minimap2 and
create a dot plot (Figure 3.5). We also compute the reference coverage by the reads
from the sample (using Minimap2 with its result in the PAF format) and plot the results
for each reference contig (similarly to the way how we are computing the coverage for
iteration assembly). At the bottom of the graphs for the reference contigs, the regions of
assembled contigs that align to the reference contigs are plotted as rectangles, indicating
the fragmentation of the assembly compared to the reference genome (see Figure 3.6).
Also, a BED file with the assembly to reference alignment information is stored for
each iteration and can be used for further analysis.

In the statistics implementation, we use the matplotlib Python library. Since
matplotlib is not thread-safe, it was necessary to handle the plotting as critical
sections and implement mutual exclusion accordingly. Even with this limitation,
some time can be saved by the parallelism if we want to compute both the statistics
with and without reference genome in real-time, as the plotting sections are not
the time bottleneck of the statistics threads.

The first level of parallelization option for the user is the parallel run of
the assembly-only and reference-based statistics. It is also possible to configure
the pipeline to run the statistics for the previous iteration in parallel with the next
iteration. If the user has enough resources to run multiple Minimap2 instances
simultaneously, a lot of time can be saved by the parallel run, allowing a
resource-time trade-off.

The pipeline also has the option to run the statistics with BAM alignments to get
more precise statistics and plots. However, this version of statistics is not applicable
in real-time scenario, because it is too slow.

3.3 Time efficiency

In the early stages of the sequencing run, when we have only a small amount of data,
the output from the pipeline is equivalent to the direct computation of the assembly
and the statistics from all of the available data.

However, after we reach a certain coverage threshold for the assembly, we work
only with a constant amount of data for each iteration: (a) the data from the previous
iterations downsampled to the given coverage threshold and (b) the new data from the
batch that were created within a constant time during the sequencing run.

Therefore, we can achieve real-time performance even in the latter stages of the
sequencing run by setting the pipeline parameters (batch size and coverage threshold)
in a way that the time needed for the computations in the pipeline iteration will not
exceed the sequencing time for a batch. The effect of the different choices of the

3.4. TECHNICAL DETAILS OF PIPELINE IMPLEMENTATION 37

parameters will be examined in more detail in Chapter 4.

3.4 Technical details of pipeline implementation

We have implemented the described real-time assembly pipeline in Python. The
implementation consists of

• a main script that loads the user-configurable parameters and creates
the PipelineRunner class to initialize and run the pipeline

• class PipelineRunner and its subclasses that manage the different pipeline
workflows (those are sampling-strategy specific)

• class FileTracker that manages the batching process

• class ReadSubset and its subclasses that implement the different sampling
strategies from Chapter 2

• class Minimap, which is a wrapper class for running Minimap2 in different modes
(all vs. all reads alignment, alignment of reads to assembly/reference genome)
and different types of outputs (PAF or BAM alignments)

• class Miniasm, which is a wrapper class for Miniasm. Its purpose is to run
Miniasm using the alignments from Miniamp2 and the corresponding set of reads
in FASTQ format. It also converts assembly from the GFA to the FASTA format,
and saves the assembly for each iteration.

• separate classes for computing statistics – those can compute the statistics either
with or without the information from the reference genome, and there are various
parallelization options

There is also a script that runs a simple server that can be used for displaying
the pipeline statistics result for each iteration (in HTML format) to the user so that
they can navigate between the results as the run progresses.

38 CHAPTER 3. BUILDING A REAL-TIME ASSEMBLY PIPELINE

Figure 3.4: Per-base coverage of the assembly contigs by the reads in the sample
counted based on PAF alignments. The contigs are sorted by length; only the first 6
(out of 9) are in this figure. On the x-axis is the position within the contig in millions,
and on the y-axis is the coverage.

3.4. TECHNICAL DETAILS OF PIPELINE IMPLEMENTATION 39

contig1
contig2

contig3
contig4

contig5
m

tD
N

A

utg000008l utg000009l utg000004l utg000001l utg000002l utg000005l utg000007l utg000006l utg000003c

Figure 3.5: Assembly to reference alignment dotplot created from the PAF alignment
using minidot (which is a part of the Miniasm repository) [12]. On the x-axis, there are
the contigs from the assembly; on the y-axis are the contigs from the reference genome
and the lines correspond to the aligned segments of the contigs.

40 CHAPTER 3. BUILDING A REAL-TIME ASSEMBLY PIPELINE

Figure 3.6: Per-base coverage of the reference genome by the reads from the sample.
At the bottom of the graphs, there are alignments of the contigs from the assembly to
the reference genome.

Chapter 4

Results

In this chapter, we will discuss the results of our real-time assembly pipeline
implementation with focus on the quality of the resulting assembly and the running
time.

We have run a set of experiments using our implementation of the real-time
assembly pipeline utilizing the sampling strategies described in Chapter 2. We have
tested the sampling strategies with different coverage thresholds given to the pipeline
on the nanopore data from the nanopore sequencing run to evaluate how the choice of
the strategy and the coverage threshold affects the quality of the assembly and
the running time of the pipeline.

The time and the quality of the assembly is also affected by the size of the batch.
For most of our measurements (Sections 4.3, 4.4 and 4.5), we have used a batch size of
10 files with 500 reads in each file. In Section 4.6 we present results for batch of size
20 and coverage threshold of 30x for comparison.

4.1 The data and the reference assembly

We have evaluated our implemented pipeline on the data from the Saprochaete ingens
yeast MinION (ONT) sequencing run performed by Hodorová et al. [7].

The reference genome created using long reads from MinION (ONT) combined
with short reads from Illumina sequencing has five chromosomal contigs and one
mitochondrial contig [7]. The lengths of the contigs in the reference genome are in
Table 4.1.

The Miniasm assembly on the whole dataset (all the reads we have) results in
eight contigs, with lengths shown in Table 4.2. The order of the reads influences the
result of Minimap2, and subsequently the result of Miniasm is also different. Thus,
we sorted the reads for the assembly by their sequencing time, in the same order they
were presented to the pipeline as an input. The N50 score of the Miniasm assembly

41

42 CHAPTER 4. RESULTS

contig name length [bp]

contig1 5714510
contig2 4992828
contig3 4821795
contig4 2900717
contig5 2723818
mtDNA 35540

Table 4.1: Lengths of Saprochaete
ingens reference genome contigs.

contig name length [bp]

utg000001l 5571831
utg000002l 4856367
utg000006l 4690952
utg000008l 2727673
utg000003l 2650865
utg000004l 131920
utg000007l 86677
utg000005c 47368

Table 4.2: Lengths of Saprochaete
ingens contigs from Miniasm assembly
on the whole dataset.

with respect to the reference genome is 4690952.

4.2 Assembly evaluation metrics

The quality of the assembly compared to the reference genome can be evaluated in
different ways. However, there is no universal approach or metric that could serve as
an indicator of whether an assembly is correct or wrong or how different it is from
the reference genome. Instead, multiple numeric values are usually computed for
comparison. Apart from them, the bioinformatician or a biologist can manually check
the parts that differ and investigate the reasons behind the differences.

One commonly used numeric statistic is the N50 score, also mentioned in Section
2.1. It represents the sequence length of the shortest contig from the assembly needed
to cover 50% of the reference genome. To calculate the N50 score, we sort the contig
lengths in the assembly from longest to shortest and identify the length of the shortest
contig for which its length summed with the lengths of the longer contigs is greater
than or equal to 50% of the reference genome length.

Maybe a more informative variation of the N50 score is the corrected N50 (corrN50)
score metric. The difference between N50 and corrN50 is that for corrN50 we consider
the lengths of the alignments of the contigs to the reference genome instead of the whole
contig lengths. This way, we are not using the contigs or parts of the contigs that
do not align to the assembly, which can give us more accurate information because
the misassembled contigs or regions are omitted from the score calculation.

The limitation of the N50 or corrected N50 score is that it is not that informative
if half of the genome is assembled correctly and the rest of the assembly is very

4.3. DETERMINING SUFFICIENT COVERAGE THRESHOLD 43

fragmented. Therefore, sometimes multiple variations of this statistic are computed,
for example the N90 score defined in a similar way as N50, but we are looking for the
length of the contig for which 90% of the reference genome length will be achieved.

Another useful statistic is the portion of the reference genome length that is covered
by the contigs from the assembly. If the percentage of the reference genome covered
by the assembly is high and the N50 (or other N score) is low, it suggests that we have
preserved most of the information for the assembly compared to the reference genome
(the reads for the assembly cover most of the reference genome), but the assembly is
more fragmented compared to higher N50 scores (some parts of the reference genome
contigs are not connected in the assembly).

Additional statistics include the coverage of the reference genome or the assembly by
the reads. However, after the first few iterations, in our case the coverage corresponds
to the threshold given as a parameter for the pipeline, so this information is not useful
for comparison of various sampling strategies.

4.3 Determining sufficient coverage threshold

One of the questions we wanted to answer was the sufficient coverage for
the representative sample – the coverage threshold value for the pipeline run that
gives us enough data for the assembly. To answer this question, we can look at
the best results achieved with any of our sampling strategies between the pipeline
iterations. We have computed the maximum corrected N50 scores and percentages of
reference genome covered by the assembly in each iteration: for each iteration i, we
take the maximum of the scores in iteration i from six runs, one for each of the
sampling strategies. With such maximum scores computed for runs with multiple
coverage threshold values (six runs for each threshold), we can evaluate whether each
coverage threshold is sufficient for any of the strategies. We have tested the coverage
thresholds 10, 20, 30, 40 and 10000; the purpose of the last one is to define the best
case scenario where no reads will be discarded due to threshold limitations.

The comparison of the results for the different coverages is shown in Figures 4.1
(using the corrected N50 score metric) and 4.2 (considering the percentage of reference
genome covered by the assembly contigs). Note that the maximum possible corrected
N50 score for the assembly is 4992828, as we can see from Table 4.1.

From the Figures 4.1 and 4.2, we can see that coverage threshold 10 is too low,
yielding assemblies that are significantly more fragmented compared to the results
achievable with higher coverage thresholds. Also, some parts of the assembly are
entirely missing in this case. None of the strategies could build more than 95% of
the assembly with this threshold, and for the strategy A-map (see Table 2.1 for strategy

44 CHAPTER 4. RESULTS

Figure 4.1: Maximum corrected N50 score achieved by the sampling strategies for
different target coverages; in each iteration, a batch containing 5000 reads is added as
new reads.

properties), even more than 10% of the reference genome is missing with the coverage
threshold 10. The differences between the values for the sampling strategies will be
discussed in more detail later.

Figure 4.2 shows that the portion of reference genome covered by the iteration
assemblies generally increases with further iterations. However, for the corrected N50
score (Figure 4.1), we can sometimes observe drops between iterations, especially for
the higher lengths of assembled contigs. This is because a significant change in the score
can be caused by removing a small portion of information and the longer the contigs,
the more significant the difference between the N50 scores for the subsequent iterations
it can cause. We will inspect this in more detail in the next Section.

Our observations in Figures 4.1 and 4.2 also indicate that the coverage threshold
20 and above should be sufficient to build an assembly that is close to the reference
genome.

4.4. THE QUALITY OF THE ASSEMBLY 45

Figure 4.2: The maximum portion of the reference genome covered by assembly
achieved by any of the strategies for different coverages for each iteration. In each
iteration, the percentage of the reference genome covered by the iteration assembly
was calculated for each of the strategies (from six runs with the same target coverage
threshold), and the maximum of the six values for the strategies was taken. Such values
were computed separately for each target coverage threshold.

4.4 The quality of the assembly

To compare the assemblies between the sampling strategies, we can look at
the maximum corrected N50 score and percentage of the reference covered by
the assembly that was achieved for each strategy-coverage combination. Each
strategy-coverage combination run has multiple iterations, for which the scores were
computed individually. Then, the maximum of the values for the iterations was taken
as the maximum value for the strategy-coverage combination – so we have computed
the best scores that each of the strategy-coverage combination has achieved in any of
its iterations. The percentages were computed based on the Minimap2 alignments of
the assembly to the reference genome in PAF format (they were not computed with
per-base accuracy, and small insertions/deletions compared to the reference genome
were ignored). The corrected N50 scores are shown in the heatmap in Figure 4.3, and
the percentages are in Figure 4.4.

With the B-c strategy, we have achieved the highest coverage percentages. However,
the differences are not very significant (see Figure 4.4). For coverage 20x and higher,
we can get an assembly that aligns to more than 99% of the reference genome. This
indicates that the B-c strategy is successful at preserving most of the information from

46 CHAPTER 4. RESULTS

Figure 4.3: Maximum N50 score achieved for each coverage-strategy combination.

sequencing reads. Closer investigation revealed that the missing parts of the assembly
are located around the 2.1-millionth position in contig4 in the reference genome, for
which we could see a peak in the coverage by all the reads in Figure 2.3. This is caused
by the fact that there is an rDNA repeat in the region, as stated by Hodorová et al. [7].

We can see how the assembly contiguity evaluated using corrected N50 score differs
for the strategies on the heatmap in Figure 4.3. For threshold 10, we got the best result
with the D-c strategy. With the B-c and B-u strategies, we got the best results in terms
of assembly contiguity for coverage threshold 20. For 30x coverage, we have achieved
best scores with the A and B strategies. In runs with 40x thresholds, the differences
between maximum corrN50 score between the strategies are smaller compared to lower
thresholds. We can also notice that the scores for 40x are better than in cases when
we do not sample the reads – this indicates that sampling of the reads resulted in a
better assembly. Interestingly, we have also achieved better N50 score (the N50 score
is necessarily greater or equal to corrN50) compared to assembly on the full dataset
with the reads sorted by their sequencing time (4690952).

The changes in scores between iterations are important, since the per iteration
results are the information that is given to the user in real time. While we would
expect the scores will improve over time, Figure 4.1 shows that this is not necessarily
the case. This is caused by the fact that the assemblies are always built from
the sample and unmapped reads from the previous iteration, along with the new data
from the batch. These can include new reads that contradict the previous assembly,
for example chimeric reads. The new reads that introduce ambiguity may cause
worsening of the assembly.

The sample selection process in the A and B strategies includes randomness. In

4.4. THE QUALITY OF THE ASSEMBLY 47

Figure 4.4: Maximum percentage of reference covered by assembly achieved for each
coverage-strategy combination. The heatmap range was scaled to start at 98.5 for
better visualization, since the values for 10x coverage are low compared to the others.

the A strategies, the sample is built incrementally, so the reads included in the sample
once are never discarded. Instead, new reads for the assembled contigs are rejected if
the coverage target is reached for the contigs. Therefore, the assembly N50 score can
drop between the iteration in which there are some important reads from the batch
and the next one, because the reads from the batch may not be included in the sample
for the next iteration. In the B strategies, reads included in the sample may later
be replaced with different reads. This may sometimes lead to replacement of a read
that is key to the assembly contiguity with some other, less informative read, causing
assembly quality to worsen.

The D strategies have an advantage in terms that they are deterministic.
The sample does not change randomly during the run, instead, the sampling process
is guided by the lengths of the mappings, generally preferring longer reads. However,
it can happen that some long reads will not improve the assembly, but will break it
instead. For example, a long chimeric read that joins two sequences that are not
joined in the genome, can cause an ambiguity in the assembly graph, resulting in a
contig split into two parts. We are trying to avoid favoring the chimeric reads from
two different contigs by considering the alignment lengths for a contig instead of
the whole read lengths – this can help us to prevent merging two contigs that should
not be merged. However, the chimeras that consist of two reads for a single contig are
still preferred over the other reads by this approach – and those are the reads that
cause the breaks in the contigs.

48 CHAPTER 4. RESULTS

Figure 4.5: Corrected N50 score of the assemblies for the runs with 20x coverage
threshold (per iteration).

The mentioned differences between the strategies are significant especially if
the coverage threshold is low compared to the amount of coverage that is available
from the batches for the partial assemblies. In this case, a large fraction of the sample
may change between the iterations. Figure 4.5 shows the per-iteration results for
the 20x coverage threshold runs with 5000 reads batch size. The high score for
the B-strategies was achieved only in a single iteration, later decreasing as the set of
reads for the assembly has changed (not all the reads from the 15th iteration batch
were included in the sample, new reads from the 16th iteration batch were added, and
also some reads previously included in the sample were replaced). In multiple
iterations, the scores for the D-strategies are better than the scores for A and B
strategies. The observations suggest that with the B-strategies we can achieve better
results in some cases, but the results are highly affected by the randomness of the
strategies and are therefore hard to predict. This difference is significant especially if
the coverage threshold is low.

For comparison, we can also look at the corrected N50 scores per iteration plot
for coverage threshold 30x (Figure 4.6). Naturally, we would expect the scores to be
better than for 20x coverage; however, this is not always the case. For example, in
the 15th iteration, the B-c strategy has lower score than in the 20x case. In contrast,
the A-map strategy has higher scores in multiple iterations. It is because in this case,
we are preserving the sample after the threshold is reached, and if any new reads are
added, they are always at the ends of the contigs.

4.4. THE QUALITY OF THE ASSEMBLY 49

Figure 4.6: Corrected N50 score of the assemblies for the runs with 30x coverage
threshold (per iteration).

For the A-strategy, if a longer contig is created in the iteration, it may not have
sufficient coverage at the point where two contigs were joined. Therefore, new reads
for the contig are sampled to satisfy the threshold. However, the sampling process for
the A-strategy does not ensure that the reads will be added to the joining position
of the previously separate contigs, in contrast to the A-map strategy which uses the
overlaps only. This is the reason why we observe higher score for the A strategy in the
15th iteration, but it drops in the next one, compared to the A-map score that remains
unchanged.

Another difference is that the new reads from the batch can contradict the
assembly from the previous iteration for the A-strategy, resulting in a contig split into
two parts, whereas for the A-map strategy, this should not happen often, because it
uses overlaps only (if there are ambiguities caused by the overlaps, the differences are
at the ends of the contigs only). Contigs that are assembled differently then influence
the sampling process, which can result in new reads being added if the coverage for
the contig was uneven, possibly preserving the contradicting information.

We can further investigate the differences in detail by looking at the assemblies in
each iteration individually. Figure 4.7 shows the assembly fragments sorted by their
alignment lengths to the reference genome, demonstrating further issues not captured
by the corrected N50 score.

For example, we can see more detailed difference between the assemblies for the A-
strategy in Figure 4.7 (a). In the 16th iteration, the assembly is more fragmented

50 CHAPTER 4. RESULTS

compared to the 15th iteration, where we have three long contigs. In the 16th iteration,
the contigs were assembled differently, and some other reads may have been added to
the sample, which also influenced the assemblies in the following iterations. The longest
alignments correspond to a part of the contig1. In the 16th iteration, a chimeric read
caused the contig1 to break into two parts. Such changes are hard to predict and are
even more significant, if the read set changes a lot.

In the plot for the A-map strategy (Figure 4.7 (b)), we can see that the first three
contigs of the assembly did not change a lot after the 15th iteration. This illustrates
the main advantage of this strategy – it preserves the information that we already
have. The other strategies focus more on improving the assembly using the reads from
new iterations, while some information from the previous iterations may be lost in this
process.

In some cases, we actually prefer assemblies with lower scores. For example, we can
see that for the B-c and B-u strategies, the assemblies have better corrected N50 score
than D-c and D-u, but for the D strategies, there is a smaller number of alignments
on the right side of the red line in the plots, which is not captured by the N50 score –
the number of short contigs for the D-strategies is smaller, while they cover the same
fraction of the reference as the contigs for other strategies.

Some contigs are harder to assemble than others, because they have more complex
structure. The ability of assembling such contigs is also important when considering
the quality of the assembly. Whether this is or is not visible in the N50 scores
depends on the lengths of those contigs in the reference genome. Therefore, also some
other variations of N-scores are commonly used. For example, the corrected N90
scores, for which the contigs are marked in purple color in the plots, would be higher
for the D-strategies. Also, there is a number of factors that affect the assemblies. A
small change in the sample (for example, if we omit a single read) or in the order of
the reads (if the reads are given in a specific order, it may either improve or worsen
the assembly) can cause a large difference in the contiguity of the assembly.

The percentages of reference covered by the assembly correspond to the ones in
Figure 4.2 for strategies B and D. The difference between the strategies can be seen in
Figure 4.8. For the A-strategies, the values are lower until the lc·t∑

j∈Mc
r2j

ratio defined
in Section 2.3.1 is sufficient for each contig, because in case the ratio is too low, the A
and A-map strategy samples are smaller than the ones for B and D strategies. This
is caused by the way how we have chosen the probability of a read being selected
for the sample. In some way, it guides the sampling process towards more sampling if
the assembly created in the iteration is less fragmented (the contig are longer) compared
to the iterations where the assembly is very fragmented and the contigs are short. For
higher coverage thresholds, this effect is lower, since we are multiplying the contig

4.4. THE QUALITY OF THE ASSEMBLY 51

(a) A (b) A-map

(c) B-c (d) B-u

(e) D-c (f) D-u

Figure 4.7: Assemblies for iterations in runs with 30x coverage threshold, corrected
N50 and N90 score visualization. The red line corresponds to half of the reference
length. The rectangles in each row are the lengths of alignments of the contigs from
assembly to the reference genome for one iteration. The green rectangles correspond
to corrected N50 score, the purple rectangles correspond to corrected N90 score.

52 CHAPTER 4. RESULTS

Figure 4.8: Percentages of reference genome length covered by assembly for 20x
coverage threshold. We can see that the values for the A and A-map strategies are
lower until the 10th iteration.

length by the threshold in the numerator of the fraction. This also explains why in
the first half of the run, the B and D strategies give us better corrected N50 scores
than the A strategies in Figures 4.5 and 4.6.

In Figure 4.9 we can see how the number of contigs evolves during the run for the
strategies. After the fifth iteration, the number of contigs has dropped significantly for
the B and D strategies, and two iterations later for the A strategies. At the end of the
run, the number of the contigs for the D strategies was lower compared to the number
of the contigs for the rest of the strategies. The number of the contigs in the last five
iterations for the B-strategies varies in range from eight to 15, but is within range of
eight to ten for the D-strategies. For the A strategies, the minimal value in the last five
iterations is eight and maximum is 13. In context with the fact that the percentages
of reference covered by the assembly are more than 99% for those iterations for all of
the strategies, we can conclude that the assemblies that have lower number of contigs
cover the assembly but are less fragmented.

4.5. RUNNING TIME 53

Figure 4.9: Number of contigs per iteration for 30x threshold runs. We can see that
the number of contig drops significantly around fifth iteration for all of the strategies.

4.5 Running time

We have measured the running time for each sampling strategy and coverage
threshold combination. Minimap2 runs were limited to a maximum of eight threads
each. The statistics were computed sequentially with the rest of the pipeline, but
statistics computed based on the reference genome ran in parallel with the statistics
without reference (they take approximately the same time in most of the iterations).
If two Minimap2 instances in the statistics threads run simultaneously (this usually
happens if we are computing the statistics with and without reference in parallel),
such run can use up to 16 threads and the corresponding amount of RAM needed for
Miniamp2 in peak.

The amount of RAM needed for Minimap2 depends on multiple factors, mainly on
the number and the length of the sequences. We have measured that for the all-vs-all
alignment of all the reads for the Saproecheate ingens yeast in our data, Minimap2
used a little more than 16GB RAM in peak. For the alignment of all the reads to
the reference genome (which is a superset of the task done in statistics), the peak
RAM usage was around 1.2 GB. The user can influence the amount of RAM that
Minimap2 uses by configuring its parameters. However, it is not possible to explicitly
limit the amount of RAM for Minimap2 to a given threshold, since it is hard to predict.
The amount of memory depends on the character of the data and multiple other factors
[14].

In case the user does not want to compute the reference-based statistics (which is
the case if we are monitoring a sequencing run for de novo assembly), the requirements
on computational resources are lower – there would be at most one Minimap2 instance
running at a time (except for the case, when the user decides to run the statistics

54 CHAPTER 4. RESULTS

Figure 4.10: Running times per iteration for different sampling strategies with coverage
threshold 30x.

in parallel with the rest of the pipeline, which is an option). For the sequential run,
the peak RAM needed is the RAM used by Miniamp2 all-vs-all alignment for a set
of reads in an iteration, and the maximum number of threads (by default) is nine:
eight threads for Minimap2 during the Minimap2 alignment and one thread (which is
idle during the Minimap2 alignment) for the rest of the pipeline. The running time
in case we would not compute the reference-based statistics would be approximately
the same compared to our run – maybe even a little faster, since some minor time
delays in our parallel statistics threads run compared to the sequential case can be
caused by waiting for the matplotlib lock that is held by the second statistics thread
that computes the reference-based statistics.

The running times are different for each sampling strategy and coverage
combination; for smaller coverage thresholds, the times are lower. To compare
the times and analyse the differences between the strategies, we will use the 30x
coverage threshold (Figure 4.10). For each strategy, the time for the iterations grows
linearly until the desired coverage threshold is reached. After that, the time required
for an iteration is (almost) constant: it does not depend on the amount of previously
seen data, which is crucial. As we can see from the plot, the times for the A
strategies are lower than the times for the B and D strategies.

The A-map strategy can be faster than A for smaller coverage thresholds (or, more
precisely, it is faster if the difference between the threshold value and the coverage
of the assembly by the reads from the batch is higher). In that case, we can save

4.5. RUNNING TIME 55

some additional time with the A-map strategy compared to the others, since it reduces
the time needed for all-vs-all reads mapping. Otherwise, A-map may be slower than
the A strategy, because we are spending time by the overlap filtering while not too
many new reads have to be filtered out (and it would be more efficient to just include
them in the all vs all mapping – which is exactly what the A strategy does).

For the B strategies, we can see a small difference between B-c and B-u. This
may be partially caused by the randomness of the read selection process, but also
by the additional computation needed for the B-c strategy compared to B-u, since it
counts the coverages from the longer contigs.

If we look at the difference between D-c and D-u, it is smaller than for B-c and
B-u, even though the strategies work on the same principle. However, compared to
the B strategies, the D strategies are deterministic, so the difference is not influenced
by the random choice of the reads. We can also see that the time for the D strategies
has dropped after the 15th iteration. D strategies strongly prefer longer reads over
the short ones, while still maintaining the desired coverage threshold. The difference
in time is caused by having a smaller number of longer reads, which means faster
sampling and Minimap2 alignment compared to the case if we have many short reads.

Basecalling The input to our pipeline are basecalled data. Therefore, we also have
to consider the time needed for basecalling when evaluating real-time performance. In
order to compare our results with the sequencing run speed, we have to sum the time
spent by basecalling with the pipeline running times. In each iteration, the new data
for the batch have to be basecalled. We have estimated the basecalling time by
running the GPU version of the Guppy basecaller by ONT [18] (with parameter
num_callers set to 2 and cpu_threads_per_caller set to 4) on a portion of our data
(16000 randomly selected reads). The running time was approximately 66 seconds
and the number of bases in the resulting file was 56 Mbp. The resulting estimate is
that the Guppy basecaller can process approximately 850 000 bases per second. To
estimate basecalling time for a batch, we have selected ten random files from the run
with the total number of approximately 69.6 Mbp. Based on our measurements, we
estimate the running time for basecalling of a single batch to approximately 82
seconds. The basecalling time of a batch does not depend on previous iterations in
any way; rather, it depends on the number and lengths of the new reads in the batch.
Therefore, for simplicity, we will consider the 82 seconds as a basecalling time
constant for each batch. If the user does not have a GPU, there are multiple options.
We have also calculated an estimate for basecalling with deepnano-blitz [4], which
runs on CPU. With the network-type 56 deepnano-blitz model, a batch can be
basecalled in 98 seconds on CPU using 8 threads.

56 CHAPTER 4. RESULTS

Figure 4.11: Total running times of the pipeline including basecalling in minutes.

Figure 4.11 shows the total running times in minutes including estimated basecalling
time with the Guppy basecaller (30.8 min), for all combinations of strategies and
coverage thresholds. As mentioned earlier, the A-map strategy is a little faster than
A for lower coverage thresholds (10, 20 and 30), but slower for the greater thresholds.
The B-strategies are the slowest, and the D strategies are in the middle between the A
and B strategies.

In case of our data set, with sequencing time of 313 minutes in total, all strategies
including the straightforward strategy with no sampling would be fast enough to
provide real-time monitoring. However, Figure 4.12 shows that for longer runs, we
would not be able to provide the results in real time. The coverage threshold also
influences the time delay between the time of the data availability for a batch during
the run and the time when the analysis of the batch is completed (for higher
thresholds, the delays are longer, because we are processing a larger amount of data).

Until we reach the threshold (for any sampling strategy), the time for an iteration
grows linearly. After the threshold is reached, the time for an iteration becomes nearly
constant, and hence, the cumulative running time after the threshold is reached is
linear. The slope of the resulting linear function depends on the coverage. Figure 4.13
demonstrates this on the B-c strategy, which is the slowest strategy we have.

The importance of the sampling threshold is to ensure that at some point, the set
of reads to be processed in each iteration will reach its potential maximum and will
only grow if the assembly will change dramatically.

4.5. RUNNING TIME 57

Figure 4.12: Cumulative running times of the pipeline for coverage threshold 10000
including basecalling (per iteration). Since the time for iterations, in this case, grows
linearly, the cumulative time trend is a power function. For a longer run, we would
not get the results in real time. The times for B-u are almost identical to the times for
D-u, similarly for B-c and D-c.

Figure 4.13: Cumulative running times of the B-c sampling strategy for different
coverage thresholds including basecalling (per iteration). We can see that the trends
are linear after the thresholds for each coverage are reached.

58 CHAPTER 4. RESULTS

4.6 Batch size

In the previous Sections, there were results achieved with the batch size of 10 files, each
containing 500 reads. Since the batch size influences the running time and the results,
we have also measured the times and evaluated the scores for batch size 20 and 30x
coverage threshold.

Figure 4.14 shows the running times for each of the 12 iterations (indexed from 0).
We can see that after the threshold was reached, the times for an iteration are higher
compared to times for batch size 10 in Figure 4.10. However, the differences are less
than 20% of the batch size 10 run times, so increasing the batch size can be helpful
if the user wants to run the pipeline faster and does not need the output frequently.
The total running time, including base calling approximation (calculated similarly as
for batch size 10), was highest for the B-c strategy (118 minutes), followed by B-u (116
minutes), and the fastest were A-map and A (approximately 95 minutes).

The corrected N50 scores are shown in Figure 4.15. We can see that in this case,
the A and D strategies perform better than the B strategies. Compared to the results
for batch size 10, the results for the D strategies have improved, because with a bigger
batch, we are adding more coverage to the data that Miniasm can use in its filtering.
This is advantageous if there are long reads in the sample, since they have a better
chance of being covered by the reads in the batch and used as whole sequences (not only
as fragments with higher coverage) in the assembly graph in Miniasm. Additionally,
the samples are selected from bigger data sets. Another factor compared to the batch
size 10 runs is that using a larger batch influences the order in which we give the reads to
Minimap and Miniasm, which can have some impact on the results. Also, the assemblies
that are built in the iterations at the beginning of the run are less fragmented compared
to the smaller batches case, which allows us to create a more representative sample
earlier in the run.

The detailed overview of the assembled contigs is shown in Figure 4.17. We can
see that with the bigger batch size, the assemblies for A and D strategies are less
fragmented compared to the B strategies. Figure 4.16 shows the numbers of assembled
contigs per iteration. If we compare them to the runs with smaller batch size, we can
see that for the runs with larger batches, there is a smaller difference between the A
strategies and the others. Also, we can see that the numbers of contigs at the end of
the run are smallest for the D strategies, similarly to the batch size 10 runs.

If we look at the percentages of the reference genome covered by the assembly, we
will see a similar trend as for batch size 10. For the completeness of the analysis,
the plot is provided in Figure 4.18. After the fourth iteration, the assemblies already
cover more than 98% of the reference genome for all of the strategies. The maximum
values achieved in the iterations for all of the strategies are more than 99.5% for each.

4.6. BATCH SIZE 59

Figure 4.14: Running times per iteration for the different sampling strategies for
coverage threshold 30x and batch size 20.

We can also notice that the difference between the A strategies and the others is lower
in this case, compared to the runs with batch size 10.

The results suggest that larger batch sizes can shorten the running time and improve
assembly quality. However, they also cause longer delays between the time when reads
are produced and when the results are available, which introduces a time-quality trade-
off in the choice of the batch size. The resulting percentages of assembly covered by the
sample are similar for the different batch sizes, but the assemblies are more fragmented
with the smaller batch size.

60 CHAPTER 4. RESULTS

Figure 4.15: Corrected N50 score of the assemblies for the runs with 30x coverage
threshold and batch size 20 (per iteration).

Figure 4.16: Number of contigs per iteration for 30x threshold runs with batch size 20.

4.6. BATCH SIZE 61

(a) A (b) A-map

(c) B-c (d) B-u

(e) D-c (f) D-u

Figure 4.17: Assemblies for iterations in runs with 30x coverage threshold and batch
size of 20 files, corrected N50 and N90 score visualization. The red line corresponds to
half of the reference length. The rectangles in each row are the lengths of alignments
of the contigs from assembly to the reference genome for one iteration. The green
rectangles correspond to corrected N50 score; the purple rectangles correspond to
corrected N90 score.

62 CHAPTER 4. RESULTS

Figure 4.18: Percentages of reference genome length covered by assembly for 30x
coverage threshold and batch size 20 (per iteration). We can see that the trend is
similar to the trend in runs with batch size 10.

Chapter 5

Future work

We have built a real-time pipeline for genome assembly of the nanopore sequencing
reads. It uses Minimap2 and Miniasm for the overlap and assembly tasks. They are
used as they are, without any significant modifications. This chapter discusses some
possible improvements and further options for future work.

5.1 Using the reads selected by Miniasm

Using the knowledge of the Miniasm algorithm, we could further improve the quality
of the assembly. The pipeline repository contains a commented and slightly modified
version of Miniasm. The purpose of our modification is that it can output both the GFA
result and the list of reads Miniasm directly uses for the assembly.

Using those reads only instead of the sample is not plausible because of
the Miniasm’s coverage-based filtering step. The problem is that the subset of reads
that passes the coverage-based filtering would not pass the filtering phase for
the second time without the additional reads that were removed in the filtering
phase. We can not remove this step, because it is a crucial part of the Miniasm
algorithm – the parts of the reads that pass the filtering are directly used in
the assembly graph and in the resulting assembly. However, it may be helpful to
ensure that the reads used for the assembly will be included in the sample.

5.2 The order of the reads

From the analysis of our pipeline results, it seems that it may be beneficial to
investigate the impact of the different orderings of the reads for Minimap2. In some
cases, the different order of the reads can result in different mappings and a better
assembly, since the result of Minimap2 depends on the order of the reads.

For example, when we ran Minimap2 on all the reads from the run in the order

63

64 CHAPTER 5. FUTURE WORK

they were given by the basecaller, the number of alignments in the PAF file was slightly
lower (65594967) than in case when the reads were ordered by time (65595019). As
expected, also the resulting assembly from Miniasm was different in the second case (8
contigs from Table 4.2), compared to the first case (9 contigs, three of them short, and
the long contigs shorter than the ones from the assembly with time-sorted reads).

If we sort the reads by length and give them in this order to Minimap2, the number
of alignments is even higher (65904235), and the resulting assembly has eight contigs
with lengths 5569095, 4861634, 4692711, 2784991, 2655155, 131920, 86677 and 47368
for the contig that Miniasm marked as circular. The first five contigs in order by length
are longer than the contigs in Table 4.2 for the case when the reads were sorted by
their sequencing time.

Both Minimap2 and Miniasm are deterministic, but the order of the reads matters.
This fact can be considered and used (not only) in the dynamic assembly process. It is
questionable, whether some specific order of the reads is better in general, since we have
tested this on one dataset only. Further investigation would be necessary to examine
and compare the resulting assemblies on multiple datasets and properly reason why
some order may be better than others in general in context with Minimap2 heuristics
and the use of the Minimap2 result in Miniasm, if some read order should be preferred.

5.3 Speeding up Minimap2 all-vs-all alignment

To further improve the running time of the pipeline, we could use the result from
Minimap2 all-vs-all read alignment from the previous iteration to build a new one. If
we have an alignment of set Si from the i-th iteration, we can re-use it for building
a new alignment for set S(i+1) for (i + 1)-th iteration. If Si ⊆ S(i+1), we already
have the alignments of reads from Si to Si. Then we can align the reads from set
T := S(i+1) − Si to S(i+1), reads from S(i+1) to T and reads from T to T and merge
the outputs with Si vs Si alignment. If Si ̸⊆ S(i+1) we can do a similar procedure with
Si ∩ S(i+1) using a filtered output from Minimap2 for the i-th iteration. Some further
improvements could also be possible if we would save the minimizers for the reads from
Minimap2 to use them in the next iteration. However, there are some other factors that
should be considered for this approach, some of them related to the previous section.

5.4 Different assemblers

The sampling strategies we have proposed are not limited to the Miniasm assembler.
We have decided to use Miniasm, because, in this case, the overlap phase is strictly
separated, as opposed to other assemblers. Also, other assemblers typically implement

5.5. LIMITATIONS 65

the consensus or error correction step, which is slow and unnecessary for our task. It
could be possible to use some other assemblers for this purpose as well, but it might
be necessary to modify their source code to exclude some unnecessary computing.

An example of such assemblers is Flye [10] or Canu [11]. They both use Minimap2
for alignments in their code, so to use our pipeline with the assemblers, we can remove
the all-vs-all Minimap2 alignment from our pipeline. Also, we would have to remove
the consensus step from the source code of the assembler, because it is too slow and
not that important for the real-time assembly.

5.5 Limitations

The contiguity of the assembly is influenced by various factors that are hard to predict.
A small change in the set of the reads or even in their order can cause that the contig
that was built from a smaller subset of reads will not be built from its superset or
the same set if we provide the reads to the assembler ordered in a slightly different
way. The heuristics used by Minimap2 and Miniasm (and also by other commonly
used assemblers, since they use Minimap2 for overlaps) are not very robust. The causes
of specific differences between the results can be investigated, but such investigations
do not give us much new information, since they can not be generalized. Some issues
can be addressed, but they are hard to resolve in general (for example, how to handle
the chimeric reads). Therefore, the information about the contiguity of the assembly in
the real-time monitoring has to be interpreted with respect to this limitation. For this
purpose, we may want to provide the information about the best assembly achieved in
the run to the user, instead of the per-iteration results. However, also the definition
of the best assembly is unclear, since the problem of genome assembly itself is not
properly defined in theory – it is a result of multiple heuristic approaches applied to
the sequencing data.

5.6 User interface

The pipeline creates an HTML file for each iteration. It contains the numeric statistics
and plots. The pipeline repository contains a script that runs a simple HTTP server
that provides a convenient way to display the results in HTML format over the network.
The user can navigate between the results from different iterations using the links in
the HTML files. Since creating the plots in matplotlib might be time-consuming for
large amounts of data, it would be beneficial to implement the user interface using some
web framework as a separate module, saving some time in the pipeline and providing
more options for the user.

66 CHAPTER 5. FUTURE WORK

Conclusion

We have investigated the possibilities of designing algorithms that can perform and
dynamically update the partial sequencing assembly from the sequencing reads in real
time. However, the underlying data structures of the algorithms are highly optimized,
the data processing in those algorithms depends on various heuristics that are necessary
for correct assembly, and they were not designed to be extensible dynamically.

Therefore, we have designed, implemented, and tested an approach that maintains
and dynamically updates a representative sample of the sequenced reads during
the sequencing run. The amount of data varies for different contigs in the genome, so
we consider this information when selecting the sample. With our sampling approach,
we can limit the amount of data processed in each iteration, which ensures that
the time and resource requirements for an iteration remain constant after
the assembly covers most of the genome of the sequenced organism and a certain
coverage of the assembly is reached. This allows the assembly and analysis of
the data in real time, while the new data from the run can further improve
the assembly. We have shown that if we maintain the sample based on per-contig
coverage information, the resulting assembly is similar in the most commonly used
metrics compared to the Miniasm assembly on the whole dataset. Since the assembly
depends not only on the set of the reads in the sample but also on their order and
other factors, the comparison had some limitations.

We have tested our implementation on small (yeast) genomes. With some additional
improvements mentioned in the last chapter, the pipeline could also be used for larger
genomes, which is a subject of future work.

67

68 Conclusion

Bibliography

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215(3):403–410, October 1990.

[2] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25(17):3389–3402, September 1997.

[3] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M
Landolin, and Adam M Phillippy. Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing. Nat. Biotechnol., 33(6):623–630, June
2015.

[4] Vladimír Boža, Peter Perešíni, Broňa Brejová, and Tomáš Vinař. DeepNano-blitz:
a fast base caller for MinION nanopore sequencers. Bioinformatics, 36(14):4191–
4192, 05 2020.

[5] Broňa Brejová and Tomáš Vinař. Metódy v bioinformatike. Knižničné
a edičné centrum, Fakulta matematiky, fyziky a informatiky, Univerzita
Komenského, 2011, 2015. https://compbio.fmph.uniba.sk/vyuka/mbi/

images/e/e1/Skripta-2015-10-01.pdf.

[6] James M. Heather and Benjamin Chain. The sequence of sequencers: The history
of sequencing dna. Genomics, 107(1):1–8, January 2016.

[7] Viktória Hodorová, Hana Lichancová, Stanislav Zubenko, Karolina Sienkiewicz,
Sarah Mae U Penir, Philipp Afanasyev, Dominic Boceck, Sarah Bonnin, Siras
Hakobyan, Urszula Smyczynska, Erik Zhivkoplias, Maryna Zlatohurska, Eugeniusz
Tralle, Alina Frolova, Leszek P Pryszcz, Broňa Brejová, Tomáš Vinař, and Jozef
Nosek. Genome sequence of the yeast saprochaete ingens CBS 517.90. Microbiol.
Resour. Announc., 8(50), December 2019.

[8] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562,
November 1962.

69

https://compbio.fmph.uniba.sk/vyuka/mbi/images/e/e1/Skripta-2015-10-01.pdf
https://compbio.fmph.uniba.sk/vyuka/mbi/images/e/e1/Skripta-2015-10-01.pdf

70 BIBLIOGRAPHY

[9] W. James Kent. Blat—the blast-like alignment tool. Genome Research,
12(4):656–664, March 2002.

[10] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A. Pevzner. Assembly of
long, error-prone reads using repeat graphs. Nature Biotechnology, 37(5):540–546,
Apr 2019.

[11] Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H.
Bergman, and Adam M. Phillippy. Canu: Scalable and accurate long-read
assembly via adaptive k-mer weighting and repeat separation. Genome Research,
27(5):722–736, Mar 2017.

[12] Heng Li. Miniasm GitHub repository. https://github.com/lh3/miniasm.

[13] Heng Li. Minimap GitHub repository. https://github.com/lh3/minimap.

[14] Heng Li. Minimap2 GitHub repository. https://github.com/lh3/minimap2.

[15] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics, 32(14):2103–2110, 03 2016.

[16] Heng Li. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics
(Oxford, England), Sep 2018.

[17] Gene Myers. Efficient local alignment discovery amongst noisy long reads. In Dan
Brown and Burkhard Morgenstern, editors, Algorithms in Bioinformatics, pages
52–67, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[18] Oxford Nanopore Technologies. Oxford Nanopore Technologies website. https:

//nanoporetech.com.

[19] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A
Yorke. Reducing storage requirements for biological sequence comparison.
Bioinformatics, 20(18):3363–3369, December 2004.

[20] Ivan Sovic, Mile Sikic, Andreas Wilm, Shannon Nicole Fenlon, Swaine Chen,
and Niranjan Nagarajan. Fast and sensitive mapping of error-prone nanopore
sequencing reads with graphmap. bioRxiv, 2015.

https://github.com/lh3/miniasm
https://github.com/lh3/minimap
https://github.com/lh3/minimap2
https://nanoporetech.com
https://nanoporetech.com

Appendix A: Source code

This thesis includes an electronic attachment containing the source code of the dynamic
assembly pipeline, which is also available as a GitHub repository:
https://github.com/janka000/dynamic-assembly-pipeline

71

https://github.com/janka000/dynamic-assembly-pipeline

	Introduction
	Assembly of nanopore sequencing reads
	Problem definition
	Sequencing and Oxford Nanopore Technologies
	Nanopore sequencing reads
	Genome assembly as a problem in bioinformatics
	Shortest common superstring
	Overlap-layout-consensus
	De Bruijn graphs

	Minimap and Miniasm
	Before Minimap
	Minimap
	Minimap2
	Miniasm

	Problem of real-time incremental assembly

	Sampling reads for efficient assembly
	Finding sufficient coverage for Miniasm assembly
	The representative sample
	The goal of the sampling process
	Contig coverages
	Limitations of average coverage metric
	Sum of mapping lengths vs. read length
	Repetitive sequences

	Sampling strategies
	Incremental sample
	Mapping new reads to assembly to detect overhangs
	Reducing the bias towards the reads from the start of the run
	Preferring longer reads

	Summary

	Building a real-time assembly pipeline
	Pipeline structure and components
	Reads in the pipeline iteration
	The pipeline components

	Pipeline output for an iteration
	Statistics

	Time efficiency
	Technical details of pipeline implementation

	Results
	The data and the reference assembly
	Assembly evaluation metrics
	Determining sufficient coverage threshold
	The quality of the assembly
	Running time
	Batch size

	Future work
	Using the reads selected by Miniasm
	The order of the reads
	Speeding up Minimap2 all-vs-all alignment
	Different assemblers
	Limitations
	User interface

	Conclusion
	Appendix A

