
Princípy tvorby softvéru, FMFI UK

Architecture

Jana Kostičová, 11.10.2023

SDLC - Waterfall

& architecture

● Camelot is based on the client-server model and uses remote procedure calls both
locally and remotely to provide communication among applications and servers.”

● “Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous devices.
The architecture encourages a client server model for the structuring of applications.”

● “We have chosen a distributed, object-oriented approach to managing information.”

● “The easiest way to make the canonical sequential compiler into a concurrent compiler
is to pipeline the execution of the compiler phases over a number of processors. . . . A
more effective way [is to] split the source code into many segments, which are
concurrently processed through the various phases of compilation [by multiple compiler
processes] before a final, merging pass recombines the object code into a single
program.”

Is it worth the effort to design software well?

Software architecture
= the organization or structure of a system, where the system represents a
collection of components that accomplish a specific function or set of functions.

● A (software) component is a part of a software system that encapsulates a specific
piece of functionality, e.g., libraries, modules, web components, plugins, ..

● Components serve as the building blocks for the structure of a system

● Components are connected via interfaces

● Components are typically specified in different views to show the relevant functional
and non-functional properties of a software system

Interface
(Software) interface is a shared boundary across which two or more separate
(software) components of a computer system exchange information.

● ABI - Application binary interface - typically not relevant (created by compiler /
other tools).

● API - Application programming interface
● User interfaces

4+1 architectural view model

1. Logical view
● Describes the system in terms of components, their interactions, and the functionality

they provide
● The perspective of end users (and stakeholders in general}
● UML: Use Case diagrams, UML Class diagrams, …

2. Process view
● Captures dynamic behavior of the system - the interactions and collaborations

among processes, tasks, threads, and components during runtime
● Important for understanding concurrency, performance, and resource utilization.
● UML: Sequence diagram, Communication diagram, Activity diagram, …

4+1 architectural view model

3. Development view
● Describes software organization - SW modules and components, their

relationships, source code organization, ….
● The perspective of developers
● UML: Package diagrams, Component diagrams

4. Physical view
● Describes the system's physical architecture, including hardware components,

network topology, and distribution of software components across different
machines or nodes

● Addresses concerns related to deployment, scalability, and performance
optimization

● UML: Deployment diagram

4+1 architectural view model

5. Scenarios

● “+1” aspect of the model
● Illustrate how the system functions in real-world situations, using a small set

of use cases (scenarios)

(Modern) principles of software architecture
● Separation of Concerns (SoC)

○ Keeping different aspects of the system's functionality or behavior separate and
well-defined

○ Each part of the codebase has a single responsibility that makes the code more
maintainable and understandable

● Modularity
○ Organizing software into discrete, interchangeable components or modules

● Avoid Big Design Up Front (BDUF)
● Build to change instead of build to last
● Use consistent principles within the components / layers / subsystems
● …

Architectural styles and patterns
Similar to design patterns:

● Provide abstract framework for a family of systems
● Help communication

Architectural styles and patterns
Architecture addresses a wide variety of issues

We have various types of styles/patterns and some of the, can be mutually
combined

● Deployment
● Structure
● Communication
● Domain
● Network
● ….

Common architectural styles / patterns
● Client-server model
● Peer-to-peer model

● Component-based architecture
● Service-oriented architecture
● Microservices architecture

● Layered architecture
● Domain-driven development
● Model-view-controller

Client-server model
● Used in networking / distributed systems
● One or more clients connected to a server over a network or internet

connection.
● The server hosts, delivers and manages most of the resources and services

to be consumed by the client

● Example:
web browsing Client 1

Server

Client 2

Network

Peer-to-peer (P2P) model
● Used for distributed systems
● Computers, devices, or nodes within a network (peers) communicate and

collaborate directly with each other without the need for a centralized server
or hierarchy of control

● Each peer has equivalent capabilities, and they can act both as clients and
servers, sharing resources, data, or services with one another.

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Component-Based architecture
● System consists of loosely coupled components
● “Separation of Concerns” is applied
● Components are primarily intended for use within a single application, their

interactions are local, within the boundaries of that application

=> modularity, reusability, interoperability, encapsulation, maintainability,
scalability, …

Service-Oriented architecture (SOA)
● Services are the fundamental building blocks of the system
● Service = a self-contained unit of functionality that represents a specific

business process or capability
● Services can be considered as software components that expose

well-defined interfaces (usually via standardized protocols like HTTP or
SOAP) and can be invoked by other services or applications

● Common approaches to implement SOA
○ SOAP (Simple Object Access Protocol)
○ REST (Representational State Transfer)

Microservice architecture
● A variant of SOA
● Loosely coupled, fine-grained services
● Microservices focus on one thing and operate independently

● Commonly used e.g., in cloud-native applications

Medium - SOA and Microservices Architecture comparison

https://miro.medium.com/v2/resize:fit:2000/format:webp/1*8-uN932TKtSjNwLw3XuoJQ.png

Domain Driven design (DDD)
● The software systems is build “around” the core domain knowledge and

concepts of a business

● The structure and language of software code (class names, class methods,
class variables) and data entities should match the business domain

● Example: if software processes loan applications, it might have classes like
"loan application", "customers", and methods such as "accept offer" and
"withdraw".

Layered architecture
● Components within the layered architecture pattern are organized into

horizontal layers
● Each layer performs a specific role within the application
● 3-layer architecture:

○ Presentation layer (UI layer)
○ Application layer
○ Data access layer

● Physical view - 3-tier architecture - example:
○ Presentation layer (UI layer) - web browser
○ Application layer - web server(s)
○ Data access layer - database server(s)

Model-view-controller
● The model manages the

data of the application.

● The view renders
presentation of the model in
a particular format (chart,
table, ..)

● The controller processes
the user input and updates
the data model objects.

Resources
● SWEBOOK v3

● Ian Sommerville: Software Engineering (10th edition)

● Robert Lukotka: Architecture

● Martin Fowler: Design Stamina Hypothesis

● Wikipedia: Domain-driven design

● MVC Diagram (Model-View-Controller) byXinfe, CC BY-SA 3.0

http://www.dcs.fmph.uniba.sk/~lukotka/PTS/24Architecture.pdf
https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://commons.wikimedia.org/wiki/File:MVC_Diagram_%28Model-View-Controller%29.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

