Architecture

Principy tvorby softvéru, FMFI UK Jana Kosticova, 11.10.2023

SDLC - Waterfall

Lot |

P —
—

L]

Camelot is based on the client-server model and uses remote procedure calls both
locally and remotely to provide communication among applications and servers.”

“Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous devices.
The architecture encourages a client server model for the structuring of applications.”

“We have chosen a distributed, object-oriented approach to managing information.”

“The easiest way to make the canonical sequential compiler into a concurrent compiler
is to pipeline the execution of the compiler phases over a number of processors. ... A
more effective way [is to] split the source code into many segments, which are
concurrently processed through the various phases of compilation [by multiple compiler
processes] before a final, merging pass recombines the object code into a single
program.”

Is it worth the effort to design software well?

Good design

No design

... but up here there is no useful trade-off
Design payoff line

Down here it may be worth trading off
design quality for time to market.

Cumulative functionality

Time

Software architecture

= the organization or structure of a system, where the system represents a
collection of components that accomplish a specific function or set of functions.

e A (software) component is a part of a software system that encapsulates a specific
piece of functionality, e.g., libraries, modules, web components, plugins, ..

e Components serve as the building blocks for the structure of a system
e Components are connected via interfaces

e Components are typically specified in different views to show the relevant functional
and non-functional properties of a software system

Interface

(Software) interface is a shared boundary across which two or more separate
(software) components of a computer system exchange information.

e ABI - Application binary interface - typically not relevant (created by compiler /
other tools).

e API - Application programming interface
e User interfaces

4+1 architectural view model

1. Logical view
e Describes the system in terms of components, their interactions, and the functionality
they provide
e The perspective of end users (and stakeholders in general}
e UML: Use Case diagrams, UML Class diagrams, ...

2. Process view
e Captures dynamic behavior of the system - the interactions and collaborations
among processes, tasks, threads, and components during runtime
e Important for understanding concurrency, performance, and resource utilization.
e UML: Sequence diagram, Communication diagram, Activity diagram, ...

4+1 architectural view model

3. Development view
e Describes software organization - SW modules and components, their
relationships, source code organization,
e The perspective of developers
e UML: Package diagrams, Component diagrams

4. Physical view
e Describes the system's physical architecture, including hardware components,

network topology, and distribution of software components across different
machines or nodes

e Addresses concerns related to deployment, scalability, and performance
optimization

e UML: Deployment diagram

4+1 architectural view model

5. Scenarios

e “+1” aspect of the model

e |lllustrate how the system functions in real-world situations, using a small set
of use cases (scenarios)

(Modern) principles of software architecture

Separation of Concerns (SoC)
o Keeping different aspects of the system's functionality or behavior separate and
well-defined
o Each part of the codebase has a single responsibility that makes the code more
maintainable and understandable
Modularity
o Organizing software into discrete, interchangeable components or modules
Avoid Big Design Up Front (BDUF)
Build to change instead of build to last

Use consistent principles within the components / layers / subsystems

Architectural styles and patterns

Similar to design patterns:

e Provide abstract framework for a family of systems
e Help communication

Architectural styles and patterns

Architecture addresses a wide variety of issues

We have various types of styles/patterns and some of the, can be mutually
combined

Deployment
Structure
Communication
Domain
Network

Common architectural styles / patterns

e Client-server model
e Peer-to-peer model

e Component-based architecture
e Service-oriented architecture
e Microservices architecture

e Layered architecture
e Domain-driven development
e Model-view-controller

Client-server model

e Used in networking / distributed systems
e One or more clients connected to a server over a network or internet

connection.
e The server hosts, delivers and manages most of the resources and services

to be consumed by the client
e Example: ~
web browsing [Client 1
g (Server
\ .
[Client 2

Peer-to-peer (P2P) model

e Used for distributed systems

e Computers, devices, or nodes within a network (peers) communicate and
collaborate directly with each other without the need for a centralized server
or hierarchy of control

e [Each peer has equivalent capabilities, and they can act both as clients and
servers, sharing resources, data, or services with one another.

[Workstation }
[Workstation Workstation

J A J

~

[Workstation l Workstation
’ [Workstation }

Component-Based architecture

e System consists of loosely coupled components

e “Separation of Concerns” is applied

e Components are primarily intended for use within a single application, their
interactions are local, within the boundaries of that application

=> modularity, reusability, interoperability, encapsulation, maintainability,
scalability, ...

Service-Oriented architecture (SOA)

e Services are the fundamental building blocks of the system

e Service = a self-contained unit of functionality that represents a specific
business process or capability

e Services can be considered as software components that expose
well-defined interfaces (usually via standardized protocols like HTTP or
SOAP) and can be invoked by other services or applications

e Common approaches to implement SOA

o SOAP (Simple Object Access Protocol)
o REST (Representational State Transfer)

Microservice architecture

e Avariant of SOA
e Loosely coupled, fine-grained services
e Microservices focus on one thing and operate independently

e Commonly used e.g., in cloud-native applications

Medium - SOA and Microservices Architecture comparison

https://miro.medium.com/v2/resize:fit:2000/format:webp/1*8-uN932TKtSjNwLw3XuoJQ.png

Domain Driven design (DDD)

e The software systems is build “around” the core domain knowledge and
concepts of a business

e The structure and language of software code (class names, class methods,
class variables) and data entities should match the business domain

e Example: if software processes loan applications, it might have classes like

"loan application”, "customers”, and methods such as "accept offer" and
"withdraw".

Layered architecture

e Components within the layered architecture pattern are organized into
horizontal layers
e Each layer performs a specific role within the application
e 3-layer architecture:
o Presentation layer (Ul layer)
o Application layer
o Data access layer
e Physical view - 3-tier architecture - example:
o Presentation layer (Ul layer) - web browser
o Application layer - web server(s)
o Data access layer - database server(s)

Model-view-controller

The model manages the
data of the application.

The view renders
presentation of the model in
a particular format (chart,
table, ..)

The controller processes
the user input and updates
the data model objects.

CONTROLLER

Resources

e SWEBOOKV3
e |an Sommerville: Software Engineering (10th edition)

e Robert Lukotka: Architecture

e Martin Fowler: Design Stamina Hypothesis

e \Wikipedia: Domain-driven design

e MVC Diagram (Model-View-Controller) byXinfe, CC BY-SA 3.0

http://www.dcs.fmph.uniba.sk/~lukotka/PTS/24Architecture.pdf
https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://commons.wikimedia.org/wiki/File:MVC_Diagram_%28Model-View-Controller%29.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

