
Princípy tvorby softvéru, FMFI UK

Documentation &
Maintenance

Jana Kostičová, 22.11.2023

Documentation

Why
documentation?

1. Facilitates communication
○ Within the development team itself
○ Between the development team

and the project management
○ With customer

2. Records contracts and
agreements

Why documentation?

3. Provides information
○ For users and system

administrators
○ For future maintenance
○ For project management

Classification

Software
documentation

Process
documentation

● Records the process of
SW development and
maintenance

Product
documentation

● Describes the product
being developed

Process documentation:
-> Records the process of SW development and maintenance

● PM documents
○ Predict and control the SW process
○ E.g., schedules, plans, estimates

● Reports
○ Report resource usage during the SW process
○ E.g., amount of man-days consumed, deadlines satisfaction

● Standards
○ Set out how the SW process is to be implemented
○ E.g., coding standards, documentation standards

● Communication documents
○ Record the details of everyday communication
○ E.g., memos, e-mail discussions, meeting minutes, version history

➢ These documents
becomes quickly
out of date!

Product documentation
-> Describes the product being developed

1. System documentation -> Describes how the system works
○ Requirements
○ Architecture & design
○ Source code listings (commented)
○ Validation & verification documents (testing,..)
○ Maintenance documents (List of Known Bugs, HW and SW dependencies, ..)

2. User documentation -> Tells user how to use the SW product
○ Should take into account all relevant user classes

■ E.g., end users vs. system administrators
○ Should take into account various levels of expertise

■ E.g., beginners -> screenshots, tutorials, use cases/scenarios
advanced users -> function reference, detailed description

➢ These documents
have longer lifespan

User documentation - typical documents
● Functional description

○ Provides system overview - a brief description of services provided

● System installation document
○ Describes how to install the system in a particular environment

● Introductory manual
○ Informal introduction to the system - describes its “normal” usage

● System reference manual
○ Describes all system functions/services, error messages and error

recovery methods in detail

● System administrator’s guide
○ Documents the system’s faults and advanced configuration options

● But also: Context help, On-line help, FAQs, Knowledge
Base, Tutorials, Mailing lists, Forums, Blogs, ..

➢ Note that it might
be difficult to
change already
published API
documentation
(why?)

Document form
● Documents - Office, PDF, text, HTML,..
● Diagrams - UML, ..
● Wiki
● Document/content management systems
● E-mail messages
● Bug/issue reports
● Version history
● …

Each (product) document
provides a separate view of the
system and these views overlap

It is important to keep all
documents up-to-date and
mutually consistent !

Document structure
● All documents for a given product should have a similar structure

○ A good reason for product standards

● The IEEE Standards list such a structure
○ It is a superset of what most documents need

Common “best practices”:

● Project identification
● Document identification
● Author, Approver
● Document type
● Current version, history
● Distribution list

● Confidentiality class
● Abstract, Keywords
● Copyright notice
● List of notions and abbreviations
● Table of contents, division into chapters

and subchapters
● Index

Cover page
example

 (Sommerville, 2002)

Documentation management
● Amount of documentation grows quickly
● It is inevitable to manage the

documentation efficiently
○ Use predefined document templates
○ Specify location for each type of document clearly
○ Use document (content) management systems
○ Use version control
○ Generate documentation automatically (Doxygen,

NDoc, javadoc, Swagger ..)

● Recommended minimal system
documentation:

○ Requirements specification, architecture/design
documents, commented source code

➢ It is better to provide a
minimal but up-to-date and
consistent documentation
than a comprehensive but
poorly maintained
documentation

Maintenance

Software maintenance
= Modifying a system after it has been put into use

✓ Modifies existing components
✓ Adds new components to the system

 x (Normally) does not significantly change the system’s architecture

Maintenance is not only bug fixing!

But also: adapting the software to changing
requirements, changing environment, ...

➢ In fact, corrections represent
only 20-25% of all
maintenance tasks

Why software maintenance?
Environment of system operation changes in time

-> Requirements on system changes in time (and new requirements emerge)
-> Systems MUST be maintained if they are to remain useful in an environment

Types of maintenance (ISO/IEC 14764)

1. Adaptive: Modifying the system to cope with environment changes (computer, OS, etc.)

2. Perfective: Modifying the system to satisfy new or modified requirements

3. Corrective: Correcting discovered problems

4. Preventive: Detecting and correcting latent faults before they become effective faults

Corrective (21%)

Adaptive (25%)

Preventive (4%)

Perfective (50%)

 (Lientz and Swanson,, 1980)

Why does software maintenance cost so much?
● It is usually more expensive to add functionality

after a system has been developed rather than
design this into the system

● Expensive activity: To figure out
○ WHAT part of code to modify and
○ HOW to modify it

● Overall maintenance costs:
○ Usually 2* to 100* greater than development costs (Ian Sommerville, 2000)
○ Affected by both technical and non-technical factors

Factors affecting maintenance cost
● Team stability

○ Costs are reduced if the same staff are involved for some time
○ In case of staff turnover, "cultural" knowledge of the software is lost

● Contractual responsibility
○ The developers of a system may have no contractual responsibility for maintenance

so there is no incentive to design for future change

● Staff skills
○ Maintenance staff are often inexperienced and have limited domain knowledge
○ Maintenance is generally considered as an unglamorous task and is typically

assigned to the team newcomers

● Inadequate configuration management
○ Different representations of a system are out of step

Factors affecting maintenance cost
● Inadequate documentation

○ Insufficient, incomplete, inconsistent or out-of-date documentation makes it more difficult to
understand the system

○ Reverse engineering may help

● Inflexible design/architecture
○ The architecture and/or design of the system is too rigid to allow for simple implementation of

requested changes
○ Costs are increased especially in case that significant changes in original software design are

not allowed

● Program age and structure
○ Programs are poorly structured already during the initial development
○ As programs age, their structure is degraded and they become harder to understand and

change (e.g., old languages, compilers, programming styles, design patterns)
○ Maintenance corrupts the software structure so makes further maintenance more difficult.

Well-known maintenance examples
● Y2K (1.1.2000) - worldwide
● SKK -> EUR (1.1.2009) - Slovakia

-> Many systems had to be updated
-> In both cases, complex analysis was needed
 (find where changes need to be made)

Maintenance process
● Complex and varied (depends on type of maintenance)

● In general:

 Request (in
standard
format)

Triage
(determine
priorities)

Analyse
(cost &
impact)

Design &
implement Test Document

Structured vs. unstructured maintenance
Structured maintenance:

Unstructured maintenance (emergency repair):

Clearly structured maintenance is a more reliable and (usually) a more efficient
process - unfortunately, it's not always possible

Maintainable software
● Good initial design
● Understandable software structure
● Accurate documentation
● Good configuration management
● Use of standards (design, language, coding, etc.)

References
Documentation

● Ian Sommerville: Software documentation, In Software Engineering, Vol 2: The Supporting
Processes. R. H. Thayer and M. I. Christensen (eds), Wiley-IEEE Press.[Book chapter], 2002.

● ISO/IEC/IEEE 15289:2015: Systems and software engineering - Content of life-cycle information
items (documentation), 2015

● IEEE 829-2008: Standard for Software and System Test Documentation, 2008
● IEEE 1063-2001: Standard for Software User Documentation, 2001
● Google Style Guides: https://github.com/google/styleguide

Maintenance
● Ian Sommerville: Software Engineering (10th edition), 2015
● Pigoski, Thomas. Chapter 6: Software Maintenance (PDF). SWEBOK. IEEE. 2001,

http://sce.uhcl.edu/helm/SWEBOK_IEEE/data/swebok_chapter_06.pdf
● Lientz B., Swanson E.: Software Maintenance Management. Addison Wesley, Reading, MA, 1980
● ISO/IEC 14764:2006: Software Engineering - Software Life Cycle Processes - Maintenance, 2006
● IEEE STD 1219-1998: Standard for Software Maintenance, 1998

Standards: TODO

https://github.com/google/styleguide
http://sce.uhcl.edu/helm/SWEBOK_IEEE/data/swebok_chapter_06.pdf

Field “Product code”:
Contains product code.
It must consist of 1-6
digits. Duplicate product
codes are not allowed.

NFR-34: Product code
consists of 1-6 digits.
NFR-35: Make extension of
product code up to 10 digits
easy to implement in the
future.

Modified requirement:
Product code consists of 1-8 digits.
Rationale:
Product code currently consists of 1-6 digits.
Starting from 1.1.2017 the e-shop will offer
third-party products so that their original product
codes will be used. These third-party product
codes consist of 8 digits.

User documentation: Requirements specification:

Analyze
documentation

Code with comments: Architecture & design documents/models:

/** Check product code consists of 1-6
digits. Check code is unique in DB.

@param product code to be checked
@throws ValidationException
*/
public void verifyProductCode(String
code) throws ValidationException {
...

PRODUCT

CODE VARCHAR2(10)
<pk>

NAME VARCHAR2(20)

… ...

PRODUCT

PRODUCT_CODE VARCHAR2(20) <pk>

PRODUCT_NAME VARCHAR2(20)

... ...

Table PRODUCT in local DB:

Table PRODUCT in interface
eshop <-> order system

