Build process & build
management

PTS3/FMFI UK/ 24.4.2024 Jana Kostiova

Build process

Building SW = processing source code and its dependencies into a It depends on various factors

form that can be executed or used by a computer system. what activities are involved
(programming language,

size and type of application,

Writing / generating sources Broader e T ETE

Static checking

build process

e Preprocessing (C / C++, some Fortran dialects, ..)

e Compilation (compiled languages)

e Linking (C/ C++, assembly language, ..) Core

e Dependency resolution s build process
o

Packaging / bundling

Automated tests

Deployment Broader

build process

Build tools

e Manual building - may suffice for extremely small projects with minimal
dependencies
e Build tools - highly recommended if we have anything more complex

Key functionalities

e Build automation
o Scripting tasks for efficient and repeatable builds

e Build configuration
o Defining different build configurations (e.g., development, testing, production).

e Dependency management
o Automatically managing external libraries needed by the software

e Running automated tests
e Facilitating Continuous Integration (ClI)

Simple projects

p

Local
Change build & >
tests

Main
codebase

_/ push /
pull request + merge

e Build tools might not be needed
e Code quality is only checked locally

Continuous Integration (Cl) workflow

Cl solution

Main
codebase

i Automated Automated
! build tests] OK
| : Y
ost | Pull : y
___________ e_ SS request Code review erge
Change i e S —
| ' Automated Automated |
; | build tests _
Local ; — Fail
build & : Pull ' _ ,
: Code review
tests : request

Local builds vs CI builds

Local builds
o Provide a fast feedback loop for developers during their coding process
o Help to catch errors early on before committing code

Cl builds

o Offer a “safety net” by ensuring code integrates and functions correctly before merging
into the main codebase

o Provides feedback to the developer on the success or failure of the build and test

o Requires automatization of build process

Together, they help maintain code quality and catch issues early in the
development cycle

Both of them should use the same build tool and similar configuration
o Some differences may appear (e.g., omitting some tests in local environment)

Build tools - examples

Make

Apache Ant

Apache Maven

Gradle

Npm (Node.js / JavaScript)

GNU make

e Emerged in the late 1970s and still used today
e Popular for C/C++, can be used also for other languages
e Configuration file: Makefile

Main features
e Tracks dependencies between target files and their prerequisites efficiently
e Rebuilds only what's necessary based on changes
e Extensible through scripting and external tools

Limitations
e Relies on shell scripting
e Works well with simple to moderately complex projects, but very large projects can become
challenging to maintain
e Does not provide support for managing external dependencies (core requirement for Java
projects)

Apache Ant |
rd

N
\ g
e Released in 2000 {A
<AP

e Configuration file: build.xml
ACHE ANT>

Main features

e Uses XML
Specifies build steps and tracks compilation dependencies similarly to “make” tool
(imperative approach)

e Provides limited dependency management

e Cross-platform

e Extensible

e Adapts to existing project layout
Limitations

e Limited dependency management - Ant has no means of downloading external
dependencies from a central repository or resolve version conflicts
e No direct support for running automated tests

Apache Maven M a Ve nm

e Released in 2004
e Emerged from within the Java ecosystem to address its specific needs
e Configuration file: pom.xml

Main features
e |tuses XML
e Predefined build phases - build process is defined using plugins and goals, build phases are
performed based on this configuration (declarative approach)
e Less verbose than Ant
e Robust dependency management - libraries are downloaded from maven repository, versions are
tracked explicitly allowing version conflict detection

Limitations
e Steeper learning curve
e |t works best with standard Maven project structure
e Customization might be complex - it is required to be familiar with Maven plugin development

Apache Maven - default build phases

validate

compile

test

package (e.g. to JAR / WAR / EAR file)

integrate-test

verify (additional checks on the packaged artifact)

install (installing packaged artifact into local Maven repository)
deploy (deploying packaged artifact into remote repository)

Gradle

ﬁ Gradle

e Concise syntax - uses Groovy and Kotlin-based DSL
e Flexible approach to determine the execution order of the tasks (DAG)
e Robust dependency management

e Released in 2009
e Configuration file: build.gradle

Main features

Limitations

e High flexibility may lead to complex configuration files with hard-to-understand
semantics

References

GNU make: https://www.gnu.org/software/make/
Apache Ant: https://ant.apache.org/

Apache Maven: https://maven.apache.org/
Gradle: https://gradle.org/

https://www.gnu.org/software/make/
https://ant.apache.org/
https://maven.apache.org/
https://gradle.org/

