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Outline

● Major architectural patterns
○ Monolith
○ Service Oriented Architecture
○ Microservices
○ Event sourcing

● Bonus Patterns
○ Monolith to Microservices migration
○ Circuit Breaker
○ CQRS - Command and Query Responsibility Separation



Example recap

● E-commerce site
○ Customer buys goods
○ Company employees manage the inventory and orders



Major Architectural Patterns and Styles
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Monolith

● Single unified software application, that is self-contained
● Pros

○ Simplicity - everything in single codebase
○ Efficiency - fast communication between sub-modules
○ Ease of development - running locally, debugging, …

● Cons
○ Maintainability
○ Scalability
○ Agility - adding new features can be complex
○ Single point of failure
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Service Oriented Architecture

● Service-oriented architecture (SOA) is a method of software development that 
uses software components called services to create business applications

● Pros
○ Reusability
○ Scalability
○ Agility
○ Loose Coupling
○ Platform Independence

● Cons
○ Complexity
○ Network overhead
○ Ease of development - distributed debugging, difficult to run locally



Enterprise Service Oriented Architecture
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Enterprise Service Oriented Architecture

● Simplify communication and service discovery in settings with high number of 
services

● Enterprise Service Bus
○ Message routing
○ Data and protocol transformation
○ Security enforcement
○ Monitoring and management

● Pros
○ Central integration point
○ Loose coupling
○ Standardization

● Cons
○ Increased complexity
○ Performance overhead
○ Increased cost and vendor lock-in



Microservices
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Microservices

● Microservices are an architectural approach to software development where 
software is composed of small independent services that communicate over 
well-defined APIs

● Pros
○ Scalability
○ Agility
○ Fault tolerance
○ Improved maintainability
○ Technology independence

● Cons 
○ Increased complexity
○ Distributed debugging
○ Communication overhead
○ Deployment complexity



Microservices - related patterns

● How to split?
○ Business capability - models organization
○ Subdomain
○ Self contained service
○ Team

● Database per service vs Shared database
● API Composer

○ Builds out a facade and unifies multiple services
● Critiques

○ Right granularity - 
https://thenewstack.io/year-in-review-was-2023-a-turning-point-for-microservices/ 

○ Focus on composability - 
https://thenewstack.io/composable-architectures-vs-microservices-which-is-best/ 

https://thenewstack.io/year-in-review-was-2023-a-turning-point-for-microservices/
https://thenewstack.io/composable-architectures-vs-microservices-which-is-best/


Composable Architecture

● API first design
● Focus on reusability
● API gateway for publishing APIs



Microservices vs Service Oriented Architecture

Spot the difference
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Bottom line: Well designed SOA is very similar to microservice architecture



Event Sourcing
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Summary

● Metrics to evaluate your architecture
○ Simplicity/Complexity
○ Agility
○ Scalability
○ Maintainability
○ Developer experience (local development, debugging)
○ Fault tolerance
○ Technology independence
○ Communication overhead

● Service Oriented Architecture, Microservices, Composable architecture are all 
refinement of the similar concepts - do not get too hung on the details!

● Beware of the marketing lingo - focus on the underlying principles!
● Complexity kills - apply just enough architecture!



Bonus Patterns



Monolith to Microservices Migration

● Big bang
● New features are created as microservices
● Extract functionality (strangler pattern)
● Anticorruption layer

https://turnoff.us/geek/enterprise-vs-startup-journey-to-cloud/
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Command and Query Responsibility Segregation (CQRS)
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