
Service Architectural 
Patterns

Michal KostičPTS3 / FMFI UK / 17.4.2024



Outline

● Major architectural patterns
○ Monolith
○ Service Oriented Architecture
○ Microservices
○ Event sourcing

● Bonus Patterns
○ Monolith to Microservices migration
○ Circuit Breaker
○ CQRS - Command and Query Responsibility Separation



Example recap

● E-commerce site
○ Customer buys goods
○ Company employees manage the inventory and orders



Major Architectural Patterns and Styles



Expectation Reality



Monolith

Shopping 
Cart

Customers

Orders

Inventory

Payments



Monolith

● Single unified software application, that is self-contained
● Pros

○ Simplicity - everything in single codebase
○ Efficiency - fast communication between sub-modules
○ Ease of development - running locally, debugging, …

● Cons
○ Maintainability
○ Scalability
○ Agility - adding new features can be complex
○ Single point of failure



Service Oriented Architecture

Shopping 
Cart

Customers

Orders

Inventory

Payments
Order ServiceShopping 

Cart Service

Inventory 
Service

Customer 
Service



Service Oriented Architecture

● Service-oriented architecture (SOA) is a method of software development that 
uses software components called services to create business applications

● Pros
○ Reusability
○ Scalability
○ Agility
○ Loose Coupling
○ Platform Independence

● Cons
○ Complexity
○ Network overhead
○ Ease of development - distributed debugging, difficult to run locally



Enterprise Service Oriented Architecture

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

Enterprise Service Bus (ESB)

Service 
DiscoveryMessage Broker

Routing Transformation



Enterprise Service Oriented Architecture

● Simplify communication and service discovery in settings with high number of 
services

● Enterprise Service Bus
○ Message routing
○ Data and protocol transformation
○ Security enforcement
○ Monitoring and management

● Pros
○ Central integration point
○ Loose coupling
○ Standardization

● Cons
○ Increased complexity
○ Performance overhead
○ Increased cost and vendor lock-in



Microservices

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

Enterprise Service Bus (ESB)

Service 
DiscoveryMessage Broker

Routing Transformation

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

HTTP



Microservices

● Microservices are an architectural approach to software development where 
software is composed of small independent services that communicate over 
well-defined APIs

● Pros
○ Scalability
○ Agility
○ Fault tolerance
○ Improved maintainability
○ Technology independence

● Cons 
○ Increased complexity
○ Distributed debugging
○ Communication overhead
○ Deployment complexity



Microservices - related patterns

● How to split?
○ Business capability - models organization
○ Subdomain
○ Self contained service
○ Team

● Database per service vs Shared database
● API Composer

○ Builds out a facade and unifies multiple services
● Critiques

○ Right granularity - 
https://thenewstack.io/year-in-review-was-2023-a-turning-point-for-microservices/ 

○ Focus on composability - 
https://thenewstack.io/composable-architectures-vs-microservices-which-is-best/ 

https://thenewstack.io/year-in-review-was-2023-a-turning-point-for-microservices/
https://thenewstack.io/composable-architectures-vs-microservices-which-is-best/


Composable Architecture

● API first design
● Focus on reusability
● API gateway for publishing APIs



Microservices vs Service Oriented Architecture

Spot the difference

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

HTTP

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

Bottom line: Well designed SOA is very similar to microservice architecture



Event Sourcing

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

HTTP

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

Event Store



Summary

● Metrics to evaluate your architecture
○ Simplicity/Complexity
○ Agility
○ Scalability
○ Maintainability
○ Developer experience (local development, debugging)
○ Fault tolerance
○ Technology independence
○ Communication overhead

● Service Oriented Architecture, Microservices, Composable architecture are all 
refinement of the similar concepts - do not get too hung on the details!

● Beware of the marketing lingo - focus on the underlying principles!
● Complexity kills - apply just enough architecture!



Bonus Patterns



Monolith to Microservices Migration

● Big bang
● New features are created as microservices
● Extract functionality (strangler pattern)
● Anticorruption layer

https://turnoff.us/geek/enterprise-vs-startup-journey-to-cloud/



Circuit Breaker

Service External 
Service

Timeout blocks our service as well

Service External 
Service

Circuit 
Breaker

Circuit breaker detects failure and returns immediately



Command and Query Responsibility Segregation (CQRS)

Command 
Service

Command 
Model

Write 
Database

Query Service

Query Model
Read 

Database

Event

Command

DTO


