
Princípy tvorby softvéru 2, FMFI UK

Architecture & design

Jana Kostičová, 16.10.2024

SDLC - Waterfall

Business
analysis

Requirements

Architecture &
design

Implementation

Verification &
validation

Maintenance

● Camelot is based on the client-server model and uses remote procedure calls both
locally and remotely to provide communication among applications and servers.”

● “Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous devices.
The architecture encourages a client server model for the structuring of applications.”

● “We have chosen a distributed, object-oriented approach to managing information.”

● “The easiest way to make the canonical sequential compiler into a concurrent compiler
is to pipeline the execution of the compiler phases over a number of processors. . . . A
more effective way [is to] split the source code into many segments, which are
concurrently processed through the various phases of compilation [by multiple compiler
processes] before a final, merging pass recombines the object code into a single
program.”

Is it worth the effort to design software well? [4]

Software architecture
= the organization or structure of a system, where the system represents a
collection of components that accomplish a specific function or set of functions.

● A (software) component is a part of a software system that encapsulates a specific
piece of functionality, e.g., libraries, modules, services, web components, plugins, ..

● Components serve as the building blocks for the structure of a system

● Components are connected via interfaces

● Components are typically specified in different views to show the relevant functional
and non-functional properties of a software system

Interface
(Software) interface is a shared boundary across which two or more separate
(software) components of a computer system exchange information.

● ABI - Application binary interface - typically not relevant (created by compiler /
other tools).

● API - Application programming interface
● User interfaces

Architecture vs design
Software architecture

● High-level structure of the entire system and its division into a set of
components

Software design

● Internal structure of individual components

4+1 architectural view model
= a model "describing the architecture of software-intensive systems, based on the
use of multiple, concurrent views" [6]

1. Logical view
2. Process view
3. Development view
4. Physical view
+ scenarios

4+1 architectural view model: Logical view
● Describes the system in terms of components, their relations, and the functionality they provide
● The perspective of end users (and stakeholders in general)
● Overlap with “Requirements” phase

● UML: Use Case diagrams, UML Class diagrams, …

Example:
E-commerce store may contain
classes:

● Shopping Cart
● Cart Item
● Product
● …

cartId: int

Shopping
Cart

addItem
(productId, qty)

cartItemid: int
cartId: int
productId: int
quantity: int

Cart Item

IncreaseQty(qty)

Product
productId: int
name: string
stockQuantity: int

Shopping
Cart

Product
Catalog

4+1 architectural view model: Process view
● Captures dynamic behavior of the system - the interactions and collaborations

among processes, tasks, threads, and components during runtime
● Important for understanding concurrency, performance, and resource utilization.
● UML: Sequence diagram, Communication diagram, Activity diagram, …

Example:
E-commerce store may contain processes:

● AddItemProcess: Handles adding item to a shopping basket
● CheckoutProcess: Manages completion of an order

4+1 architectural view model: Development view
● Describes software organization - SW modules and components, their relationships, source

code organization, ….
● Mapping of components from the Logical view into implementation
● The perspective of developers
● UML: Package diagrams, Component diagrams

Example:
E-commerce store may contain components:

● ProductService: Handles operations related to product search, listing, and management.
○ Java package Product

● CartService: Manages cart-related operations
○ Java package ShoppingCart

● etc.

● Describes the system's physical architecture, including hardware components, network
topology, and distribution of software components across different machines or nodes

● Addresses concerns related to deployment, scalability, and performance optimization

● UML: Deployment diagram

4+1 architectural view model: Physical view

Example:
● Load balancer distributes traffic between

multiple servers
● Servers handle both frontend and backend

processes, interact with the database
Server and external payment API

Load
Balancer

Server
(frontend +
backend)

Database
Server

External
Payment

API

4+1 architectural view model

5. Scenarios

● “+1” aspect of the model
● Illustrate how the system functions in real-world situations, using a small set

of use cases (scenarios)

(Modern) principles of software architecture
● Separation of Concerns (SoC)

○ Keeping different aspects of the system's functionality or
behavior separate and well-defined

○ Each part of the codebase has a single responsibility that makes
the code more maintainable and understandable

● Modularity
○ Organizing software into discrete, interchangeable components

or modules

● Avoid Big Design Up Front (BDUF)
● Build to change instead of build to last
● Use consistent principles within the components / layers / subsystems
● …

Component -
based
architecture
=> reusability,
interoperability,
encapsulation,
maintainability,
scalability, …

Architectural styles and patterns
Similar to design patterns:

● Provide abstract framework for a family of systems
● Help communication

Architectural styles and patterns
Architecture addresses a wide variety of issues

We have various types of styles/patterns and some of them can be mutually
combined

● Deployment
● Structure
● Communication
● Domain
● Network
● ….

Common architectural styles / patterns
Communication models
● Client-server model
● Peer-to-peer model

Service-oriented patterns
● Service-oriented architecture
● Service-oriented architecture with Enterprise Service Bus
● Microservices architecture

Other
● Layered architecture
● Domain-driven development
● Model-view-controller

Communication models: Client-server model
● Used in networking / distributed systems
● One or more clients connected to a server over a network or internet

connection.
● The server hosts, delivers and manages most of the resources and services

to be consumed by the client
● Typically follows a request-response pattern.

● Example:
web browsing

Client 1

Server

Client 2

Network

Communication models: Peer-to-peer (P2P) model
● Used for distributed systems
● Computers, devices, or nodes within a network (peers) communicate and

collaborate directly with each other without the need for a centralized server
or hierarchy of control

● Each peer has equivalent capabilities, and they can act both as clients and
servers, sharing resources, data, or services with one another.

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Service-oriented architecture (1)

Shopping
Cart

Customers

Orders

Inventory

Payments
Order ServiceShopping

Cart Service

Inventory
Service

User
Management

Service

Monolith

Service-oriented
architecture (SOA)

Service-oriented architecture (2)
● A specialization of component-based architecture where software

components are services
● A service

1. Is a logical representation of a repeatable business activity that has a specified
outcome

2. Is self-contained
3. May be composed of other services
4. Is a “black box” to consumers of the service

● Properties of services: business-oriented, interface-based, discoverable and
invokable, distributed, loosely-coupled

Service-oriented architecture with ESB

Order ServiceShopping
Cart Service

Inventory
Service

Customer
Service

Enterprise Service Bus (ESB)

Service
DiscoveryMessage Broker

Routing Transformation

● A variant of SOA

● Enterprise Service Bus = central
integration point
● Routing messages between services,

monitoring and control, security, …

SOA generally may not contain ESB !

Microservice architecture
● A variant of SOA

● Loosely coupled, fine-grained
services

● Microservices focus on one thing
and operate independently

● Mutual communication over
well-defined APIs

● Commonly used in cloud-native
applications

Cart Item
Service

 Cart
Management

Service

Inventory
Service

Customer
Profile
Service

Cart Pricing
Service

Customer
Authentication

Service

Order
Creation
Service

Order
Payment
Service

Mostly
HTTP

Domain Driven design (DDD)
● The software systems is build “around” the core domain knowledge and

concepts of a business

● The structure and language of software code (class names, class methods,
class variables) and data entities should match the business domain

● Example: if software processes loan applications, it might have classes like
"loan application", "customers", and methods such as "accept offer" and
"withdraw".

Layered architecture
● Components within the layered architecture pattern are organized into

horizontal layers
● Each layer performs a specific role within the application (-> SoC)
● 3-layer architecture (logical separation, but not necessarily physical):

○ Presentation layer (UI layer)
○ Application (business) layer
○ Data access layer

● Physical separation - 3-tier architecture - example:
○ Presentation layer (UI layer) - web browser
○ Application layer - web server(s)
○ Data access layer - database server(s)

● Frontend, backend

Model-view-controller
= pattern used commonly for
developing user interfaces

● The model manages the data
of the application.

● The view renders presentation
of the model in a particular
format (chart, table, ..)

● The controller processes the
user input and updates the
data model objects.

Resources
[1] SWEBOOK v3

[2] Ian Sommerville: Software Engineering (10th edition)

[3] Robert Lukotka: Architecture

[4] Martin Fowler: Design Stamina Hypothesis

[5] Wikipedia: Domain-driven design

[6] Philippe Kruchten: Architectural Blueprints - The “4+1” View Model of Software Architecture,
1995.

[7] MVC Diagram (Model-View-Controller) byXinfe, CC BY-SA 3.0

[8] Service Oriented Architecture : What Is SOA?, The Open Group SOA Working Group.

[9] Michal Kostič: Service-oriented architectural patterns

[10] Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software, 2003.

http://www.dcs.fmph.uniba.sk/~lukotka/PTS/24Architecture.pdf
https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
https://commons.wikimedia.org/wiki/File:MVC_Diagram_%28Model-View-Controller%29.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm
http://www.dcs.fmph.uniba.sk/~kosticova/202324/pts3_materialy/PTS3_Service_Architectural_Patterns_MK.pdf

