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● Camelot is based on the client-server model and uses remote procedure calls both 
locally and remotely to provide communication among applications and servers.”

● “Abstraction layering and system decomposition provide the appearance of system 
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous devices.  
The architecture encourages a client server model  for the structuring of applications.”

● “We have chosen a distributed, object-oriented approach to managing information.”

● “The easiest way to make the canonical sequential compiler into a concurrent compiler 
is to pipeline the execution of the compiler phases over a number of processors.  . . . A 
more effective way [is to] split the source code into many segments, which are 
concurrently processed through the various phases of compilation [by multiple compiler 
processes] before a final, merging pass recombines the object code into a single 
program.”



Is it worth the effort to design software well? [4]



Software architecture
= the organization or structure of a system, where the system represents a 
collection of components that accomplish a specific function or set of functions.

● A (software) component is a part of a software system that encapsulates a specific 
piece of functionality, e.g., libraries, modules, services, web components, plugins, ..

● Components serve as the building blocks for the structure of a system

● Components are connected via interfaces

● Components are typically specified in different views to show the relevant functional 
and non-functional properties of a software system



Interface
(Software) interface is a shared boundary across which two or more separate 
(software) components of a computer system exchange information.

● ABI - Application binary interface - typically not relevant (created by compiler / 
other tools).

● API - Application programming interface
● User interfaces



Architecture vs design
Software architecture

● High-level structure of the entire system and its division into a set of 
components

Software design

● Internal structure of individual components



4+1 architectural view model
= a model "describing the architecture of software-intensive systems, based on the 
use of multiple, concurrent views" [6]

1. Logical view
2. Process view
3. Development view
4. Physical view
+ scenarios



4+1 architectural view model: Logical view
● Describes the system in terms of components, their relations, and the functionality they provide
● The perspective of end users (and stakeholders in general)
● Overlap with “Requirements” phase

● UML: Use Case diagrams, UML Class diagrams, …

Example:
E-commerce store may contain 
classes:

● Shopping Cart
● Cart Item
● Product
● …

cartId: int

Shopping 
Cart

addItem
(productId, qty)

cartItemid: int
cartId: int
productId: int
quantity: int

Cart Item

IncreaseQty(qty)

Product
productId: int
name: string
stockQuantity: int

Shopping 
Cart

Product 
Catalog



4+1 architectural view model: Process view
● Captures dynamic behavior of the system - the interactions and collaborations 

among processes, tasks, threads, and components during runtime
● Important for understanding concurrency, performance, and resource utilization.
● UML: Sequence diagram, Communication diagram, Activity diagram, …

Example:
E-commerce store may contain processes:

● AddItemProcess: Handles adding item to a shopping basket
● CheckoutProcess: Manages completion of an order



4+1 architectural view model: Development view
● Describes software organization - SW modules and components, their relationships, source 

code organization, ….
● Mapping of components from the Logical view into implementation
● The perspective of developers
● UML: Package diagrams, Component diagrams

Example:
E-commerce store may contain components:

● ProductService: Handles operations related to product search, listing, and management.
○ Java package Product 

● CartService: Manages cart-related operations
○ Java package ShoppingCart

● etc.



● Describes the system's physical architecture, including hardware components, network 
topology, and distribution of software components across different machines or nodes

● Addresses concerns related to deployment, scalability, and performance optimization

● UML: Deployment diagram

4+1 architectural view model: Physical view

Example:
● Load balancer distributes traffic between 

multiple servers
● Servers handle both frontend and backend 

processes, interact with the database 
Server and external payment API

Load 
Balancer

Server
(frontend + 
backend)

Database 
Server

External 
Payment 

API



4+1 architectural view model

5. Scenarios

● “+1” aspect of the model
● Illustrate how the system functions in real-world situations, using a small set 

of use cases (scenarios)



(Modern) principles of software architecture
● Separation of Concerns (SoC)

○ Keeping different aspects of the system's functionality or 
behavior separate and well-defined

○ Each part of the codebase has a single responsibility that makes 
the code more maintainable and understandable

● Modularity
○ Organizing software into discrete, interchangeable components 

or modules

● Avoid Big Design Up Front (BDUF)
● Build to change instead of build to last
● Use consistent principles within the components / layers / subsystems
● …

Component - 
based 
architecture
=> reusability, 
interoperability, 
encapsulation, 
maintainability, 
scalability, …



Architectural styles and patterns
Similar to design patterns:

● Provide abstract framework for a family of systems
● Help communication



Architectural styles and patterns
Architecture addresses a wide variety of issues

We have various types of styles/patterns and some of them can be mutually 
combined

● Deployment
● Structure
● Communication
● Domain
● Network
● ….



Common architectural styles / patterns
Communication models
● Client-server model 
● Peer-to-peer model

Service-oriented patterns
● Service-oriented architecture
● Service-oriented architecture with Enterprise Service Bus
● Microservices architecture

Other
● Layered architecture
● Domain-driven development
● Model-view-controller 



Communication models: Client-server model
● Used in networking / distributed systems
● One or more clients connected to a server over a network or internet 

connection.
● The server hosts, delivers and manages most of the resources and services 

to be consumed by the client
● Typically follows a request-response pattern.

● Example: 
web browsing

Client 1

Server

Client 2

Network



Communication models: Peer-to-peer (P2P) model
● Used for distributed systems
● Computers, devices, or nodes within a network (peers) communicate and 

collaborate directly with each other without the need for a centralized server 
or hierarchy of control

● Each peer has equivalent capabilities, and they can act both as clients and 
servers, sharing resources, data, or services with one another.

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation



Service-oriented architecture (1)
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Inventory 
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Service-oriented 
architecture (SOA)



Service-oriented architecture (2)
● A specialization of component-based architecture where software 

components are services
● A service 

1. Is a logical representation of a repeatable business activity that has a specified 
outcome

2. Is self-contained
3. May be composed of other services
4. Is a “black box” to consumers of the service

● Properties of services: business-oriented, interface-based, discoverable and 
invokable, distributed, loosely-coupled 



Service-oriented architecture with ESB

Order ServiceShopping 
Cart Service

Inventory 
Service

Customer 
Service

Enterprise Service Bus (ESB)

Service 
DiscoveryMessage Broker

Routing Transformation

● A variant of SOA

● Enterprise Service Bus = central 
integration point
● Routing messages between services, 

monitoring and control, security, …

SOA generally may not contain ESB !



Microservice architecture
● A variant of SOA

● Loosely coupled, fine-grained 
services

● Microservices focus on one thing 
and operate independently

● Mutual communication over 
well-defined APIs

● Commonly used in cloud-native 
applications
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Domain Driven design (DDD)
● The software systems is build “around” the core domain knowledge and 

concepts of a business

● The structure and language of software code (class names, class methods, 
class variables) and data entities should match the business domain

● Example: if software processes loan applications, it might have classes like 
"loan application", "customers", and methods such as "accept offer" and 
"withdraw".



Layered architecture
● Components within the layered architecture pattern are organized into 

horizontal layers
● Each layer performs a specific role within the application (-> SoC)
● 3-layer architecture (logical separation, but not necessarily physical):

○ Presentation layer (UI layer)
○ Application (business) layer 
○ Data access layer

● Physical separation - 3-tier architecture - example:
○ Presentation layer (UI layer) - web browser
○ Application layer - web server(s)
○ Data access layer - database server(s)

● Frontend, backend



Model-view-controller
= pattern used commonly for 
developing user interfaces

● The model manages the data 
of the application. 

● The view renders presentation 
of the model in a particular 
format (chart, table, ..)

● The controller processes the 
user input and updates the 
data model objects.
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