
Princípy tvorby softvéru 2, FMFI UK

Requirements

Jana Kostičová, 02.10.2023, 09.10.2023

SDLC - Waterfall

● “Requirements” phase is a part of
any SDLC

Business
analysis

Requirements

Architecture &
design

Implementation

Verification &
validation

Maintenance

Terminology
● “Requirements”
● “Requirements analysis”
● “Requirements engineering”
● “Analysis” only (if the context is clear)

Informally also

● “IT business analysis” (often overlapping with “business analysis”)

Why requirements engineering?
Requirement
● A function, constraint or other property that the system must provide to fill the

stakeholder needs

Engineering
● Implies that a systematic and repeatable techniques should be used

Requirements engineering
● The systematic process which covers all of the activities involved in

discovering, documenting, and maintaining a set of requirements for a
computer-based system

○

Big picture

Informal and
fuzzy

requirements
Requirements

analysis

Well-defined,
complete and

consistent
requirements

Customer
(internal or
external)

Supplier

Why are requirements important?

75% of all IT projects fail due to errors in the set-up phase.
According to the study, the most common reasons for the failure of
IT projects are unclear or inadequate requirements, incorrect
time and budget planning, and inadequate communication between
project participants.

BITKOM e.V. (Germany digital association), 2021

Requirements vs other phases

Requirements define WHAT the system should do
● not WHY it should be developed
● not HOW it should do it

In practice, “requirements” phase overlaps with neighboring phases:

Business
analysis

Requirements
analysis

Architecture
and design

Business
requirements

Examples:
- GUI design as a part of requirements specification
- Using system architecture to structure requirements

Requirements
analysis

Requirements
specification

Existing
system

information

Organisational
standards

Domain
information

Rules and
regulations

Input requirements
(of varying quality)

Initial project
documents

Requirements analysis - inputs and outputs

Stakeholders

Initial project documents
● Project Initiation Document (PID) / Project charter

● Business Case (see Example)

● Feasibility studies

● …other

Stakeholder identification

● To identify stakeholders as soon as possible
○ Various stakeholders in various domains / companies / environments
○ Checklists exist for IT projects
○ Include project team members

● To identify specific representatives
○ We need to communicate with real people

● Some stakeholders are discovered later
○ We do our best to make “later” as soon as possible
○ Rework may be needed

● Business stakeholders vs technological (IT) stakeholders

Stakeholder: an
individual, group or
organization who may
affect or be affected by the
result of the project Principles

Stakeholder examples
● Company management / various levels

● Project team members
○ Project manager, Analysts, UX designers, Architects,

Developers, Testers, Document writers, …

● Project customer

● Product users (may be represented by product manager)

● Other teams
○ Sales representative, Marketing representative, Legal dept.

representative, IT support, IT operations, ….

Project owner: bears business
responsibility for successful project
implementation. Typically head of the
business unit receiving the product.

Elicitation
(meetings & interviews

with stakeholders,
watching the users,

studying
documentation,..)

Analysis
(thinking.

discussions,
notes,

sketches,..)

Specification
(decomposition,

structured
notation,

models, ..)

Validation
(meetings, draft

presentation,
negotiations, GUI

model presentation, ..)

Meeting
minutes,

Notes
Requirements
specification -

final

Requirements
specification -

draft

Requirements analysis - how it works inside

Stakeholder identification

Three levels of requirements

Business
requirements

Stakeholder (user)
requirements

Solution (system)
requirements

These do not describe the solution sufficiently

Even these do not describe the solution
sufficiently

These describe the solution quite well
(we still abstract from the architecture &
design)

Solution

Solution

Solution

Three levels of requirements
Business requirements

● Describe high-level objectives of the organization itself
● Written for management (but also basis for next phases)

Stakeholder (user) requirements
● Describe stakeholder/user needs
● Statements in natural language plus diagrams
● Written for stakeholders (but also input for next steps)

Solution (system) requirements
● Describe system’s functions, services and operational constraints in detail
● Technical language, diagrams, models
● Basis for designing the system
● May be incorporated into contract

Business Analysis vs. Requirements
Analysis

- These two activities overlap
especially at the level of business
requirements

- Ideally, business requirements
should be provided as a business
analysis output.

Example
Business
BR1: Increase online sales by 20% within the next year.
BR2: increase repeat orders from customer by 10% within six months after deployment
Stakeholder (user)
SR1: Create new user account.
SR2: View order history.
SR3: Check order status.
SR4: Create new order.
Solution (system)
FR1: Create new user account with the following attributes: e-mail address, first name, last name, address
line 1, address line 2, city, postal code, phone number,password, timestamp.
FR2: Log in into an existing account using an e-mail address and a password.
...
NFR1: Require passwords of at least 8 characters in length containing a minimum of one non-alphabet
character.
NFR2: Must run on all Java platforms including 64-bit versions
...

Types of solution (system) requirements
Functional requirements

● Describes services (functions) the system should provide, how the system
should react to particular inputs and how the system should behave in
particular situations

Non-functional requirements

● Describes constraints put on the services (functions) offered by the system
● E.g., interface requirements, GUI requirements, localization requirements

Domain requirements

● Requirements that come from the application domain of the system and that
reflect characteristics of that domain

Non-functional
requirements

More examples
● Non-functional requirements:

○ PRODUCT REQUIREMENT: The user interface should be implemented as simple HTML
without frames or Java applets.

○ ORGANIZATIONAL REQUIREMENT: The system development process and deliverable
documents shall conform to the process and deliverables defined in XYZCo-SP-STAN-14.

○ EXTERNAL REQUIREMENT: The system shall not disclose any personal information about
customers apart from their name and reference number to the operators of the system.

● Domain requirement:
○ The deceleration of the train shall be computed as: D (train) = D (control) + D (gradient),

where D (gradient) is 9.81ms2 * compensated gradient/alpha and the values of 9.81ms2
/alpha are known for different types of train.

Business
requirements

Stakeholder (user)
requirements

Solution (system)
requirements

Refinement

Refinement

Traceabiity

Requirements
traceability

Requirements traceability

BR1

BR2

BR3

SR1

SR2

SR3

SR4

FR1

NFR1

NFR2

TC1

TC2

TC3

TC4

Business
requirements

Stakeholder
requirements

Solution
requirements

Test Cases

FR2

Code

Why do we need requirements?

Input for next phases
● Architecture and design, implementation, validation

and verification, maintenance

Input for supporting activities
● Documentation, project management, …

Input for establishing a contract
● Basis for a bid for a contract
● Part of the contract (scope definition - what will be

delivered)

Audience for requirements:
➔ People participating in

these next phases /
supporting activities, or
establishing a contract

➔ Also people validating
the requirements

How the requirements are written?
There is much variation in how they are written and presented:

“A software requirement may take the form of anything from a high-level,
abstract statement of a service or constraint to a detailed, formal
specification.”

Software requirements definition

● Output of “Requirements” phase
● Also Software Requirements Specification (SRS)

● Typically structured text supported by figures/models/diagrams
○ UML, BPMN, E-R diagrams, GUI model (mockups), …

Various approaches
● Unstructured text - “Victorian novel”

○ Massive narrative sequential description, seldom used today
● Flat catalogue of requirements

○ Often used, not optimal
● Combination - structured text

Modeling languages
● UML

○ UML does not provide means to define non-functional requirements
○ Customer may have poor knowledge of UML…

● BPMN
○ Business process modeling (overlap with business analysis)

User stories (agile approaches)

Usually a combination of
these approaches.

It is important to take into
account the audience so
that they are able to read
and understand the
requirements definition.

Unstructured text
The ecommerce store will be expanded with user accounts so that each account will contain the email
address of the given user. Our marketing department will be able to reach users by email with various
marketing campaigns if the user gives such permission. This way we expect to increase repeat orders.
See also our internal Reports that show number of repeat orders in last 12 months and Case study that
show how account management can help to increase repeat orders. ….

The e-commerce store will provide the possibility to create a user account, log in to this account, log out of
this account. Before creating an account, the user must agree to the storage of his personal data in
accordance with (GDPR).

● Difficult to distinguish specific requirements and to track their attributes (priority / progress
/ estimates)

● Useful e.g., when explaining the general context and relationships between particular
levels of requirements (especially BRs <-> SRs)

Flat catalogue
ID Requirement Priority Estimates …

BR1 Reduce incorrectly processed orders by 50% by the end of next quarter

BR2 increase repeat orders from customer by 10% within six months after deployment

SR1 USER: Create new user account.

SR2 USER: View order history.

SR3 USER: Check order status.

SR4 USER: Create new order.

FR1 Create new user account with the following attributes: e-mail address, first name,
last name, address line 1, address line 2, city, postal code, phone number,password,
timestamp.

FR2 Log in into an existing account using an e-mail address and a password.

NFR1 Require passwords of at least 8 characters in length containing a minimum of
one non-alphabet character.

NFR2 Must run on all Java platforms including 64-bit versions

… …

● Easy to distinguish specific
requirements and track their
attributes

● Difficult to explain
relationships between
requirements (especially
BRs <-> SRs)

Combination - structured text
ID Requirement Priority Estimates …

BR1 Reduce incorrectly processed orders by 50% by the end of next quarter

BR2 increase repeat orders from user by 10% within six months after deployment

Current state based on Internal reports
● BR1: 90% of incorrectly processed orders are caused by incorrect data filled by user when

creating an order (incorrect e-mail address, incorrect delivery address, incorrect phone number)
● BR2: Only 30% of customers ordered repeatedly within last 12 months

Case study
Extending the system with the user accounts

● BR1: can decrease number of incorrectly processed orders due to incorrect user data by 60%
● BR2: can increase number of repeat orders by 10-15% (together with marketing campaigns)

 Extending the system with user accounts will fulfill BR1 and BR2

Glossary
● Use the same terms for the same concepts throughout the whole

requirements definition
● It makes it easier to understand the requirements
● Examples

○ System vs. e-commerce store vs e-shop
○ User vs customer vs buyer
○ Item vs product
○ Shopping basket vs shopping cart vs cart

● Requirements with inconsistent terms:
○ The system shall enable the customer to insert items into the shopping basket.
○ The e-shop shall enable the buyer to remove products from the cart.

User roles may be
described separately from
the glossary

Glossary - example
Order
● A request for delivery of a group of items

Item
● A product to be sold

Shopping basket
● A container for storing items that the user is considering ordering

…

UML

Requirements definition can be supported by UML models, typically

● Data model
○ Conceptual level
○ Class diagram

● Use Case model
○ Functional requirements
○ Use Case diagram + Use Case descriptions
○ Activity diagram

Conceptual model
● High-level data model, both domain and system concepts
● UML Class diagram
● Usually associated with glossary

User account

Email

Order

Password

…

Item

Shopping
basket

1 0..1

1

0..1

0..1

1

*

*+

*

*

*

domain concepts
system-specific
concepts

UML

Requirements definition can be supported by UML models, typically

● Data model
○ Domain / conceptual level
○ Class diagram

● Use Case model
○ Functional requirements
○ Use Case diagram + Use Case descriptions
○ Activity diagrams

Use Case
diagram -
example

E-commerce store

Create new
user

account

Create new
order based on
a copy of past

order

View order
history

Create new
order

Check order
status

Log the
action

<<include>>

<<include>>

<<include>>

<<include>>
User

● Actors
● Use Cases
● Relationships
● System Boundary

<<extend>>

System boundary

Use Case

Actor

Association

Use Case diagram
Use Cases
= functionality of the system

○ Inside the system boundary

Actors
= entities that interacts with the system

○ Always outside the system boundary
○ Human users or other systems (<<system>>

stereotype)
○ Primary vs. secondary actors

Relationships
● Actor - Actor

○ Generalization
● Actor - Use Case

○ Association (represents
interaction)

● Use Case - Use Case
○ Generalization
○ “Extend” dependency
○ “Include” dependency

E-commerce store

…

…

Print order

Primary vs secondary actor

User
Printer

<<system>>

Primary Secondary

Include vs extend dependency
“Include” dependency

● An including use case always contains the behavior defined in another,
included (base), use case. Included use case can be seen as subroutine.

“Extend” dependency

● The behavior defined in the extending use case can be inserted into the
behavior defined in the extended use case

E-commerce store

Create new
user

account

Create new
order based on
a copy of past

order

View order
history

Create new
order

Check order
status

Log the
action

<<include>>

<<include>>

<<include>>

<<include>>
User

<<extend>>

Include

Extend

Use Case
description -
example

E-commerce store

…

…

View order
history

View order history

Goal:
To display all orders associated with given
user account
Preconditions:
User is logged into their user account
Postconditions:
The list of all orders associated with given
user account is displayed

Steps:
1. If no orders are associated with given

user account, inform the user that
there are no orders.

2. If one or more orders are associated
with given user account, display the
list of these orders sorted by order
time from newest to oldest. For each
order display order ID, order status
and list of ordered items. For each
ordered item display …

● Too verbose
● Difficult to maintain

User

Activity diagrams
Example (“Checkout” functionality)

http://www.dcs.fmph.uniba.sk/~kosticova/202324/pts3_materialy/PTS3_Activity_diagram.png

Requirements definition vs. UX outputs
● Solution requirements are typically associated with

mock-ups
● Mock-ups vs. requirements

○ A single mock-up may cover one or more requirements
○ A single requirement may be covered by one or more mock-ups (or

even no mock-up at all)
○ Mockups may use different glossary than requirements definition

● Example:

FR1:
Create new user account with the following attributes: e-mail address, first
name, last name, address line 1, address line 2, city, postal code, phone
number,password, timestamp.

Mock-up: a visual
representation or
screenshot of how
the final website or
product will look

MU1: MU2:

Agile methodologies
● Software development runs in short, flexible iterations

SCRUM

● Self-organizing team, 5-9 people responsible for the product

(scrum master, product owner, developers, UX, QA)

● Iteration: 2-4 weeks
● Input for the team: product backlog = prioritized list of “user stories”

Scrum assumes that the product backlog contains the requirements for the
product, but does not specify where they come from.

● Typically some pre-analysis has to be completed outside SCRUM

User stories
“A user story is an informal, general explanation of a software feature written from
the perspective of the end user or customer”

● Roughly correspond to the level of stakeholder requirements, but often mixture of levels
● Alistair Cockburn (1998): "A user story is a promise for a conversation."
● Common template

○ As a <role> I want to <capability>, so that <receive benefit>

○ “So that” part optional

● User stories = placeholders for further discussion, can be split / refined to more detailed
specification if needed

● Placed into product backlog and prioritized

User stories - examples
As a user
I want to create new user account
so that I do not need to enter my data repeatedly and I am entitled to various discounts.

As a user
I want to create new order
so that I buy items.

As a user
I want to view order history
so that I buy again items that I liked.

As a user
I want to check order status
so that I see if there is some issue with order processing.

Priority

Three levels of requirements - requirements definition

Business
requirements

Stakeholder (user)
requirements

Solution (system)
requirements

These do not describe
the solution sufficiently

Even these do not describe
the solution sufficiently

These describe the solution
quite well

Solution

Solution

Solution

More
plain text

More structured text,
diagrams, figures

Tools

● CASE (Computer-aided software engineering tool)
○ More difficult to create and maintain the specification
○ Provides complete system description
○ Example: Enterprise Architect

● Collaborative Software, Wiki (e.g., Atlassian Confluence)
● Issue tracking system (e.g. Atlassian Jira)

Requirements problems

● Stakeholders don't understand what they
want
○ Even if they know what they want,

they cannot describe it
○ Even if they can describe it, they

often describes solution rather than
real need

● Unclear business requirements
● Missing stakeholders
● Unavailable stakeholders
● Significant changes in requirements late in the analysis
● Poor traceability

Best practices
● Insist on clear business requirements
● Gather requirements from all stakeholders
● Take into account all types of requirements
● Avoid grey zones
● Document requirements accurately and consistently
● Only accept traceable requirements
● Validate requirements with all stakeholders

Further reading
● Ian Sommerville: Software Engineering (10th edition)

● IEEE STANDARD 830-1998 - IEEE Recommended Practice for Software
Requirements Specifications

● Karl Wiegers, Joy Beatty: Software Requirements (3nd Edition)

● Dean Leffingwell: Agile software requirements

● Alistair Cockburn: Writing Effective Use Cases

● Alistair Cockburn: Agile Software Development (2nd edition)

