
Princípy tvorby softvéru, FMFI UK

Databases

Jana Kostičová, 23.10.2024



SDLC - Waterfall

Business
analysis

Requirements

Architecture & 
design

Implementation 

Verification & 
validation

Maintenance



Database vs DBMS 
Database 
= an organized collection of data, typically stored electronically, allowing easy retrieval, modification, and 
management of information

● Examples: flat or hierarchical file formats (txt, csv, tsv, json, xml, spreadsheets, …), relational 
tables in RDBMS

DBMS (DataBase Management System)
= a software that manages and interacts with the data stored in a database

● Examples: RDBMS = Relational DBMS, NoSQL databases

New “Big data” storage systems:
● NoSQL databases, Columnar databases, NewSQL databases -> DBMSs
● Distributed file systems, Cloud object storage -> databases, but no DBMSs



Database development process

Conceptual data 
model

Logical  data 
model

Physical data 
model

Database build

Conceptual model is used to derive 
both more detailed data models as 
well as O-O models. 

There is typically ORM 
(Object-relational mapping) 
between O-O model and relational 
data model.

Data model = visual 
representation of data and its 
relationships within a database

R
eq

ui
re

m
en

ts
A

rc
hi

te
ct

ur
e 

&
 d

es
ig

n
Im

pl
em

en
ta

-
tio

n

Object-oriented 
model (OOM)

Implementation of 
OOM



Conceptual data model
= An abstract and high-level representation of the system that serves to identify 
the data that will be crucial to a business

● Describes entities and abstract relationships
○ May describe also attributes and cardinalities

● Often derived from domain model
● Often supplemented with a glossary
● E-R diagram, UML class diagram or free-form

● Independent from implementation details and specific data storage mechanism
● Easily understood both for technical and non-technical people

Typically created during Requirements phase.



Example

Relationships are 
explained by textual 
descriptions.



Logical data model
= A more detailed view of the data, but still driven by business needs 

● Describes entities, attributes, relationships (including cardinalities) and constraints
○ May describe abstract types for attributes and referential integrity (primary keys, foreign keys)

● E-R diagram, UML class diagram

● Data normalization (if it is in accordance with the requirements !)

● Dependent on logical data structure
● Still independent from specific DBMS
● Still understood by non-technical people

Typically created during Design & Architecture phase.



Example
Logical model 
for relational 
tables

This model contains explicit 
foreign keys so it is assumed 
that non-technical people 
understand this notation.

If not, it is better to keep the 
relationship descriptions and 
cardinalities used in the 
conceptual model.



Physical data model
= A database-specific representation of the data
= Actual representation of the database

This step starts with associating the model with a Database Management System (DBMS). 

● Describes tables, columns and referential integrity
● Describes indexes, triggers, constraints, stored procedures, functions, …
● Uses DBMS specific data types
● Uses DBMS compatible table names and column names

● Validation and optimization (e.g. denormalization)

Typically created during Design & Architecture phase.



Example
Physical model 
for PostgreSQL

+ Setting final to false when updating/deleting 
categories



Example
Physical model 
for PostgreSQL

CREATE TABLE products ( 
  productId BIGSERIAL, 
  code CHAR(5) UNIQUE,
  name VARCHAR(15) NOT NULL,
  description VARCHAR(50),  
  price  NUMERIC(10,1) NOT NULL,
  stockQty SMALLINT NOT NULL,
  created TIMESTAMP NOT NULL DEFAULT NOW(), 
  lastModified TIMESTAMP NOT NULL DEFAULT NOW(), 
  PRIMARY KEY(productId),
  CHECK (price > 0),
  CHECK (stockQty >= 0)
);



How to choose
the right DBMS

DBMS

Fu
nc

tio
na

l 
re

qu
ire

m
en

ts

Logical 
data 

structure

Data 
operations

Costs

Data properties
(volume, 

uniformity,.) 

System 
attributes

Design 
constraints

N
on

-fu
nc

tio
na

l 
re

qu
ire

m
en

ts

Project budget

Examples: Scalability, availability, 
reliability, compatibility, portability, 
maintainability, security, performance, 
response time, etc.

Examples: Restrictions on 
usage of HW components,  
open-source SW components, etc.

D
om

ai
n 

/ 
co

nc
ep

tu
al

 
m

od
el



Main aspects to consider

● Logical data structure
○ Relational, key-value, hierarchical documents, graph, …

● Centralized vs distributed database
● On-premise vs cloud database
● Transactional vs analytical processing
● …



Back to example

Category 
/ attribute

Frame 
size 
(enumera
tion)

Wheel 
size 
(enumera
tion)

Recomm
ended 
age 
(range of 
positive 
numbers)

Weight
(decimal 
number)

Number 
of pieces
(positive 
number)

Number 
of 
washing 
cycles 
(positive 
number)

For 
babies 
(yes/no)

Bikes X X X X

Lego sets X X

Washing 
powders

X X X

● Sparse matrix
● Naive solution: all attributes in “Product” table



Relational logical data model 1

+ corresponding constraints



Relational logical 
data model 2

EAV = 
entity-attribute-value 
model

+ corresponding 
constraints



NoSQL approaches - examples

● Document store - see demo
● Key-value store:

● Wide-column store - see demo

Key Value (JSON object)

KA23E {"name": "BestBike Junior", "description": "This is the best bicycle for 4-6 years old kids", ...}

XT78S {"name": "Lego SuperMario", "description": "Luigi's mansion", ...}

BG234W {"name": "SuperColor Washing Powder", "description": "Bright colors!", ...}

We talk about semi-structured data.
Often schema-less approach.



NoSQL databases - common properties
● Non-relational logical structure
● SQL-like or custom query language
● Mostly designed for distributed environment and highly scalability
● Mostly relaxing ACID
● Mostly limited:

○ Referential integrity and constraints
○ The complexity of queries

● Often schema-less or with flexible schema
● Many are primarily designed for cloud environment

○ Some of them designed exclusively for cloud: Amazon DynamoDB, 
Google BigTable, ..

NoSQL:
We should rather talk 
about non-relational 
databases
= the logical structure 
is different from 
relational tables



Logical data structure
1. Relational tables
2. Key-value pairs
3. Documents accessed by keys
4. Wide-column format
5. Graph

“NoSQL”

➢ Logical data structures can be combined
➢ RDBMSs’ support for non-relational structures:

○ Often XML / JSON data types are available
○ Key-value pairs, wide-columns and graphs can be stored indirectly



RDBMSs - document support

XML JSON

MySQL Limited Yes

PostgreSQL Limited Yes

Microsoft SQL server Yes Yes

Oracle Yes Yes

IBM DB2 Yes Yes

SQLite No Limited



Relational tables
● Traditional RDBMSs

○ Row-based physical storage
○ ACID-compliant
○ Better for row-based queries
○ PostgreSQL, MySQL, Oracle, Microsoft SQL Server, IBM DB2, 

Teradata
● Columnar DBs

○ Columnar physical storage
○ Better for column-based queries, used for analytical purposes
○ Google BigQuery, Amazon Redshift, Apache Druid, Apache Kudu

● NewSQL DBs
○ Mostly row-based physical storage - we’ll talk about them later
○ Google Spanner, Cockroach DB, …

columnar DBs 
≠ 

wide-column DBs



Key-value stores
Key1 Value1

Key2 Value2

Key3 Value3

● Unique keys - mostly strings
○ “KA23E”, “product.KA23E”, …

● Values: 
○ Various types - string, set, list, JSON object, …

● Only simple queries based on the key
○ SET product:KA23E '{"name": "BestBike Junior"}'
○ GET product:KA23E, EXISTS product:KA23E, DEL product:KA23E

● Use cases:
○ Fast key-based lookups (many popular key-value stores are in-memory DBs, e.g., Redis)
○ Applications that require scalability

● Redis, Amazon DynamoDB, CouchBase

….



Document stores

● A document is identified by a unique key
● Document format

○ JSON (BSON), XML, YAML, ..
● Less joins are needed

● Use cases:
○ Hierarchical data, semi-structured data
○ Fast and flexible development of web 

application
■ MERN stack: MongoDB+Express.js+React+Node.js

○ Applications that require scalability

● MongoDB, CouchDB, Couchbase, …

 [
    {      
      "firstName": "Wood",
      "lastName": "Lyons",
      "personalId": 87695,
      "catalog": [
        {
          "street": "Ralph Avenue",
          "number": 895,
          "city": "Bynum",
          "postalCode": 9981,
        },
        {
          "street": "Surf Avenue",
          "number": 386,
          "city": "Fairlee",
          "postalCode": 4470,
        },
        {
          "street": "Hull Street",
          "number": 210,
          "city": "Rockhill",
          "postalCode": 5301
        }
      ]
    }
  ]



JSON to tables
 [
    {            

"firstName": "Wood",
      "lastName": "Lyons",
      "personalId": 87695,
      "addresses": [
        {
          "street": "Ralph Avenue",
          "number": 895,
          "city": "Bynum",
          "postalCode": 9981,
        },
        {
          "street": "Surf Avenue",
          "number": 386,
          "city": "Fairlee",
          "postalCode": 4470,
        },
        {
          "street": "Hull Street",
          "number": 210,
          "city": "Rockhill",
          "postalCode": 5301
        }
      ]
    }
  ]

_id firstName lastName personalId

1 Wood Lyons 87695

… … … …

id street number city postal
Code

person
Id

1 Ralph Avenue 895 Bynum 9981 1

2 Surf Avenue 386 Fairlee 4470 1

3 Hull Street 210 Rockhill 5301 1

… … … … … …

Persons

Addresses



Wide-column stores
Col11
key

Value11

Row1 
key

Col12
key

Value12

Col13
key

Value13

Row2 
key

….

….

….

● Unique row keys
● Column keys: 

○ Not prescribed, each row can have 
different columns

○ Unique for a specific row key
● Row-based queries 

○ Single key / range
● Column-based queries

○ Selective column retrieval

Col21
key

Value21

Col22
key

Value22

Col23
key

Value23

● Use cases: 
○ Semi-structured / evolving data, sparse data, time 

series data (timestamps in row keys)
○ Applications that require scalability, high-throughput 

read and write operations

● Apache Cassandra, Apache HBase, Google BigTable

Another abstractions: 
● 2-dimensional 

array of key-value 
pairs

● Sparse matrix



Graph databases
● Store efficiently nodes, edges and their properties
● Often highly scalable
● Neo4j, ..



Main aspects to consider

● Logical data structure
● Centralized vs distributed database
● On-premise vs cloud database
● Transactional vs analytical processing
● …



Centralized database vs distributed database

Centralized database
  => runs and stores data in a single machine 

Distributed database
  => runs and stores data across multiple computers (possibly in multiple  
       physical locations)

  
Why to distribute data? - avoid single point of failure, scalability, availability, 
reliability, response time, ..

Drawbacks: increased operational complexity (network communication), increased 
learning curve, …



Distributed databases - How to distribute
Two ways to distribute a database (can be combined): 

● Replication - storing separate copies at two or more nodes 
○ Single leader - one server receives writes. 
○ Multileader, Leaderless

● Partitioning (sharding) - we divide data into smaller parts and then store them on 
separate nodes 
○ In case of relational tables

■ Horizontal fragmentation - e.g.split the rows of the table
■ Vertical fragmentation - e.g.split the columns of the table (primary key in both 

tables) 

Single leader replication is the most common solution as writes are usually much less 
frequent than reads.



Distributed databases - RDBMSs vs NoSQL 

● Traditional RDBMSs
○ Work well in a centralized environment
○ R&D > 40 years
○ Difficult to distribute across multiple machines 

(= to scale horizontally)

● “NoSQL” DBs
○ Primarily intended for distributed environment, easy to scale horizontally
○ Many of them can be used also in a single machine

● Columnar DBs, NewSQL DBs
○ Relational databases intended for distributed environment, easy to scale horizontally

Vertical scalability  Add 
more power (CPU, RAM) to 
an existing machine

Horizontal scalability Add 
more machines



Why NoSQL is better at horizontal scaling
● Relaxed ACID guarantees & no integrity constraints

○ Less communication between network nodes, less locks
○ BASE approach (eventual consistency)

● Flexible schema or schema-less approach
○ Easier horizontal fragmentation
○ Faster writes (no need to validate data against schema)
○ Easier to accommodate new data types and changes

● Related data are stored together (document stores)
○ Less joins between documents
○ Less communication between network nodes in case of horizontally fragmented data

● Support for distributed environment by design
○ Both for replication and partitioning

Not all NoSQL databases provide the same level of support for horizontal scaling!

Kind of “cheating” - the better 
scaling is achieved by relaxing 
some of the mechanisms that 
RDBMSs strictly follows. 
Drawbacks of this relaxation 
must be carefully considered.



ACID (RDBMSs)
Atomicity: Either all the changes within the transaction are committed to the database, 
or none of them are.

Consistency: Guarantees that a database transaction brings the database from one 
consistent state to another, maintaining database invariants.

Isolation: Concurrent execution of transactions leaves the database in the same state 
that would have been obtained if the transactions were executed sequentially.

Durability: Ensures that once a transaction is committed, its changes are permanent 
and will survive system failures, such as power outages or crashes.

Examples: financial systems, healthcare databases



BASE (NoSQL DBs)
Basically Available: The system prioritize high availability, even in the face of 
network partitions or failures.

Soft state: The system can be in a "soft" or intermediate state, which means that 
data consistency is not guaranteed at all times.

Eventually consistent: Data consistency is achieved over time. There is no 
requirement for immediate consistency, and different replicas of the data may be 
out of sync temporarily. However, over time, the data will become consistent 
through mechanisms like background reconciliation and conflict resolution.

Examples: social media platforms, distributed content delivery networks



CAP theorem
We cannot achieve all consistency, availability, and 
partition tolerance in asynchronous network model.

● Consistency: Every read operation returns the 
most recent write result.

● Availability: Every request receives a response 
(without guaranteeing it's the most recent data).

● Partition tolerance: The system can continue 
to operate even in the presence of network 
partitions or communication failures.

Distributed DB must always 
guarantee partition tolerance. 
Thus it has do decide between 
consistency and availability.

NoSQL DBs - compromise 
consistency in favor of 
availability 



New types of relational databases
● Based on relational tables and at the same time easy to scale horizontally

1. Columnar databases
○ Columnar physical storage
○ ACID not guaranteed
○ Primarily intended for analytical processing

2. NewSQL databases
○ Mostly row-based physical storage
○ ACID guaranteed

■ Availability is compromised in case of network partitions
○ Primarily Intended for transactional processing

● Immature concepts



Main aspects to consider

● Logical data structure
● Centralized vs distributed database
● Transactional vs analytical processing
● On-premise vs cloud database
● …



Transactional vs analytical processing
Transactional processing (OLTP)

● Task: To process database transactions + to process transactions over “big data”
● Operations: Short, fast transactions
● Real-time processing
● Traditional RDBMSs, normalized
● New concepts: NewSQL DBs, NoSQL DBs

Analytical processing (OLAP)
● Task: To analyze aggregated data + to analyze “big data” 
● Operations: Primarily data reads, including complex queries
● Batch processing + real-time processing
● RDBMSs with “dimensional” data model, often denormalized
● New concepts: Columnar databases, NoSQL databases

●

“Big data” requirements
 ⤷ large volumes of different 
data:

● Structured / semi-structured 
/ unstructured

● Stored data vs data streams



Other solutions for Big data processing
Distributed file systems + computation frameworks:
● Hadoop (HDFS) + MapReduce / Spark

Cloud object storage + computation frameworks:
● Google Cloud storage + Google Cloud compute engine, Amazon S3 + AWS 

Lambda / EC2

→ highly scalable
→ both replication and partitioning are applied
→ efficient parallel processing



Main aspects to consider

● Logical data structure
● Centralized vs distributed database
● Transactional vs analytical processing
● On-premise vs cloud database
● …



On-premise vs cloud database
On-premise DB
● Full control over DB hardware, software, and infrastructure - easier customization of the 

environment
● Higher level of control over data security
● Some data must be stored on-premises to maintain compliance (e.g., legal)

Cloud DB
● Easier scalability and geographical redundancy
● Lower maintenance costs

● Managed - Database as a service (DaaS, also data as a service)
○ Typically more expensive
○ Suitable if the organization does not have its own staff to develop and maintain the database

● Self-managed database



Resources
● Robert Lukotka: Persistence and Databases
● C. M. Ricardo, Susan D. Urban: Databases Illuminated, 3rd edition, 2015.
● Wikipedia: NewSQL
● S.Gilbert, N.Lynch: Brewer's conjecture and the feasibility of consistent, 

available, partition-tolerant webservices
● Cassandra Documentation
● MongoDB Documentation
● Redis Documentation
● What’s the Difference Between OLAP and OLTP?

http://www.dcs.fmph.uniba.sk/~lukotka/PTS/19Persistence.pdf
https://en.wikipedia.org/wiki/NewSQL
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487
https://cassandra.apache.org/doc/latest/
https://www.mongodb.com/docs/
https://redis.io/docs/latest/
https://aws.amazon.com/compare/the-difference-between-olap-and-oltp/#:~:text=OLTP-,Online%20analytical%20processing%20(OLAP)%20and%20online%20transaction%20processing%20(OLTP,processing%20and%20real%2Dtime%20updates.

