
Princípy tvorby softvéru, FMFI UK

Databases

Jana Kostičová, 25.10.2023

SDLC - Waterfall

& architecture

Database
= an organized collection of data, typically stored electronically, allowing
easy retrieval, modification, and management of information

● Flat file (txt, csv, tsv, json, xml, spreadsheets, …)
● DBMS = DataBase Management System

○ RDBMS = Relational DBMS

Database development process

Conceptual data
model

Logical data
model

Physical data
model

Database build

● Traditional approach, mostly used for
relational databases

● NoSQL databases - a different approach
can be used, often focus on physical design

Data model = visual
representation of data and
its relationships within a
databaseR

eq
ui

re
m

en
ts

A
rc

hi
te

ct
ur

e
&

 d
es

ig
n

Im
pl

em
en

ta
-

tio
n

Conceptual data model
= An abstract and high-level representation of the system that serves to identify
the data that will be crucial to a business

● Describes entities and abstract relationships
○ May describe also attributes and cardinalities

● Often supplemented with a glossary
● E-R diagram, UML class diagram or free-form

● Independent from implementation details and specific data storage mechanism
● Easily understood both for technical and non-technical people

Typically created during Requirements phase.

Logical data model
= A more detailed view of the data, but still driven by business needs

● Describes entities, attributes, relationships (including cardinalities) and constraints
○ May describe abstract types for attributes and referential integrity (primary keys, foreign keys)

● E-R diagram, UML class diagram

● Data normalization (if it is in accordance with the requirements !)

● Independent from specific DBMS, but mostly created for relational databases
● Still understood by non-technical people

Typically created during Design & Architecture phase.

(Relational) physical data model
= A database-specific representation of the data
= Actual representation of the database

This step starts associating the model with a Database Management System (DBMS).

● Describes tables, columns and referential integrity
● Describes indexes, triggers, constraints, stored procedures, functions, …
● Uses DBMS specific data types
● Uses DBMS compatible table names and column names

● Validation and optimization (e.g. denormalization)

Typically created during Design & Architecture phase.

How to choose
the right DBMS

DBMS

Fu
nc

tio
na

l
re

qu
ire

m
en

ts Data
operations

Data
structure

Costs

Data properties
(volume,

uniformity,.)

System
attributes

Design
constraints

N
on

-fu
nc

tio
na

l
re

qu
ire

m
en

ts

Project budget

Examples: Scalability, availability,
reliability, compatibility, portability,
maintainability, security, performance,
response time, etc.

Examples: Restrictions on
usage of HW components,
open-source SW components, etc.

Main aspects to consider

● Logical data structure
● Centralized vs distributed database
● On-premise vs cloud database
● Transactional vs analytical processing
● …

Logical data structure
● Relational tables

○ Stores data as rows in relational tables
● Key-value pairs

○ Stores data as values accessed by keys
● Documents

○ Stores data as documents (JSON, XML, YAML, …)
accessed by keys

● Wide-column store
○ Stores data in rows in tables, but columns are not

prescribed.
○ May be interpreted as 2-dimensional key-value store

● Graphs
○ Stores data as labeled vertices and edges of a

(directed) graph

RDBMS with support for given
data structure,
 or
“native” database for given
data structure
=> NoSQL databases

RDBMS

It is often possible to
use more than one
data structure for our
data - also other
requirements must
be taken into
account.

RDBMSs - examples of document support

XML JSON

MySQL Limited Yes

PostgreSQL Limited Yes

Microsoft SQL server Yes Yes

Oracle Yes Yes

IBM DB2 Yes Yes

SQLite Limited Limited

NoSQL databases - examples
Key value store
● Redis, Amazon DynamoDB, Couchbase, …

Document store
● MongoDB, CouchDB, Couchbase, …

Wide-column store
● Apache Cassandra, Apache HBase, …

Graph database
● Neo4j, …

NoSQL is not really a suitable
term, rather we should talk about
non-relational databases

Centralized database vs distributed database

Centralized database
 => runs and stores data in a single machine

Distributed database
 => runs and stores data across multiple computers (possibly in multiple
 physical locations)

Why to distribute data? - scalability, availability, reliability, response time,, …

Drawbacks: increased operational complexity (network communication), increased
learning curve, …

Centralized databases - RDBMSs vs NoSQL

● Traditional RDBMSs
○ Work well in a centralized environment
○ R&D > 40 years

● NoSQL DBs
○ (Most of them) primarily designed for distributed environment, but they

can be used also in a single machine
○ Other properties of NoSQL DBs must be taken into account

Distributed databases - How to distribute
There are two very distinct ways to distribute a database (those approaches can be
combined):
● Replication - storing separate copies at two or more nodes

○ Single leader - one server receives writes.
○ Multileader, Leaderless

● Fragmentation (partitioning) - we divide data into smaller parts and then store them
on separate nodes
○ Horizontal fragmentation - e.g.split the rows of the table
○ Vertical fragmentation - e.g.split the columns of the table (primary key in both

tables)

Single leader replication is the most common solution as writes are usually much less
frequent than reads.

Distributed databases - RDBMSs vs NoSQL

● Traditional RDBMSs
○ Difficult to distribute across multiple machines (= to

scale horizontally)

● “NoSQL” DBs
○ Work well in distributed environment, they easily

scale horizontally

● Distributed SQL DBs
○ Represent a new approach, these DBs are relational

but at the same time easy to scale horizontally
○ E.g., Google’s Spanner, CockroachDB

Vertical scalability
Add more power (CPU,
RAM) to an existing
machine

Horizontal scalability
Add more machines

Why NoSQL is better at horizontal scaling
● Relaxed ACID guarantees & no integrity constraints

○ Less communication between network nodes, less locks
○ BASE approach (eventual consistency)

● Flexible schema or schema-less approach
○ Easier horizontal fragmentation
○ Faster writes (no need to validate data against schema)
○ Easier to accommodate new data types and changes

● Related data are stored together (document stores)
○ Less joins between documents
○ Less communication between network nodes in case of horizontally fragmented data

● Support for distributed environment by design
○ Both for replication and fragmentation

Not all NoSQL databases provide the same level of support for horizontal scaling!

Kind of “cheating” - the better
scaling is achieved by relaxing
some of the mechanisms that
RDBMSs strictly follows.
Drawbacks of this relaxation
must be carefully considered.

ACID (RDBMSs)
Atomicity: Either all the changes within the transaction are committed to the database,
or none of them are.

Consistency: Guarantees that a database transaction brings the database from one
consistent state to another, maintaining database invariants.

Isolation: Concurrent execution of transactions leaves the database in the same state
that would have been obtained if the transactions were executed sequentially.

Durability: Ensures that once a transaction is committed, its changes are permanent
and will survive system failures, such as power outages or crashes.

Examples: financial systems, healthcare databases

BASE (NoSQL DBs)
Basically Available: The system prioritize high availability, even in the face of
network partitions or failures.

Soft state: The system can be in a "soft" or intermediate state, which means that
data consistency is not guaranteed at all times.

Eventually consistent: Data consistency is achieved over time. There is no
requirement for immediate consistency, and different replicas of the data may be
out of sync temporarily. However, over time, the data will become consistent
through mechanisms like background reconciliation and conflict resolution.

Examples: social media platforms, distributed content delivery networks

CAP theorem
We cannot achieve all consistency, availability, and
partition tolerance in asynchronous network model.

● Consistency: Every read operation returns the
most recent write result.

● Availability: Every request receives a response
(without guaranteeing it's the most recent data).

● Partition tolerance: The system can continue
to operate even in the presence of network
partitions or communication failures.

Distributed DB must always
guarantee partition tolerance.
Thus it has do decide between
consistency and availability.

NoSQL DBs - compromise
consistency in favor of
availability

On-premise vs cloud database
On-premise DB
● Full control over DB hardware, software, and infrastructure - easier customization of the

environment
● Higher level of control over data security
● Some data must be stored on-premises to maintain compliance (e.g., legal)

Cloud DB
● Easier scalability and geographical redundancy
● Lower maintenance costs

● Managed - Database as a service (DaaS, also data as a service)
○ Typically more expensive
○ Suitable if the organization does not have its own staff to develop and maintain the database

● Self-managed database

Transactional vs analytical processing
OLTP: Online transactional processing
● Task: To process database transactions
● Data structure: Relational tables or NoSQL data structures
● Operations: Primarily data writes
● Real-time processing

OLAP: Online analytical processing
● Task: To analyze aggregated data
● Data structure: Relational tables, but multidimensional model is used (star schema,

snowflake schema)
● Operations: Primarily data reads, including complex queries
● Batch processing + nowadays also real-time (or close to real-time) processing

Resources
● Robert Lukotka: Persistence and Databases
● S.Gilbert, N.Lynch: Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant webservices
● What’s the Difference Between OLAP and OLTP?

http://www.dcs.fmph.uniba.sk/~lukotka/PTS/19Persistence.pdf
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487
https://aws.amazon.com/compare/the-difference-between-olap-and-oltp/#:~:text=OLTP-,Online%20analytical%20processing%20(OLAP)%20and%20online%20transaction%20processing%20(OLTP,processing%20and%20real%2Dtime%20updates.

