
Concurrency and Parallelism

Principles of Software Design
Concurrency and Parallelism

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Concurrency and Parallelism

Concurrency - is the ability of di�erent parts or units of a
program, algorithm, or problem to be executed out-of-order or
in partial order, without a�ecting the �nal outcome.

Parallelism - calculations or the execution of processes are
carried out simultaneously.

Concurrency allows for parallel execution.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Concurrency and Parallelism

Concurrency is useful even without parallel computing (it
makes sense to use more threads even if we have only one
processor):

E�cient allocation of resources - while a thread waits for
something, another thread may be executed.
You do not need threads to get concurrent behavior, see e.g.
select system call. You do not know the order on which your
code is executed. But it should not matter.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

What could possibly go wrong?

int etx_rcvd = FALSE;

void WaitForInterrupt()

{

etx_rcvd = FALSE;

while (!ext_rcvd)

{

counter++;

}

}

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

What could possibly go wrong?

Compiler does �obvious� optimization.

int etx_rcvd = FALSE;

void WaitForInterrupt()

{

while (1)

{

counter++;

}

}

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Race conditions

OK, that was a bit silly, more standard examples (Python, C++):

//Example 1

if x == 5:

x = x * 2

//Example2

x = x + 1

//Example3

x += 1

//Example4 (C++)

x++;

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Race conditions

Each of the examples can lead to surprising behavior provided that
another process can modify x concurrently. Assume that x=5 at the
start and other process concurrently sets x=1. Possible outcome in
Example 1:

1 if x = 1 was set after this code or before this code
(expected)

2 if x = 1 was set after evaluating if, but before the
assignment (may be a bit surprising)

10 if x = 1 was set after reading x and before assigning the
resulting value to x in the second statement (may be very
surprising).

Similar issues may happen in other examples, including Example 4
(depends on exact resulting instructions generated).

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Race conditions

To be familiar with all possibilities, you need yo know something
about

Python: Python bytecode.

C++: instructions used in the compiled code.

You do not want to make your program depend on these.

It makes things very complicated.

These details may change between versions of Python / C++
compiler.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Race conditions

At least, you need

Mutual exclusion (mutex, synchronized, locks, . . .)

Stop optimizations of the potentially a�ected code (volatile,
. . .)

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

To be able to do stu� concurrently we have to

To be able to do stu� concurrently we have to run stu�.

Executor - you can submit a function(s) to evaluate.

ThreadPool, ProcessPool - Object Pool pattern, reuses
threads/processes, �xes maximum number of
threads/processes.

Future - As you run stu� in other thread/process, your thread
continues. Call of submit immediately returns a Future.
Future is a proxy object where the result of the computation
appears.

Event Loop - run an event loop and the add tasks to it (you
might not need locks in this case, details later).

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Concurrency constructs

From Python threading module:

Lock - only one thread can acquire the lock

RLock - as Lock, but the same thread can acquire it multiple
times and then it has to release it multiple times (useful if you
do recursive calls)

Condition - It includes a Lock and one must acquire it �rst.
Method wait releases the lock and waits for a call of the
notify method (it might have been called before the wait
call).

Semaphore - as Lock, but more threads can acquire it (the
maximum number is �xed).

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Concurrency constructs

From Python threading module:

Event - Underlying boolean variable can be set to true or false.
Method wait blocks until the variable is true.

Timer - An action that should be run after certain time has
passed.

Barrier - Method wait will block until at least n threads call it.

Many otherwise blocking calls have non-blocking variants or
variants with timeout set (examples on next slides).

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Concurrency constructs

Python Queue:

Queues are very useful for interprocess communication.

Such queues should generally have limited size, put may fail.

It is generally a good idea to have these limits, helps to show
which part of the system is too slow.

If you put/pop you may want to

Block until the action is possible.
Block until the action is possible or a timeout expires (may be
0, return value indicates the success).
Get an exception thrown in the case of failure.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

How to acquire locks/resouces in Python

Context management protocol requires two methods acquire and
release. It allows to use i.e. Lock, RLock, Condition, and
Semaphore objects as follows.

with some_lock:

do stuff ...

The lock is released whatever happens.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Issues with locks

It is not that easy to work with locks

Performance issues

Race Conditions

Deadlocks

. . .

It is not only about memory, also about, �les shared devices . . .

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Concurrent computing

Some good practices:

Minimal locks (space and time, read/write)

Prefer higher level constructs.

Local variables.

Immutable types.

Pure functions.

Acquire multiple locks in alphabetical order to prevent
deadlock.

Make the use of locking constructs as simple as possible.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Performance vs Simplicity

Minimal locking may be quite hard, but can improve the
performance:

See e.g. Double Checked Locking

A misplaced / too strict lock may ruin your parallel execution.

On the other hand, the correctness of locks is hard to test.

Assume two concurrent procedures both having with n atomic
instructions.

The number of orderings is
(
2n

n

)
, which is too much (there are

tools to do some such tests but there are obvious
computational limitations on what they can do).

Thus we must keep things simple to not introduce errors.

Robert Luko´ka Concurrency and Parallelism

https://en.wikipedia.org/wiki/Double-checked_locking#Usage_in_Java

Concurrency and Parallelism

How to minimize locks cope (time)

If a lock is needed for too long (e.g. waiting for I/O), we cannot
just acquire the lock for the whole time.

acquire lock + save the state / version, release lock.

wait for the long operation.

acquire lock + check state / version, do change if no relevant
change occurred during that time, release lock.

Redo the operation or notify the user if the change is not
successful (somebody else changed concurrently something
related to this change).

We do the same stu� to limit the time of database transactions.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Architectural solutions to concurrency issues

We want to keep things simple. We may use architectural patterns
to deal with concurrency.

Let the database handle it.

A very common approach.
Databases are very advanced tools, it would be foolish not to
use their power when appropriate.

Create �bubbles� that are executed by a single thread.

Queue - thread(s) processes requests from the queue (many
threads can put elements into the queue)
Reactor pattern - similar to previous one, but can handles
multiple distinct events.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Architectural solutions to concurrency issues

We want to keep things simple. We may use architectural patterns
to deal with concurrency.

Immutable data structures - makes reading non-concern, allow
atomic changes, . . .

Pipes and �lters - Data to share are sent through pipes
(thread-safe queues). besides the queues each thread has only
local variables . . .

Async IO - Cooperative multitasking to e�ciently use the time
spent waiting for non-CPU bound operations . . .

. . .

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Immutable data structures approach

Basic concepts:

Values - data that are:

Place independent.
Immutable when exposed.
Not necessary immutable during the building process, before
the value is exposed.

Pure functions:

Input/output are values.
No remote e�ect.
No notion of time.
Same arguments, same result.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Immutable data structures approach

Instead of rewriting the state (and thus loosing the old one),
time is captured as sequence of values.

New value is created by applying a pure function to an existing
one.

Persistent data structures - previous state is still referenced,
thus the structure also records its history.

Eventually you need some mutable reference to the most
current value, but you can do surprisingly large systems with
just one mutable variable (in very large systems, you need
more).

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Immutable data structures approach

Values allow massive concurrent observation.

State changes (computation of the next value) have to be
sequential.

This is often a good tradeo� as reads are more frequent then
writes.

Requires e�cient creation of new values.

Garbage collector can clean the no-longer referenced �past�.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Immutable data structures e�ciency

We really just need a few classes to compose arbitrary complex
values:

Several primitive types (int, bool, char, . . .)

Array

Set

Map

Structure

String

. . . maybe few more

All these structures are represented as trees with high branching
factor. Data sharing makes creation of new values e�cient

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Data sharing example

To illustrate data sharing consider the following value (Python):

{"Name": "Robert",

"Jobs": ({"range": (1997, 2001), "inst": "GJGT"},

{"range": (2001, 2006), "inst": "FMFI"},

{"range": (2005, 2016), "inst": "MSHDO"},

{"range": (2006, 2010), "inst": "FMFI"},

{"range": (2011, 2015), "inst": "TRUNI"},

{"range": (2015, 2019), "inst": "FMFI"})

}

We want to change 2019 to 2020.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Data sharing example

create pair (2015, 2020)

create {"range": (2015, 2019), "inst": "FMFI"}

You do not need to create the "range" string nor the
institution part of the structure. Just reference to existing
value.

Assume that the list is stored as a tree of depth 2. We create
new versions only for the node containing the modi�ed value
and its parents. We use references to unchanged nodes.

We create new version in the top-level dictionary.

Note that the old and the new value share structure - but this is
�ne as the data is immutable.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Data sharing e�ciency

Consider an array containing 1000000 values implemented as a tree

Modifying single value is logarithmic.

The base of the logarithm is high.

Slightly worse than for mutable object, but the complexity is
not prohibitive.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Immutable / Persistent data structures

Not only we can create new values e�ciently, other bene�ts:

Prepared for parallel execution of stu� on the structure (trees
are great for that)

Easy to check if sub-state has changed (compare references)

You cannot lock the state while waiting for user input.
You obtain the reference to the current state and hope for the
best.
Assume that after I/O completion the state has changed,
possibly several times.
Our change may be still OK, if the other changes are unrelated.
Fortunately, we can easily check which parts were una�ected,
because of structure sharing, it is su�cient to compare
references instead of looking at the values deeply.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Immutable / Persistent data structures

Not only we can create new values e�ciently, other bene�ts:

Atomic state changes are easy to do.

You do one change and do not publish the resulting value,
then you do the second change and publish the result.
From the outside world the two changes happened at once,
nobody can read the intermediate state.

Having recent history (even if there was no business value in it,
which is rarely the case) stored should make it easy to track
bugs.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Concurrency in Python

We have:

Processes (multiprocessing module)

Threads

In Python, processes can run in parallel, threads within the same
process not (Global interpreter lock). If you want more threads,
they can cooperate

Preemptive multitasking (threading) - operating system
switches tasks.

Cooperative multitasking (asyncio) -The tasks decide when to
give up control.

Note that if the application is I/O bound (program is slow because
it waits for input/output), threads are as good as processes.
Cooperative multitasking may be signi�cantly faster than
preemptive.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Asynchronous calls - low level tools

How to get a result from an asynchronous call (the execution of the
calling code continues):

Callbacks - You give function(s) to be called when the function
�nishes.

Futures / Promises - The function returns a proxy object with
initially unknown value. When the function �nishes, it stores
the resulting value there and the calling function may read the
result.

The terminology is not uni�ed in this area, but Futures are
typically created by the called function and promises by the
callee (and they get what to call as an argument)

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Asynchronous calls - low level tools

Often promises allow setting callback, those can be chained:

Parameter is a function that takes two functions.

One calls one of them when the computation finishes.

promise = (Promise(lambda resolve, reject :

We compute the result and it is 1.

resolve(1))

We chain another function

.then(lambda x: x+1)

We could continue chaining more stuff...

)

Note that promises are not that common in Python, but they are
common in other languages e.g. in JavaScript.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Basic concepts

Coroutines - special asynchronous functions.

Similar to generators, if coroutine is called you just get a
coroutine object.

Coroutines need to be run by an even loop

There is a singleton main event loop in asyncio, you can use
asyncio.run (Python 3.7+) to start an event loop put a
coroutine into it for execution and wait until the coroutine
�nishes.

De�ned using async keyword, may await other coroutines.

Coroutine chaining

We can compose coroutines in sequence or in parallel.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Coroutines example

async def part1(i):

sleep is a coroutine, dummy for stuff being done.

await asyncio.sleep(i)

print(i+2)

return i+2

async def part2(i):

await asyncio.sleep(i)

print(i*2)

return i*2

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Coroutines example

#in sequence

async def part12s(i):

#in sequence

j = await part1(i)

k = await part2(j)

#in parallel

asyncio.gather(part1(i), part2(i))

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Basic concepts

Queue:

It would be wasteful to use standard queue as it is for
preemptive multitasking.

Use asyncio.Queue - for cooperative multitasking.

Not thread safe (no need for thread safety in cooperative
multitasking)
Several additional useful methods.

Queues give another way to put coroutines together.

Producers - put values into the queue. Consumers - take the
values. Queue separates them.

You can have multiple producers and multiple consumers.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Queue example

#producer

async def part1(queue, i):

for j in range(i):

await asyncio.sleep((j+1)/i)

await queue.put(i+1)

#consumer

async def part2(queue, j):

while True:

r = await queue.get()

await asyncio.sleep(r/j)

print(r*10 + j)

queue.task_done()

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Queue example

async def run():

queue = asyncio.Queue()

#run consumers

c1 = asyncio.create_task(part2(queue, 1))

c2 = asyncio.create_task(part2(queue, 2))

#run producers and wait till they finish

await asyncio.gather(part1(queue, 3), part1(queue, 6))

#wait until everything in queue is processed

await queue.join()

#cancel consumers (they are infinite loops)

c1.cancel()

c2.cancel()

asyncio.run(run())

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Basic concepts

Event loop - needed to actually run the coroutines. You typically
need just one. You start it with asyncio.run(coroutine).

You can add additional tasks later create_task, but then it is
up to you to ensure they �nish.

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

asyncio - Advantages

Cooperative multitasking has several advantages

No locks required. You decide when you give up control, thus
there should be no strange run conditions.

E�cient resource usage - You do not wait until OS decides to
switch threads. Your coroutines give up control at a
convenient place and the event loop may select next coroutine
that is ready to run

Good for I/O bound code, e.g. e�cient servers. To do I/O
e�ciently it requires special non-blocking calls (otherwise you
need to run a blocking I/O in another thread and you lose
some e�ciency).

Robert Luko´ka Concurrency and Parallelism

Concurrency and Parallelism

Resources I

Python concurrency

Python threading module - check the basic objects

Python queues - various ways to put and pop

Python async IO

Rich Hickey - Are we there yet - a way to design and write
code using immutable data (till 48:00)

optional video - Rob Pike - Concurrency Is Not Parallelism -
Go language

Robert Luko´ka Concurrency and Parallelism

https://realpython.com/python-concurrency
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/queue.html
https://realpython.com/async-io-python/
https://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey/
https://www.youtube.com/watch?v=cN_DpYBzKso

Concurrency and Parallelism

References I

Concurrency - Wikipedia

Parallel Computing - Wikipedia

Race Condition - Wikipedia

Robert Luko´ka Concurrency and Parallelism

https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Race_condition#Example

	Concurrency and Parallelism

