
Princípy tvorby softvéru, FMFI UK

ORM
Object-relational mapping

Jana Kostičová, 15.11.2023

SDLC - Waterfall

& architecture

Object-relational mapping - ORM
= a programming technique used to facilitate the interaction between
object-oriented code and relational databases

ORM allows developers to work with databases using object-oriented
programming (OOP) concepts, such as classes, objects, and methods, rather than
writing raw SQL queries.

● Modeling data
● Creating / altering DB according to the model
● CRUD - inserting / querying / updating / deleting data

conn = sqlite database connection
cursor = conn.execute("SELECT * from USER_ACCOUNT where
NAME='spongebob' or NAME='sandy'")

for row in cursor:
 print("ID = ", row[0])
 print("NAME = ", row[1])
 print("FULLNAME = ", row[2], "\n")

conn.close()

engine = sqlalchemy db engine
User = mapped class, part of the model
session = Session(engine)
stmt = select(User).where(User.name.in_(["spongebob", "sandy"]))

for user in session.scalars(stmt):
 print("ID = ", user.id)
 print("NAME = ", user.name)
 print("FULLNAME = ", user.fullname, "\n")

session.close()

Traditional DB
access

ORM

ORM - pros and cons
(+) Abstraction of database details - ORM abstracts the low-level DB details and allows developers to
work with high-level, object-oriented code, making it easier to understand and maintain
(+) OO approach - ORM aligns well with object-oriented programming (OOP) principles. It allows you to
model your data as objects, which can make your code more intuitive and maintainable
(+) Reduced amount of code - the amount of repetitive SQL code and database-related logic is reduced

(-) Abstraction of database details - ORM abstracts DB details, which can limit the control over certain
database-specific features and optimizations.
(-) Possible performance overhead - queries are created and executed dynamically and cannot be
hand-optimized
(-) Steeper learning curve
(-) Complex queries - it may be difficult to express more complex queries

Object-relational impedance mismatch
There are several fundamental differences between OO design and DB design:

● Classes have instances, inheritance, relationships; relational databases have just
tables

● References vs pointers
● Datatype differences
● Database normal forms make little sense in OOP

Object-relational impedance mismatch is a set diculties that encountered if we use
relational databases with an OO application.

OODBMSs and document stores
OODBMS - Object-oriented databases

● Eliminate the need for converting data to and from its SQL form, as the data is
stored in its original object representation and relationships are directly
represented

Documents stores (JSON, XML)

● Storing objects in tree structures is more straightforward than in relational
tables

ORM software - examples
● Java: Hibernate
● Python: SQLAlchemy, Django ORM
● C# / .NET: Entity Framework
● JavaScript / TypeScript / Node.js: Sequelize, TypeORM, Prisma
● …

Example - DB model

User_account

id: Integer (pk)
name: String(30)
fullname: String

Address

id: Integer (pk)
e-mail_address: String
user_id: Integer (fk)

1 *

Resources & further reading
● Robert Lukotka: Objects and databases, ORM
● Wikipedia - Object–relational mapping
● SQLAlchemy 2.0 Documentation
● Python documentation: typing — Support for type hints

http://www.dcs.fmph.uniba.sk/~lukotka/PTS/20ORM.pdf
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://docs.sqlalchemy.org/en/20/index.html
https://docs.python.org/3/library/typing.html

