
Design, implementation &
testing

PTS2 / FMFI UK / 25.11.2024 Jana Kostičová

Design

● Level of granularity below the software architecture
● Modeling internal structure of individual software components

Common approaches

● Object-oriented design
● Functional programming design

Object-oriented design

● Objects, their interactions and hierarchies
● UML often used

○ UML class diagrams, UML sequence diagrams, ..
● Based on

1. Abstraction
2. Inheritance
3. Encapsulation
4. Polymorphism

● Important to follow basic principles
○ SOLID principles, High cohesion-low coupling, …

● Design patterns:
○ Singleton, Factory, Observer, Adapter,...

● Bottom-up approach
1. Objects and their relationships are defined
2. They are combined to larger components and eventually the entire system

PTS1

Functional (programming) design

● Computation = evaluation of mathematical functions
● Focuses on pure functions, immutable data and higher-order functions

● Gaining popularity especially in the area of data processing (Scala, Python)

● Top-down approach
1. Overall system's goals are defined
2. The goals are expressed by smaller, more manageable functions
3. These functions are further decomposed into smaller functions until the desired level of granularity

is reached

Functional (programming) design - example

● Data flow diagram
○ Raw Data → [Clean Data] → [Analyze] → [Aggregate] → Result

→ Shows the flow of data through pure functions.

● Composition of function (Scala):

val cleanData = (data: List[String]) => data.filter(_.nonEmpty).map(_.trim)
val analyze = (data: List[String]) => data.map(word => (word, word.length))
val aggregate = (data: List[(String, Int)]) => data.groupBy(_._1).mapValues(_.size)

val processData = cleanData andThen analyze andThen aggregate

val cleanData = (data: List[String]) => data.filter(_.nonEmpty).map(_.trim)

● val cleanData = ... - declares a variable that is immutable once assigned
● (data: List[String]) => ... - defines a function taking a List[String] as input
● data.filter(_.nonEmpty): - filters the input list, keeping only the non-empty strings (_.nonEmpty is a

 shorthand notation for a function that checks if a string is not empty)
● map(_.trim): - maps each non-empty string to its trimmed version (_.trim is a shorthand

 notation for a function that trims whitespace from a string)

O-O design Functional programming
design

Focus Objects and their
relationships

Functions and their
composition

Design approach Bottom-up Top-down

Flexibility More flexible Less flexible

Modularity More modular Less modular

State Stateful objects No shared mutable state

Concurrency and
parallelism

Typically more issues Typically less issues

Debugging and testing More complex Simpler

Implementation & integration

● Write readable code
● Follow project structure and style guide
● Document your code properly
● Keep code DRY (Don’t Repeat Yourself)
● Practice YAGNI (You Aren’t Gonna Need It)
● Avoid optimizing up front
● Handle edge cases explicitly
● Use version control

○ Commit in small, logical steps
○ Commit only compilable and tested code
○ Write good commit messages !

● Practice code reviews
● Leverage CI / CD pipelines

“We should forget about small efficiencies,
say about 97% of the time: premature
optimization is the root of all evil. Yet we
should not pass up our opportunities in that
critical 3%.”

Donald Knuth, 1974

Examples

def factorial_recursive(n):
 if n == 0:
 return 1
 else:
 return n * factorial_recursive(n - 1)

def factorial_iterative(n):
 result = 1
 for i in range(1, n + 1):
 result *= i
 return result

def multiply_by_four(x):
return x << 2

def multiply_by_four(x):
return x * 4 vs.

vs.

result = ''.join(["a", "b", "c", "d"])result = "a" + "b" + "c" + "d" vs.

Continuous Integration (CI) workflow

Pull
request

Automated
build

Automated
tests

Code review

Main
codebase

Merge
OK

Pull
request Code review

Fail

Local
build &

unit tests

Automated
build

Automated
tests

CI solution
Change

Local
build &

unit tests

Change

Testing

● Unit testing
○ Testing individual units of code (functions, classes, modules) in isolation

● Integration testing
○ Testing groupings of integrated components

● System (end-to-end) testing
○ Testing entire system (product)

● GUI tests
○ Tools for automated GUI tests: Selenium, Appium, Playwright..
○ Example: Selenium Test Case

● CI / CD workflow: tests run automatically before merge
● Test-driven development: First write tests, then code

Written mostly
by developers

Written mostly
by QA engineers

https://www.geeksforgeeks.org/how-to-create-selenium-test-cases/#create-selenium-test-cases

Resources

● Martin, R.C.: Clean code - A Handbook of Agile Software Craftsmanship, 2009.
● Hunt, A., Thomas D.: The Pragmatic Programmer - From Journeyman to Master, 2000.
● Knuth, D.E. Structured Programming with go to Statements. ACM Comput. Surv. 6, 4

(Dec. 1974), 261–301.
● Whittaker, J.A.: “What Is Software Testing? And Why Is It so Hard?” IEEE Software, vol.

17, no. 1, 2000, pp. 70–79.
● Relevant PTS1 lectures

https://dl.acm.org/doi/10.1145/356635.356640

