Architecture & design

Intro, 4+1 architectural view model

Principy tvorby softvéru 2, FMFI UK Jana KostiCova, 22.10.2025

SDLC

Verification &
validation

Camelot is based on the client-server model and uses remote procedure calls both
locally and remotely to provide communication among applications and servers.”

“Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous devices.
The architecture encourages a client server model for the structuring of applications.”

“We have chosen a distributed, object-oriented approach to managing information.”

“The easiest way to make the canonical sequential compiler into a concurrent compiler
is to pipeline the execution of the compiler phases over a number of processors. ... A
more effective way [is to] split the source code into many segments, which are
concurrently processed through the various phases of compilation [by multiple
compiler processes] before a final, merging pass recombines the object code into a
single program.”

Is it worth the effort to design software well? [5]

Good design

No design

... but up here there is no useful trade-off

Design payoff line

Down here it may be worth trading off
design quality for time to market.

Cumulative functionality

Time

Software architecture

= the organization or structure of a system, where the system represents a
collection of components that accomplish a specific function or set of functions.

e A (software) component is a modular, cohesive unit of a software system that
encapsulates related functionality

e Components serve as the building blocks for the structure of a system
e Components are connected via well-defined interfaces

e Components are typically specified in different views to show the relevant functional
and non-functional properties of a software system

Interface

(Software) interface is a shared boundary across which two or more separate
(software) components of a computer system exchange information.

e ABI - Application binary interface - typically not relevant (created by compiler /
other tools).

e API - Application programming interface
e User interfaces

Architecture vs design

Software architecture

e High-level structure of the entire system and its division into a set of
components

Software design

e Internal structure of individual components

4+1 architectural view model

= a model "describing the architecture of software-intensive systems, based on the
use of multiple, concurrent views"

Introduced by Philippe Kruchten in 1995 [7]

Logical Development
view view The “4+1” view model is rather “generic”:

R other notations and tools can be used, other

design methods can be used, especially for

the logical and process decompositions, but

we have indicated the ones we have used

with success.

Scenarios

N immN,
\ 4 R *e, v Philippe Kruchten
R System * PP
& environment 2
Process . Physical

view view

4+1 architectural view model: LOGICAL VIEW

Describes the system in terms of components, their relations, and the
functionality they provide

The perspective of end users (and stakeholders in general)

Mapping of requirements to logical components (e.g., modules, subsystems)
Overlap with “Requirements” phase

UML: Use Case diagrams, UML Class diagrams, UML Component diagrams, ...

Logical components - identification

Example: E-commerce store logical components

Product Catalog

e Browse/search products, filter, view details
Shopping Cart

e Add/remove/update cart items, calculate totals
Order Management

e Create orders, manage order status, history
Payment Processing

e Payment gateway integration, transaction management
User Account / Authentication

e Login, registration, profile, address book
Inventory Management

e Track stock levels, availability

How to identify logical
components?

- By analyzing requirements and
domain model.
- Following the key principles:

e Strong cohesion - a logical
component encapsulates
closely related functionality

e Loose coupling - a logical
component has minimal
dependencies to other
components and interact with
them through well-defined
interfaces

Logical components - UML Use Case Diagram

e The “system boundary” actually defines a logical component (subsystem)
e Asimilar approach can be used for requirements in the form of a
structured text - text hierarchy is based on logical components

Product Catalog Shopping Cart

Search products
by product
/ Bl product
Search
products by Remove
category product

Customer Update
product
quantity

Customer

Display
product
details

Logical components - UML Class Diagram

e “UML packages” are used to depict logical components and
group related functionality (classes)

e Combination of architecture and design - components are
white boxes, their content is shown here

Shopping Product
Cart Catalog
Shopping Cart ltem Product
Cart

productld: int
name: string
stockQuantity: int

cartltemid: int
quantity: int

cartld: int

addltem
(productld, qty)

IncreaseQty(qty)

Logical components - UML Component Diagram

Example With comments Without comments

A UML Component Diagram depicts components and the interfaces through which they interact
Components can form a hierarchy — for example, a system may be divided into subsystems (higher-level

components), each containing several related components

e Lowest-level components are black boxes - their content is not shown here

Component
= a modular unit with well-defined interfaces [1]
e Notation: Specialized class (may be nested)
e Interaction points -_ports
Interfaces
e Provided and required interfaces
e Notation: Ball and socket
e Assembly connector vs dependency
Delegation connector
e Parent component delegates the responsibility for
fulfilling that interface to one of its internal parts

% | <<component>>
ComponentName ComponentName
Customer

OrderStatus

O— Orders ¢ ;Euctltem
_C
\ \

Provided interface

Required interface

https://www.uml-diagrams.org/component-diagrams/component-diagram-overview.png
https://www.uml-diagrams.org/examples/component-example-retail-website.png

4+1 architectural view model: PROCESS VIEW

e Captures dynamic behavior of the system - the interactions and collaborations among
processes, tasks, threads, and components during runtime

e Mapping of logical components to their runtime realization as processes and threads
Important for understanding concurrency, performance, and resource utilization.
UML: Sequence diagram, Communication diagram, Activity diagram, ...

Example: High-level process view

Frontend process

(Web browser /
SPA)

A

HTTP
requests / API Server process Message queue
reponses (event loop in single (asynchronous) Notification

> thread handles - > P -

multiple requests) P
} Sa
(aSy Je Que

Database "Chr 0’7Ousue

queries /)

reponses

Database Payment Service

process

Process

Example: High-level process view +
mapping to logical components

HTTP
requests /
reponses

Frontend process

A

(Web browser /
SPA)

Product Catalog - Ul, minor client-side logic
Shopping Cart - Ul, minor client-side logic
Order Management - Ul, minor client-side
logic

Product Catalog - data persistence, transactions
Shopping Cart - data persistence, transactions
Order Management - data persistence, transactions

A

Database
queries /
reponses

API Server process
(event loop in single
thread handles
multiple requests)

Product Catalog - most business logic
Shopping Cart - most business logic
Order Management - most business logic

Message queue

Database
process

(asynchronous) | Notification
process
(Q/gessage o} Order Man\agement -
ynchl‘on “Sug confirmation emails

Payment Service
Process

Order Management -
handles payment

Example: Sequence diagram

Facebook user authentication

More detailed process view

https://www.uml-diagrams.org/examples/sequence-example-facebook-authentication.png

4+1 architectural view model: DEVELOPMENT VIEW

® Describes software organization - repositories, SW modules and components, their

relationships, source code organization,
e Mapping of logical components into implementation
e The perspective of developers
e UML: Package diagrams, Component diagrams

Example: Implementation

(Git) repository ecommerce-store-frontend

/src
/assets (static resources)
/components (reusable page components)
/services (business logic/state management)
productClientService.js
cartClientService.js
orderClientService.js

/pages
productPage.js
cartPage.js
orderPage.js

(Git) repository ecommerce-store-backend

/config

/src
/middleware (request/response handlers - auth,

Logging, error handling...)

(data models, DB schemas, ORM)

(db connection params, ..)

/models
product.js
cart.js
order.js

/services (business logic/use case implementation)
productAppService.js
cartAppService.js
orderAppService.js

/routes (api)
productRoutes.js
cartRoutes.js
orderRoutes.js

Example: Implementation + mapping to logical components

(GitHub) repository ecommerce-store-frontend

/src
(static resources)
(reusable page components)
/services (business logic/state management)

productClientService.js
cartClientService.js
orderClientService.js

/pages
productPage. js
cartPage.js
orderPage.js

“Product Catalog” maps ~ to highlighted
codebase elements
e Assets and page components: some of the included

files may be a part of the mapping
e The example does not contain full imlementation

(GitHub) repository ecommerce-store-backend

/config (db connection params, ..)

/src
/middleware (request/response handlers - auth,
Logging, error handling...)
/models (data models, DB schemas, ORM)
product.js
cart.js

order.js

/services (business logic/use case implementation)
productAppService. js
cartAppService.js
orderAppService.js

/routes (api)
productRoutes. js
cartRoutes.js
orderRoutes.js

Implementation - what to consider

E-commerce store

e Monorepo vs multi-repo approach

e Layered architecture pattern - technical separation of concerns
o Presentation layer - frontend: src/assets, src/components, src/pages
o Application layer - frontend: src/services, backend: src/routes, src/middleware
o (Domain layer) - backend: src/model (part), src/services (part)
o Data access layer - backend: config.js, src/model (part), src/services (part)

e Code structure: layers vs logical components (or combination)

http://config.js

4+1 architectural view model: PHYSICAL VIEW

e Describes the system's physical architecture, including hardware components, network
topology, and distribution of software components across different machines or nodes

e Addresses concerns related to deployment, scalability, and performance optimization

e UML: Deployment diagram

Artifacts and deployment targets

e Artifact: any deployable or executable piece of software or configuration

(JAR file, .NET DLL / EXE, Python wheel / package, Node.js bundle, Docker image, DB migration scripts,
configuration files, assets, ...)

e Deployment target / node: a physical or virtual computational resource that executes artifacts
Virtual - VM, Docker container, Software-based server...

Physical - physical server, mobile device, workstation, various network physical elements, ...

Examples
Deployment in virtual environment Deployment directly onto the host operating system
Physical Server (physical) Physical Server (physical)
L—> Virtual Machine (virtual) L—> Operating System (Linux/Win_dows) (virtual)
L—> Container (virtual) L—> Apache Tomcat Server (virtual)

| L :
L—> Apache Tomcat Server (virtual) > Application app.war (artifact)

L—> application app.war (artifact)

Network Infrastructure

e UML deployment diagrams could be used
o May not provide enough detail when representing network-level components

Often custom format

e Some common network-level components:
o Routers, Switches, Gateways
m Manage the traffic flow between networks and devices

o Firewalls and Proxies
m Secure the network by controlling access and monitoring traffic

o Load Balancers and CDNs
m Optimize application delivery by distributing traffic and caching content

o DNS servers

e Modern cloud architectures
o Automatic scaling, elastic load balancing, CDNs, managed databases and storage solutions, security, ...

— Strong focus on non-functional requirements (scalability, data backup, data durability, response time, security, ...)

Network Infrastructure - examples

e Network Architecture Diagrams
Amazon AWS
e Gooagle Cloud

https://www.uml-diagrams.org/network-architecture-diagrams.html
https://docs.aws.amazon.com/images/whitepapers/latest/web-application-hosting-best-practices/images/image4.png
https://cloud.google.com/blog/products/application-development/13-popular-application-architectures-for-google-cloud

4+1 architectural view model: SCENARIOS

“+1” aspect of the model

e lllustrate how the system functions in real-world situations, using a small set of use cases

(scenarios)

e Cover also internal functionality of the system (unlike scenarios in “Requirements” phase)

User clicks Checkout in SPA
1. FrontendProcess validates cart and sends
checkout request to APIServerProcess

2. APIServerProcess:
a. Validates order
b. Persists order in DatabaseProcess
c. Sends payment request to

PaymentServiceProcess

3. PaymentServiceProcess
a. Processes payment (success/failure)
b. Responds to APIServerProcess
4. APIServerProcess:
a. Updates order status in DB
b. Publishes OrderConfirmation message to
NotificationProcess via MQ
5. NotificationProcess sends email to user
asynchronously

