
Princípy tvorby softvéru 2, FMFI UK

Architecture & design
Intro, 4+1 architectural view model

Jana Kostičová, 22.10.2025

Analysis /
Requirements

Architecture &
design

Implementation

Verification &
validation

Operation &
Maintenance

Deployment

SDLC

● Camelot is based on the client-server model and uses remote procedure calls both
locally and remotely to provide communication among applications and servers.”

● “Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous devices.
The architecture encourages a client server model for the structuring of applications.”

● “We have chosen a distributed, object-oriented approach to managing information.”

● “The easiest way to make the canonical sequential compiler into a concurrent compiler
is to pipeline the execution of the compiler phases over a number of processors. . . . A
more effective way [is to] split the source code into many segments, which are
concurrently processed through the various phases of compilation [by multiple
compiler processes] before a final, merging pass recombines the object code into a
single program.”

Is it worth the effort to design software well? [5]

Software architecture
= the organization or structure of a system, where the system represents a
collection of components that accomplish a specific function or set of functions.

● A (software) component is a modular, cohesive unit of a software system that
encapsulates related functionality

● Components serve as the building blocks for the structure of a system

● Components are connected via well-defined interfaces

● Components are typically specified in different views to show the relevant functional
and non-functional properties of a software system

Interface
(Software) interface is a shared boundary across which two or more separate
(software) components of a computer system exchange information.

● ABI - Application binary interface - typically not relevant (created by compiler /
other tools).

● API - Application programming interface
● User interfaces

Architecture vs design
Software architecture

● High-level structure of the entire system and its division into a set of
components

Software design

● Internal structure of individual components

4+1 architectural view model
= a model "describing the architecture of software-intensive systems, based on the
use of multiple, concurrent views"
Introduced by Philippe Kruchten in 1995 [7]

The “4+1” view model is rather “generic”:
other notations and tools can be used, other
design methods can be used, especially for
the logical and process decompositions, but
we have indicated the ones we have used
with success.

 Philippe Kruchten

4+1 architectural view model: LOGICAL VIEW
● Describes the system in terms of components, their relations, and the

functionality they provide
● The perspective of end users (and stakeholders in general)
● Mapping of requirements to logical components (e.g., modules, subsystems)
● Overlap with “Requirements” phase
● UML: Use Case diagrams, UML Class diagrams, UML Component diagrams, …

Example: E-commerce store logical components

Product Catalog
● Browse/search products, filter, view details

Shopping Cart
● Add/remove/update cart items, calculate totals

Order Management
● Create orders, manage order status, history

Payment Processing
● Payment gateway integration, transaction management

User Account / Authentication
● Login, registration, profile, address book

Inventory Management
● Track stock levels, availability

…

Logical components - identification

How to identify logical
components?
- By analyzing requirements and
 domain model.
- Following the key principles:

● Strong cohesion - a logical
component encapsulates
closely related functionality

● Loose coupling - a logical
component has minimal
dependencies to other
components and interact with
them through well-defined
interfaces

Logical components - UML Use Case Diagram

Product Catalog

Search products
by product

name

Display
product
details

Search
products by

category
Customer

Shopping Cart

Add
product

Update
product
quantity

Remove
product

Customer

● The “system boundary” actually defines a logical component (subsystem)
● A similar approach can be used for requirements in the form of a

structured text - text hierarchy is based on logical components

cartId: int

Shopping
Cart

addItem
(productId, qty)

cartItemid: int
quantity: int

Cart Item Product
productId: int
name: string
stockQuantity: int

Shopping
Cart

Product
Catalog

IncreaseQty(qty)

Logical components - UML Class Diagram

● “UML packages” are used to depict logical components and
group related functionality (classes)

● Combination of architecture and design - components are
white boxes, their content is shown here

Logical components - UML Component Diagram

Example With comments Without comments

● A UML Component Diagram depicts components and the interfaces through which they interact
● Components can form a hierarchy — for example, a system may be divided into subsystems (higher-level

components), each containing several related components
● Lowest-level components are black boxes - their content is not shown here

Component
= a modular unit with well-defined interfaces [1]

● Notation: Specialized class (may be nested)
● Interaction points - ports

Interfaces
● Provided and required interfaces
● Notation: Ball and socket
● Assembly connector vs dependency

Delegation connector
● Parent component delegates the responsibility for

fulfilling that interface to one of its internal parts Provided interface Required interface

https://www.uml-diagrams.org/component-diagrams/component-diagram-overview.png
https://www.uml-diagrams.org/examples/component-example-retail-website.png

4+1 architectural view model: PROCESS VIEW
● Captures dynamic behavior of the system - the interactions and collaborations among

processes, tasks, threads, and components during runtime
● Mapping of logical components to their runtime realization as processes and threads
● Important for understanding concurrency, performance, and resource utilization.
● UML: Sequence diagram, Communication diagram, Activity diagram, …

Example: High-level process view

Frontend process
(Web browser /

SPA)

API Server process
(event loop in single

thread handles
multiple requests)

Database
process

HTTP
requests /
reponses Notification

process

Message queue
(asynchronous)

Payment Service
Process

Database
queries /
reponses

Message queue
(asynchronous)

Example: High-level process view +
mapping to logical components

Frontend process
(Web browser /

SPA)

API Server process
(event loop in single

thread handles
multiple requests)

Database
process

HTTP
requests /
reponses Notification

process

Message queue
(asynchronous)

Payment Service
Process

Database
queries /
reponses

Message queue
(asynchronous)

Product Catalog - UI, minor client-side logic
Shopping Cart - UI, minor client-side logic
Order Management - UI, minor client-side
logic

Product Catalog - most business logic
Shopping Cart - most business logic
Order Management - most business logic

Product Catalog - data persistence, transactions
Shopping Cart - data persistence, transactions
Order Management - data persistence, transactions

Order Management -
confirmation emails

Order Management -
handles payment

Example: Sequence diagram
Facebook user authentication

More detailed process view

https://www.uml-diagrams.org/examples/sequence-example-facebook-authentication.png

4+1 architectural view model: DEVELOPMENT VIEW

● Describes software organization - repositories, SW modules and components, their
relationships, source code organization, ….

● Mapping of logical components into implementation
● The perspective of developers
● UML: Package diagrams, Component diagrams

Example: Implementation

(Git) repository ecommerce-store-frontend
/src
 /assets (static resources)
 /components (reusable page components)
 /services (business logic/state management)
 productClientService.js
 cartClientService.js
 orderClientService.js
 …
 /pages
 productPage.js
 cartPage.js
 orderPage.js
 …

(Git) repository ecommerce-store-backend
/config (db connection params, …)
/src
 /middleware (request/response handlers - auth,
 Logging, error handling...)
 /models (data models, DB schemas, ORM)
 product.js
 cart.js
 order.js
 …
 /services (business logic/use case implementation)
 productAppService.js
 cartAppService.js
 orderAppService.js
 …
 /routes (api)
 productRoutes.js
 cartRoutes.js
 orderRoutes.js
 …

Example: Implementation + mapping to logical components

(GitHub) repository ecommerce-store-frontend
/src
 /assets (static resources)
 /components (reusable page components)
 /services (business logic/state management)
 productClientService.js
 cartClientService.js
 orderClientService.js
 …
 /pages
 productPage.js
 cartPage.js
 orderPage.js
 …

(GitHub) repository ecommerce-store-backend
/config (db connection params, …)
/src
 /middleware (request/response handlers - auth,
 Logging, error handling...)
 /models (data models, DB schemas, ORM)
 product.js
 cart.js
 order.js
 …
 /services (business logic/use case implementation)
 productAppService.js
 cartAppService.js
 orderAppService.js
 …
 /routes (api)
 productRoutes.js
 cartRoutes.js
 orderRoutes.js
 …

“Product Catalog” maps ~ to highlighted
codebase elements

● Assets and page components: some of the included
files may be a part of the mapping

● The example does not contain full imlementation

Implementation - what to consider

E-commerce store

● Monorepo vs multi-repo approach
● Layered architecture pattern - technical separation of concerns

○ Presentation layer - frontend: src/assets, src/components, src/pages
○ Application layer - frontend: src/services, backend: src/routes, src/middleware
○ (Domain layer) - backend: src/model (part), src/services (part)
○ Data access layer - backend: config.js, src/model (part), src/services (part)

● Code structure: layers vs logical components (or combination)

http://config.js

4+1 architectural view model: PHYSICAL VIEW
● Describes the system's physical architecture, including hardware components, network

topology, and distribution of software components across different machines or nodes

● Addresses concerns related to deployment, scalability, and performance optimization

● UML: Deployment diagram

Artifacts and deployment targets
● Artifact: any deployable or executable piece of software or configuration

(JAR file, .NET DLL / EXE, Python wheel / package, Node.js bundle, Docker image, DB migration scripts,
configuration files, assets, …)

● Deployment target / node: a physical or virtual computational resource that executes artifacts

Virtual - VM, Docker container, Software-based server…

Physical - physical server, mobile device, workstation, various network physical elements, …

Examples

Deployment in virtual environment Deployment directly onto the host operating system

Physical Server (physical)
 └──> Operating System (Linux/Windows) (virtual)
 └──> Apache Tomcat Server (virtual)
 └──> Application app.war (artifact)

Physical Server (physical)
 └──> Virtual Machine (virtual)
 └──> Container (virtual)
 └──> Apache Tomcat Server (virtual)
 └──> application app.war (artifact)

Network Infrastructure
● UML deployment diagrams could be used

○ May not provide enough detail when representing network-level components

● Often custom format
● Some common network-level components:

○ Routers, Switches, Gateways
■ Manage the traffic flow between networks and devices

○ Firewalls and Proxies
■ Secure the network by controlling access and monitoring traffic

○ Load Balancers and CDNs
■ Optimize application delivery by distributing traffic and caching content

○ DNS servers
● Modern cloud architectures

○ Automatic scaling, elastic load balancing, CDNs, managed databases and storage solutions, security, …

→ Strong focus on non-functional requirements (scalability, data backup, data durability, response time, security, …)

Network Infrastructure - examples

● Network Architecture Diagrams
● Amazon AWS
● Google Cloud

https://www.uml-diagrams.org/network-architecture-diagrams.html
https://docs.aws.amazon.com/images/whitepapers/latest/web-application-hosting-best-practices/images/image4.png
https://cloud.google.com/blog/products/application-development/13-popular-application-architectures-for-google-cloud

4+1 architectural view model: SCENARIOS
● “+1” aspect of the model
● Illustrate how the system functions in real-world situations, using a small set of use cases

(scenarios)
● Cover also internal functionality of the system (unlike scenarios in “Requirements” phase)

User clicks Checkout in SPA
1. FrontendProcess validates cart and sends

checkout request to APIServerProcess
2. APIServerProcess:

a. Validates order
b. Persists order in DatabaseProcess
c. Sends payment request to

PaymentServiceProcess

3. PaymentServiceProcess
a. Processes payment (success/failure)
b. Responds to APIServerProcess

4. APIServerProcess:
a. Updates order status in DB
b. Publishes OrderConfirmation message to

NotificationProcess via MQ
5. NotificationProcess sends email to user

asynchronously

