Databases
(Modeling, ORM)

Principy tvorby softvéru, FMFI UK Jana KostiCova, 5.11.2025

SDLC

Verification &
validation

Database vs DBMS

Database
= an organized collection of data, typically stored electronically, allowing easy retrieval, modification, and
management of information

e Examples: flat or hierarchical file formats (txt, csy, tsv, json, xml, spreadsheets, ...), relational
tables in RDBMS

DBMS (DataBase Management System)

= a software that manages and interacts with the data stored in a database

e Examples: RDBMS = Relational DBMS, NoSQL databases

Storage vs computation

DBMSs

e Both storage and computation integrated in a single system
e Cannot be scaled separately

New trend: separating storage and computation
e Big data processing
e Distributed environment (cloud)
e Examples:
O Storage: HDFS (Hadoop distributed file system), AWS S3, Google File System, ADLS (Azure Data

Lake storage)
o Computation: Apache Hadoop (MapReduce), Apache Spark, Apache Flink

Database development process

< Domain

m

(conceptual)
model

Data model = visual
representation of data and its
relationships within a database

Logical data
model

Domain model is used to derive
both more detailed data models as
well as O-O models.

model

c
oy
)
(]
el
o3
)
—
=
©
]
=
<
3]
—_
<

There is typically ORM
(Object-relational mapping)
between O-O model and relational
data model.

Database build

Implementa-
tion

Physical data }

Domain (conceptual) model

= High-level static model, visualization of domain concepts
See “Requirements” lecture.

e Often supplemented with a glossary
E-R diagram, UML class diagram or free-form

e Independent from implementation details and specific data storage mechanism
Easily understood both for technical and non-technical people

Typically created during Requirements phase.

Example

Unit price in shopping cart cart / order item is a time
snapshot of the unit price of referenced product

< 0]
siajol

Customer
Shopping Cart) Shopping Cart Item
first name has » 0.1 contains » 0.*
middle name cartID quantity
last name date created 0. |unit price
e-mail / total price {quantity * unit price}
phone .
1 ‘90@& Order : Order Item
4 contains » 0.*
=4 order ID quantity
1.5 |5 o.* |order date 1.+ |unit price g S
- status: Order Status / total price {quantity * unit price} v s
Address
address line 1
address line 2
city
postal code Order Status 1 contains »
country <=enumeration=> Product 0.1
i Product Categol
Eendng code <« contains s
Processing ians 1.
. . Shlpped Y 0.* 1.% name o
Relationships are Delivered description - e B
explained by textual Cancelled lslt"o"{‘:ll(”;%ea iy

descriptions.

Only leaf product
categories contain
products.

Logical data model

= A more detailed view of the data, but still driven by business needs

e Describes entities, attributes, relationships (including cardinalities) and constraints
o Typically describe abstract types for attributes and referential integrity (primary keys, foreign
keys)
e E-R diagram, UML class diagram

e Data normalization (if it is in accordance with the requirements !)
e Dependent on logical data structure

Still independent from specific DBMS
Still understood by non-technical people

Typically created during Design & Architecture phase.

.-+ {unitPrice > 0}
_.-°7 {stockQty == 0}

“1shoppingCartitemId: long(pk) @

quantity: int »

unitPrice: float

cartld: long (fk) ;
productid: long (fk)
created: datetime !

lastModified: datetime)

Unit price in shopping cart cart / order -
item is a time snapshot of the unit price . __ Shopping Cart item

of referenced product

Customer

customerld: long (pk)
firstName: string
middleName: string
lastName: string
eMail: string

Example

Logical model
for relational e ,
created: datetime Eggg?gzeggié%rrﬁae(fk)

ta b I es lastModified: datetime lastModified: datetime
T Order Item ‘

Order .

Address

Shopping Cart

cartld: lonk (pk)

orderltemid: long(pk)
quantity: int

unitPrice: float
orderld: long (fk)
productld: long (fk)
created: datetime
lastModified: datetime

orderld: long (pk)
orderDate: datetime
customerid: long (ik)
orderStatusld: long (k)
created: datetime
lastModified: datetime

< I

Order Status
Product

addressld: long (pk)
addressLine1: string
addressLine2: string
city: string
postalCode: string
country: string
customerld: long (fk)
created: datetime
lastModified: datetime

This model contains
explicit foreign keys so it
is assumed that
non-technical people
understand this notation.

Product Category

Product - ProductCategory

prodCategoryld: long (pk)
name: string

orderStatusid: long (pk)
productid: long (pk) productld: long (pk,)

If not, it is better to keep

the relationship
descriptions and

cardinalities used in the
conceptual model.

Pending, Processing,
Shipped, Delivered, ---.
Cancelled

name: string

description: string
created: datetime
lastModified: datetime

code: string
name: string
JunitPrice: float
7| stockQty: int

{unitPrice = 0}
{stockQty == 0}

| created: datetime
< |lastModified:
datetime

prodCategoryld: long (pk, k)
created: datetime
lastModified: datetime

’
v

Only leaf product categories

contain products.

parentCategoryld: long (fk)
created: datetime
lastModified: datetime

Customer Unit price in shopping cart cart / order
. il Shopping Cart Item {unitPrice = 0}
.-~ ! {stockQty == 0}

Exal I Iple item is a time snapshot of the unit price ..
SR Dhear s shoppingCartltemid: long(pk)

customerld: long (pk)
quantity: int
unitPrice: float .

Logical model for |ssmame smg
middleName: string -

Shopping Cart cartld: long (fk) ;

productid: long (k)

lastName: string
created: datetime !

re I atl O n a I ta b I eS eMail: string cartld: lonk (pk)

phone: string ¢

created: datetime E:‘:;?;?J?zgi:t)irr]nge(ﬂo lastModified: datetime ;

asiModiied (e lastModified: datetime
Order Item

Order

Abstract data
types

orderltemid: long(pk)

orderld: long (pk) quantity: int
orderDate: datetime unitPrice: float
customerld: long (fk) orderld: long (fk)
orderStatusld: long (fk) productld: long (fk)
created: datetime created: datetime

lastModified: datetime lastModified: datetime

v
Product Category

createy datetime
lastModihgd: datetim
} Order Status
T Product Product - ProductCategory
orderStatusld: long (p! :
Seadig. Pracoins name: string prc:jductth: long (pk) productid: long (pk, k) z;(::gastg?nogryld. long (pk)
f , 0) description: string code: siring prodCategoryld: long (pk, k) ¥ "
ggwg;%doe""ered' r=--{created: datetime "ag‘:[3“"29 : created: datetime g::gga;z?;%g‘ o0y (%)
ified: i nitPrice: floa o i -
lastModified: datetime y 'gtockoty: int lastModified: datetime lastModified: datetime
/' |created: datetime ;
lastModified: .
{unitPrice = 0}, datetime)
Only leaf product categories

stockQty >=0
¢ oty ' contain products.

Example

Logical model for
relational tables

Referential integrity
(pks / tks)
Oriented associations

Primary keys:
Surrogate or natural
(often surrogate key is
used in addition to the
natural one)

customerld: Iong ‘gk}

Customer

firstName: string
middleName: string
lastName: string
eMail: string

phone: string

created: datetime
lastModified: datetime

Address

addressld: long (pk)
addressLine1: string
addressLine2: string
city: string
postalCode: string
country: string
customerld:

created: datetime
lastModified: datetime

Pending. Processing,
Shipped, Delivered,
Cancelled

Unit price in shopping cart cart / order
item is a time snapshot of the unit price . __

of referenced product

Shopping Cart

cartld: lonk (pk)
customerld: long (fk)
created: datetime
lastModified: datetime

Order

orderld: long (pk)
orderDate: datetime
customerld: long (ik)
orderStatusid: long (fk)
created: datetime
lastModified: datetime

/

Shopping Cart Iitem

“1shoppingCartitemId: long(pk)
quantity: int

unitPrice: float

cartld: long (k)

productid: long (fk)

created: datetime
lastModified: datetime

.- {unitPrice > 0}

/ {stockQty >= 0}

Order Item

e

orderitemid: long(pk)

quantity: int

unitPrice: float
orderld: long (fk)
productlid: long (fk)
created: datetime
lastModified: datetime

—

Order Status v

Product Product - ProductCategory
orderStatusid: long (pk)]
name: string productid: long (pk) productid: long (pk, Tk)
description: string code:.stnr.\g prodCategoryld: long (pk, fk)
created: datetime name: string created: datetime
lastModified: datetime unitPrice: float lastModified: datetime

| stockQty: int

{unitPrice = 0}

{s

| created: datetime
lastModified:
datetime

Product Category

'
.
v

Only leaf product categories

tockQty == 0}

contain products.

prodCategoryld: long (pk

»| name: string

parentCategoryld: long (
created: datetime
lastModified: datetime

Shopping Cart item .. {unitPrice > 0}
_.--"" ! {stockQty == 0}

Exa I I I p I e customerld: long (pk) " {shoppingCartitemid: long(pk) ;
. firstName: string qugntuﬁy: int >
Log |Ca| mOdeI for middleName: string - unitPrice: float
lastName: string Shopping Cart cartid: long (fk) ;

cartid: lonk (pk) productid: long (k)
lastModified: datetime]

eMail: string
ROORS: 1N customerid: long (fk)

relational tables :
Created. datetime created: datetime
lastModified: datetime
Order Item :

Customer Unit price in shopping cart cart / order
item is a time snapshot of the unit price - _ _

of referenced product

created: datetime

lastModified: datetime
(1 . ”
New “join” tables for [Order
. . Address] orderltemid: long(pk)
N:M associations orderld: long (pk) quantity: int
addressld: long (pk) orderDate: datetime unitPrice: float
addressLine1: string customerld: long (fk) orderld: long (fk)
addressLine2: string orderStatusld: long (fk) productld: long (fk)
city: string created:A datetime] created: datetime
postalCode: string lastModified: datetime lastModified: datetime
country: string
customerld: long (k) / e N
created: datetime
lastModified: datetime v / \
Order Status
RS Product Product - ProductCategory Prodact Colonoty
orderStatusid: long (p 3
Pending, Processing name: string pr(()’ductth: long (pk) productid: long (pk, k) g::gga;;?r:;w[d' long (pk)
naing, Frocessing, description: string code: string prodCategoryld: long (pk, fk) 2 .
gg'r“’g;:tdoe"ve'edv r=--1created: datetime na?:a stngg : created: datetime ?ngga;ztg;%:' fong (fk)
ified: i unitPrice: floa S : : :
lastModified: datetime stockaty: int lastModified: datetime lastModified: datetime
/' |created: datetime ;
lastModified: .
{unitPrice = 0} datetime
OmMyJeaf product categog
C i .

{stockQty == 0}

Customer Unit price in shopping cart cart / order - S
item is a time snapshot of the unit price .. Shopping Cart Item -+ lunitPrice > 0}
_--7 ! {stockQty == 0}
of referenced product .. : ; - i
customerld: long (pk) shopplngpamtemld, long(pk) ;
. firstName: string qu.antlAty: int »
Logical model for |ndeane simg : ik tie-dog ;
lastName: string o / cartld: long (fk) :
H eMail: string : productld: long (fk)
re I atlo n al ta b I es phone: string zgtlg}n'gﬁs-(ﬂ,? 6 created: datetime ;
created:_ datetime : Gaatad: daietin?e lastModified: datetime
HaciMONa: delioting lastModified: datetime ?
. T Order Item
Enumeration Order ,
t bl Address B ok orderlitemid: long(pk)
— orderid: fong (p quantity: int
ables addressld: long (pk) orderDate: datetime unitPrice: float
addressLine1: string customerld: long (k) orderld: long (fk)
(prefe rred approaCh) addressLine2: string orderStatusId:_ long (k) productld: long (fk)
city: string created: datetime created: datetime
postalCode: string lastModified: datetime lastModified: datetime
1 country: string
Values can be listed et T
H H created: datetime
In a nOte for Clarlty lastModified: datetime S \ i
Order Status
Product Product - ProductCategory Product Cefonaty
orderStatusld: long (pk) .
= b name: string productld: long (pk) productld: long (pk, fk) s;‘::l’gastfﬂg:g”!'d- long (pk)
ending, Processing, description: strin code: string rodCategoryld: long (pk, fk F :
Shipped, Delivered, -\ -- create?i‘ datetiméJ name: string greated' c?atgtime ot paretn t(? a;etgot(yld. e
Cancelled T - unitPrice: float = . created: datetime
lasiModiot: dalotine {stockaty: int iaciModifled: dateime lastModified: datetime
| created: datetime ;
lastModified: *
{unitPrice > 0} -’ datetime)
Only leaf product categories
contain products.

{stockQty == 0}

Example

Logical model for

relational tables

Additional attributes
and integrity checks

A separate check for each
“1:* cardinality” is needed
(these checks are not shown
in this logical model)

Customer

customerld: long (pk)
firstName: string
middleName: string
lastName: string
eMail: string

phone: siring

created: datetime
lastModified: datetime

{

Address

addressld: long (pk)
addressLine1: string
addressLine2: string
city: string
postalCode: string
country: string

Pending, Processing,
Shipped, Delivered,
Cancelled

W
created: datetime
lastModified: datetime
- —

Unit price in shopping cart cart / order
item is a time snapshot of the unit price . _ _
of referenced product

Shopping Cart item

Shopping Cart

cartld: lonk (pk)

created: datetime

customerld: long (k)

lastModified: datetime

/

“1shoppingCartitemId: long(pk)

quantity: int

unitPrice: float

cartld: long (fk)
productid: long (fk)
created: datetime
lastModified: datetime

e ',' {stockQty == 0}

.- {unitPrice > 0}

Order

Order Item

orderld: long (pk)

created: datetime

orderDate: datetime
customerld: long (k)
orderStatusld: long (fk)

lastModified: datetime

e

o

Order Status

orderStatusid: long (pk)
name: string
description: string
created: datetime
lastModified: datetime

{unitPrice = 0} "

{stockQty == 0}

orderltemlid: long(pk)
quantity: int

unitPrice: float
orderld: long (fk)
productld: long (fk)
created: datetime
lastModified: datetime

v

Product

unitPrice: float
/| stockQty: int

productid: long (pk)

Product - ProductCategory

productid: long (pk, k)

code: string
name: string

created: datetime
lastModified:

datetime

created: datetime
lastModified: datetime

Product Category

prodCategoryld: long (pk)
>| Name: string

prodCategoryld: long (pk, k)

'
’
v

Only leaf product categories

contain products.

parentCategoryld: long (fk)
created: datetime
lastModified: datetime

Example
Logical model for relational tables

Skipped:

e Derived attributes Shopping Cart Item -> total price, Order Item -> total price
o Design decision -> computed on-the-fly (not persisted)

e Association names and cardinalities
o Can be (mostly) derived from referential integrity
o Additional checks needed for “1..*” cardinality

Physical data model

= A database-specific representation of the data
= Actual representation of the database

This step starts with associating the model with a Database Management System (DBMS).

Describes tables, columns and referential integrity

Describes indexes, triggers, constraints, stored procedures, functions, ...
Uses DBMS specific data types

Uses DBMS compatible table names and column names

e Validation and optimization (e.g. denormalization)

Typically created during Design & Architecture phase.

Example

Physical model
for PostgreSQL

DB-specific
table names,
attribute names
and data types

Business rules/
Integrity checks
substituted with
constraints

customers

customerid: BIGSERIAL pk
firstName: VARCHAR(10) not null
middleName: VARCHAR(20)
lastName: VARCHAR(25) not null
eMail: VARCHAR(30) not null
phone: VARCHAR(30) not null
created: TIMESTAMP not null
lastModified: TIMESTAMP not null

\ cartid: BIGSERIAL pk

shopping_cart_items

shopping_carts

customerld: BIGINT fk not null
created: TIMESTAMP not null
lastModified: TIMESTAMP not null

shoppingCartitemid: BIGSERIAL pk
quantity: INTEGER not null
cartld: BIGINT fk not null

.. CHECK(price > 0)

“"/ CHECK(stockQty >= 0)

productid: BIGINT fk not null
created: TIMESTAMP not null
lastModified: TIMESTAMP not null

orders

order_items z

addresses

addressld: BIGSERIAL pk
addressLine1: VARCHAR(40) not null
addressLine2: VARCHAR(40)

city: VARCHAR(30) not null
postalCode: VARCHAR(15) not null

orderld: BIGSERIAL pk
orderDate: TIMESTAMP

customerid: BIGINT k not null
orderStatusid: BIGINT fk not null
created: TIMESTAMP not null
lastModified: TIMESTAMP not null

country: VARCHAR(30) not null
customerid: BIGINT ik not null
created: TIMESTAMP not null
lastModified: TIMESTAMP not null

orderitemid: BIGSERIAL pk
quantity: INTEGER not null

orderld: BIGINT fk not null
productid: BIGINT fk not null
created: TIMESTAMP not null
lastModified: TIMESTAMP not null

]

products

order_statuses

product _product_categories

productlid: BIGSERIAL pk

orderStatusid: BIGSERIAL pk
name: VARCHAR(30)
description: string

created: TIMESTAMP not null

code: CHAR(5) unique, not null
name: VARCHAR(30) not null

|| description: VARCHAR(50)
price: NUMERIC(10,1) not null

lastModified: TIMESTAMP not null / [stockQty: SMALLINT not null

! |created: TIMESTAMP not null

CHECK(price = 0)

/ |lastModified: TIMESTAMP not null

productid: BIGINT pk fk not null
categoryld: BiGINT pk fk not null
[€—| created: TIMESTAMP not null
lastModified: TIMESTAMP not null

product_categories

prodCategoryld: long (pk)
name: string

)
.
0
'

CHECK(stockQty == 0)

Null / not null, unique, ...

IF EXISTS (
SELECT 1
FROM product_categories

parentCategoryld: long (fk)
created: datetime
lastModified: datetime

WHERE parentCategorylD = NEW.category_id

) THEN

RAISE EXCEPTION 'Cannot assign product to non-leaf category’;

END IF;
(+ other triggers needed)

Example

Physical model
for PostgreSQL

products CREATE TABLE products (
productId BIGSERIAL,
code CHAR(5) UNIQUE,

productid: BIGSERIAL pk
code: CHAR(5) unique, not null

name: VARCHAR(30) not null name VARCHAR(15) NOT NULL,
description: VARCHAR(50) description VARCHAR(50),
price: NUMERIC(10,1) not null price NUMERIC(10,1) NOT NULL,
stockQty: SMALLINT not null
tockQty SMALLINT NOT NULL,
created: TIMESTAMP not null stockoty
lastModified: TIMESTAMP not null created TIMESTAMP NOT NULL DEFAULT NOW(),

: lastModified TIMESTAMP NOT NULL DEFAULT NOW() ,
: PRIMARY KEY (productld),
CHECK (price > 0),

CHECK(price > 0) CHECK (stockQty >= 0)
CHECK(stockQty == 0)) ;

(Default can be captured also in the graphical representation)

Object-relational mapping - ORM

= a programming technique used to facilitate the interaction between
object-oriented code and relational databases

ORM allows developers to work with databases using object-oriented
programming (OOP) concepts, such as classes, objects, and methods, rather than

writing raw SQL queries.

e Modeling data
e Creating / altering DB according to the model
e CRUD - inserting / querying / updating / deleting data

conn = sqglite database connection
cursor = conn.execute ("SELECT * from customers WHERE lastName='Doe'
OR lastName='Newton'")

for row in cursor: Traditional DB
print("ID = ", row["customerId"]) access

print ("FIRST NAME = ", row["firstName"])
print ("FULLNAME = row["lastName"], "\n")

conn.close()

engine = sglalchemy db engine

Customer = mapped class, part of the model

session = Session (engine)

stmt = select(Customer) .where (Customer.lastName.in (["Doe", "Newton'"]))

for customer in session.scalars(stmt):
print ("ID = ", customer.customerId)
print ("NAME = ", customer.firstName)
print ("FULLNAME = ", customer.lastName, "\n")

session.close()

Object-relational impedance mismatch

There are several fundamental differences between OO design and DB design:

e Classes have instances, inheritance, relationships; relational databases have just
tables

e References vs pointers

e Datatype differences

e Database normal forms make little sense in OOP

Obiject-relational impedance mismatch is a set diculties that encountered if we use
relational databases with an OO application.

OODBMSs and document stores

OODBMS - Object-oriented databases

e Eliminate the need for converting data to and from its SQL form, as the data is
stored in its original object representation and relationships are directly
represented

Documents stores (JSON, XML)

e Storing objects in tree structures is more straightforward than in relational
tables

ORM software - examples

e Java: Hibernate

e Python: SQLAIchemy (see Example), Django ORM
e C#/ .NET: Entity Framework
[
o

JavaScript / TypeScript / Node.js: Sequelize, TypeORM, Prisma

ORM - pros and cons

(+) Abstraction of database details - ORM abstracts the low-level DB details and allows developers to
work with high-level, object-oriented code, making it easier to understand and maintain

(+) OO approach - ORM aligns well with object-oriented programming (OOP) principles. It allows you to
model your data as objects, which can make your code more intuitive and maintainable

(+) Reduced amount of code - the amount of repetitive SQL code and database-related logic is reduced
(+) Security (prevents from SQL injection)

(-) Abstraction of database details - ORM abstracts DB details, which can limit the control over certain
database-specific features and optimizations.

(-) Possible performance overhead - queries are created and executed dynamically and cannot be
hand-optimized

(-) Steeper learning curve

(-) Complex queries - it may be difficult to express more complex queries

Non-parameterized query (security risk)

conn sglite database connection

cursor conn.execute ("SELECT * from customers WHERE
lastName='{lastNamel}' OR lastName='{lastName2}'")

Parameterized query

conn = sqlite database connection
cursor = conn.execute ("SELECT * from customers WHERE lastName=? OR

lastName=?", (lastNamel, lastName2))

