
Princípy tvorby softvéru 2, FMFI UK

Requirements

Jana Kostičová, 01.10.2025, 15,10,205

Analysis /
Requirements

Architecture &
design

Implementation

Verification &
validation

Operation &
Maintenance

Deployment

SDLC

Terminology
● “Requirements”
● “Requirements analysis”
● “Requirements engineering”
● “System analysis”
● “Analysis” only (if the context is clear)

Informally also
● “IT analysis”
● “Software analysis”
● “IT business analysis” (typically overlapping with Business analysis)

Why requirements engineering?
Requirement
● A function, constraint or other property that the system must provide to fill the

stakeholder needs

Engineering
● Implies that a systematic and repeatable techniques should be used

Requirements engineering
● The systematic process which covers all of the activities involved in

discovering, documenting, and maintaining a set of requirements for a
computer-based system

○

Requirements vs other phases

Requirements define WHAT the system should do
● not WHY it should be developed
● not HOW it should do it

In practice, “requirements” phase overlaps with neighboring phases:

Business
analysis

Requirements
analysis

Architecture
and design

Business
requirements

Examples:
- GUI design as a part of requirements specification
- Using system architecture to structure requirements

Why are requirements important?

75% of all IT projects fail due to errors in the set-up phase.
According to the study, the most common reasons for the failure of
IT projects are unclear or inadequate requirements, incorrect
time and budget planning, and inadequate communication between
project participants.

BITKOM e.V. (Germany digital association), 2021)

Traditional approach
● Requirements analysis: a clearly identifiable phase before the implementation
● More commonly used for large systems

Agile approach
● Requirements are elicited concurrently as the system is developed

Hybrid approaches
● Some requirements are analyzed up front (core features, constraints) in a

separate phase, while others evolve incrementally through agile iterations

We start with the traditional approach.

Requirements analysis approach

Levels of Requirements

The term “requirement” is not used consistently in the SW industry. In some
cases, a requirement is simply a high-level, abstract statement of a
service that a system should provide or a constraint on a system. At the
other extreme, it is a detailed formal definition of a system function.

Some of the problems that arise during the requirements engineering
process are a result of failing to make a clear separation between these
different levels of description.

(Sommerville, 2015)

● We will consider 3 levels of requirements, based on BABOK guide

Three levels of requirements (BABOK guide)

Business
requirements

Stakeholder (user)
requirements

Solution (system)
requirements

These do not describe the solution sufficiently

Even these do not describe the solution
sufficiently

These describe the solution quite well
(we still abstract from the architecture &
design)

Solution

Solution

Solution

Three levels of requirements
Business requirements

● High-level, abstract statements in nature language
● Written for management (but also basis for next phases)

Stakeholder (user) requirements
● Based on real stakeholder/user needs
● Statements in natural language plus diagrams
● Written for stakeholders (but also input for next steps)

Solution (system) requirements
● Describe system’s functions, services and operational constraints in detail
● Technical language, diagrams, models
● Written for development team, architects (basis for designing the system)
● May be incorporated into contract

Business Analysis vs. Requirements
Analysis

- These two activities overlap
especially at the level of business
requirements

- Ideally, business requirements
should be provided as a business
analysis output.

Types of solution (system) requirements
Functional requirements

● Describes services (functions) the system should provide, how the system
should react to particular inputs and how the system should behave in
particular situations

Non-functional requirements

● Describes constraints put on the services (functions) offered by the system
● E.g., interface requirements, GUI requirements, localization requirements

Domain requirements

● Requirements that come from the application domain of the system and that
reflect characteristics of that domain

Non-functional
requirements

Source: Somerville
(see References)

Examples
Business
BR1: Achieve at least a 10% increase in repeat purchases within the first year by enabling customers to
browse, select, and purchase products.
BR2: The platform should attract new customers and generate at least 15% of total revenue online in the
first year

Stakeholder (user)
SR1: The customer must be able to create and use a user account.
SR2: The customer must be able to view order history.
SR3: The inventory manager must be notified automatically when stock of a product falls below a defined
threshold..

Solution (system)
FR1: The system shall allow the creation of a new user account with the following attributes:e-mail
address, first name, last name, address line 1, address line 2, city, postal code, ….
FR2: The system shall allow users to log in using e-mail and password.
NFR1: The system shall enforce passwords of at least 8 characters.
NFR2: The system shall run on all Java platforms including 64-bit versions.

More examples
● Non-functional requirements:

○ PRODUCT REQUIREMENT: The system’s user interface shall be implemented in HTML5,
without the use of frames or Java applets.

○ ORGANIZATIONAL REQUIREMENT: The system development process and deliverable
documents shall conform to the process and deliverables defined in XYZCo-SP-STAN-14.

○ EXTERNAL REQUIREMENT: The system shall not disclose any personal information about
customers apart from their name and reference number to the operators of the system.

● Domain requirement:
○ The deceleration of the train shall be computed as: D (train) = D (control) + D (gradient),

where D (gradient) is 9.81ms2 * compensated gradient/alpha and the values of 9.81ms2
/alpha are known for different types of train.

Business
requirements

Stakeholder (user)
requirements

Solution (system)
requirements

Refinement

Refinement

Traceabiity

Requirements
traceability

Requirements traceability

BR1

BR2

BR3

SR1

SR2

SR3

SR4

FR1

NFR1

NFR2

TC1

TC2

TC3

TC4

Business
requirements

Stakeholder
requirements

Solution
requirements

Test Cases

FR2

Code

Requirements Engineering Process

Requirements
engineering

process

Requirements
specification

Existing
system

information

Organisational
standards

Domain
information

Rules and
regulations

Business
requirements

(of varying quality)

Initial project
documents

Inputs and outputs

Initial project documents
● Project Initiation Document (PID) / Project charter

● Business Case (see Example)

● Feasibility studies

● …other

Business
requirements

Stakeholder (user)
requirements

Solution (system)
requirements

Refinement - requirements engineering process

Traceabiity

Requirements levels
vs process

Refinement - requirements engineering process

Why do we need requirements?

Input for next phases
● Architecture and design, implementation, validation

and verification, maintenance

Input for supporting activities
● Documentation, project management, …

Input for establishing a contract
● Basis for a bid for a contract
● Part of the contract (scope definition - what will be

delivered)

Audience for requirements:
➔ People participating in

these next phases /
supporting activities, or
establishing a contract

➔ Also people validating
the requirements

Elicitation
(meetings & interviews

with stakeholders,
watching the users,

studying
documentation,..)

Analysis
(thinking.

discussions,
notes,

sketches,..)

Specification
(decomposition,

structured
notation,

models, ..)

Validation
(meetings, draft

presentation,
negotiations, GUI

model presentation, ..)

Meeting
minutes,

Notes
Requirements
specification -

final

Requirements
specification -

draft

Requirements engineering process

Stakeholder identification

Stakeholder identification

● To identify stakeholders as soon as possible
○ Various stakeholders in various domains / companies / environments
○ Checklists exist for IT projects (see next slide)
○ Include project team members

● To identify specific representatives
○ We need to communicate with real people

● Some stakeholders are discovered later
○ We do our best to make “later” as soon as possible
○ Rework may be needed

● Business stakeholders vs technological (IT) stakeholders

Stakeholder: an
individual, group or
organization who may
affect or be affected by the
result of the project Principles

Stakeholder examples - literature
SWENG book

● Users
● Customers
● Market analysts
● Regulators
● Software engineers

BABOK guide
● Customer
● Domain Subject Matter Expert
● End User
● Implementation Subject Matter

Expert
● Sponsor
● Other

IEEE Std 29148-2018
Stakeholders include, but are
not limited to:

● end users, end user
organizations,

● supporters,
● developers, producers,
● trainers, maintainers,
● disposers, acquirers,

operators,
● customers,
● supplier organizations,
● accreditors and regulatory

bodies

❗End users vs customers

Karl Wiegers’
checklist: DOCX

See References

https://softwarereqs.com/files/Checklist%20of%20Questions%20for%20Identifying%20Stakeholders.docx

Stakeholder examples - summary
● Project customer
● Product / service end users

○ May have internal representative (often product manager)

● Company management / various levels
○ Sponsor, project owner, …

● Project team members
○ Project manager, Analysts, UX designers, Architects, Developers, Testers, Document writers, …

● Other teams
○ Sales representative, Marketing representative, Legal dept. representative, IT support, IT

operations, ….

● Other external entities
○ Regulators, suppliers, ..

Project owner: bears
business responsibility for
successful project
implementation. Typically head
of the business unit receiving
the product.

Elicitation
(meetings & interviews

with stakeholders,
watching the users,

studying
documentation,..)

Analysis
(thinking.

discussions,
notes,

sketches,..)

Specification
(decomposition,

structured
notation,

models, ..)

Validation
(meetings, draft

presentation,
negotiations, GUI

model presentation, ..)

Meeting
minutes,

Notes
Requirements
specification -

final

Requirements
specification -

draft

Requirements engineering process

Stakeholder identification

Elicitation phase - techniques
Active techniques:
● Interviews - structured (with prepared questions), semi-structured, open ended
● Workshops - multiple stakeholders in collaborative session
● Brainstorming - group activity to generate a wide range of ideas quickly
● Questionnaires / Surveys
● Prototyping - building & discussing paper sketches / wireframes / mockups / SW models

Indirect techniques:
● Domain understanding
● Observation - watching users in the real environment
● Document analysis
● Current system analysis

AS-IS vs TO-BE
analysis !

Elicitation phase - common issues
● Stakeholders don’t know what they want from a system
● Stakeholders describe SOLUTION that does not solve their real NEED
● Stakeholders are busy and it is difficult to “catch” them
● Changing requirements
● Language and terminology differences (business vs IT vs analyst)
● Conflicting requirements / priorities among stakeholders
● Undefined decision makers
● Incomplete or missing documentation
● Difficulties in getting access to existing systems

Example

How successful were the new suitcases?

We want
lightweight
suitcases

Detailed research
on materials,
design, prototyping,
testing, … ➔ Super lightweight

➔ Higher cost
(expensive
materials)

Customers Development team
(implementing the

requirement blindly)

Example Nobody buys them!

Customers have bought suitcases from competitors that
were cheaper and heavier, but they hadi wheels.

● The original requirement described a SOLUTION
● Real NEED:: “We want suitcases that are easy to

transport”
● The solutions described by customers were

over-engineered and did not even meet their real needs!
○ If they put heavy load into the lightweight suitcases,

they were again hard to move

Source: Wiegers, Beatty (see References)

Five whys method
● A tool for root-cause analysis
● Comes from Toyota Motor Corporation
● The number of whys may be higher or lower depending on the complexity of

the analysis

“We need lightweight suitcases.” -> REQUIREMENT DESCRIBING SOLUTION

WHY?

“Because we want suitcases that are easy to transport.” -> REAL NEED

Now that we know the real need, we can start thinking about a suitable solution…

Elicitation
(meetings & interviews

with stakeholders,
watching the users,

studying
documentation,..)

Analysis
(thinking.

discussions,
notes,

sketches,..)

Specification
(decomposition,

structured
notation,

models, ..)

Validation
(meetings, draft

presentation,
negotiations, GUI

model presentation, ..)

Meeting
minutes,

Notes
Requirements
specification -

final

Requirements
specification -

draft

Requirements engineering process

Stakeholder identification

Analysis phase
Goal: to analyze the requirements gathered so far and resolve identified issues

TYPICAL ISSUES SOLUTION

Ambiguous, incomplete Clarify / complete or re-elicitate

Conflicting requirements (with each other or with constraints) Resolve conflicts / modify

Not aligned with business requirements / stakeholder real needs Remove / modify / re-elicitate

Infeasible requirements (technical, financial, schedule, …) Remove / modify

Unclear or under-specified areas (“grey zones”) Gather / complete / refine

● Local vs global analysis
● Further discussions with stakeholders typically overlap with another round of elicitation
● Karl Wieger’s Analysis phase checklist: DOCX

https://softwarereqs.com/files/Requirements%20Analysis%20Checklist.docx

Requirements quality characteristics
● Clear and understandable

○ Written in plain, precise language so that all
stakeholders interpret it the same way

● Unambiguous
○ Each requirement can only be interpreted

in one way
● Consistent

○ No internal conflicts between requirements;
terms and concepts are used consistently

● Design-independent
○ Should not prescribe GUI (!), architecture,

or technology (exceptions in NFRs if
prescribed by constraints)

● Complete
○ Fully covers the required scope, leaving no

grey zones or implicit assumptions

● Traceable
○ Aligned with business requirements / real

stakeholder needs
● Feasible

○ Can be implemented within known technical,
business, and project constraints.

● Verifiable / testable
○ It must be possible to check objectively

whether the requirement is satisfied
● Detailed appropriately

○ Provide enough input for subsequent design
and implementation phases
(or contract if relevant)

● Prioritized

References: BABOK guide, IEEE Std 29148-2018, Karl Wiegers’ checklist

Elicitation
(meetings & interviews

with stakeholders,
watching the users,

studying
documentation,..)

Analysis
(thinking.

discussions,
notes,

sketches,..)

Specification
(decomposition,

structured
notation,

models, ..)

Validation
(meetings, draft

presentation,
negotiations, GUI

model presentation, ..)

Meeting
minutes,

Notes
Requirements
specification -

final

Requirements
specification -

draft

Requirements engineering process

Stakeholder identification

Specification & Validation phase
Specification

● How the requirements are written -> we’ll deal with this in detail

Validation

● Final checks on requirements quality (see quality characteristics)
○ Similar to tasks in “analysis phase”, but the input should be polished and complete,

minimizing the need to revisit prior phases
● Documentation check
● Might include formal approval

Requirements Specification

How the requirements are written?
There is much variation in how they are written and presented

Software Requirements Definition
● Output of “Requirements” phase
● Also “Software Requirements Specification (SRS)”

FORM: Typically structured text + figures / models / diagrams
○ UML, BPMN, E-R diagrams, ad-hoc models

(drawback: intended audience has poor knowledge of used notation)

CONTENT: Requirements, Glossary, Domain model*, GUI model,
+ Stakeholder and environment description, Constraints and assumptions, High-level data model

Agile / hybrid approaches - more lightweight documentation

* Note: The domain model (& business process models) are often created already during overall business analysis

❗It is important to
take into account the
audience so that they
are able to read and
understand the
requirements definition
(or the part that is
intended for them)

Three levels of requirements - requirements definition

Business
requirements

Stakeholder (user)
requirements

Solution (system)
requirements

More
plain text

More structured text,
diagrams, figures

Requirements slicing

Vertical slice:
= A specific level of requirements (BRs,
SRs, FRs / NFRs)

Horizontal slice
= Requirements for one delivery iteration,
across levels

We’ll take a look at ….
Basic approaches
● Requirements - structured text
● Glossary - structured text
● Domain model - UML class diagram
● GUI model - ad-hoc modeling

Specific approaches
● Functional requirements - UML use case diagram / model, Activity diagram
● Agile requirements - user stories

Requirements - structured text
● Unstructured text - “Victorian novel”

○ Massive narrative sequential description, seldom used today
● Flat catalogue of requirements

○ Often used, not optimal
● ✅Combination - structured text

Unstructured text - example
The ecommerce store will be expanded with user accounts so that each account will contain the email
address of the given user. Our marketing department will be able to reach users by email with various
marketing campaigns if the user gives such permission. This way we expect to increase repeat orders.
See also our internal Reports that show number of repeat orders in last 12 months and Case study that
show how account management can help to increase repeat orders. ….

The e-commerce store will provide the possibility to create a user account, log in to this account, log out of
this account. Before creating an account, the user must agree to the storage of his personal data in
accordance with (GDPR).

❌ Lacks any structure, difficult to distinguish specific requirements and to track their attributes
(priority / progress / estimates)

Flat catalogue - example 1
ID Requirement Priority Estimates …

BR1 Achieve at least a 10% increase in repeat purchases within the first year by enabling
customers to browse, select, and purchase products.

BR2 The platform should attract new customers and generate at least 15% of total
revenue online in the first year.

SR1 The customer must be able to create a new user account.

SR2 The customer must be able to view order history.

SR3 The inventory manager must be notified automatically when stock of a product falls
below a defined threshold..

FR1 The system shall allow the creation of a new user account with the following
attributes:e-mail address, first name, last name, address line 1, address line 2, city,
postal code, ….

FR2 The system shall allow users to log in using e-mail and password.

NFR1 The system shall enforce passwords of at least 8 characters.

NFR2 The system shall run on all Java platforms including 64-bit versions.

… …

❌ Difficult to read and
maintain for larger systems.
No traceability.

Flat catalogue - example 2
ID Requirement Priority Estimates Parent reqs

BR1 Achieve at least a 10% increase in repeat purchases within the first year by enabling
customers to browse, select, and purchase products.

-

BR2 The platform should attract new customers and generate at least 15% of total
revenue online in the first year.

-

SR1 The customer must be able to create and use a user account. BR1

SR2 The customer must be able to view order history. BR1

SR3 The inventory manager must be notified automatically when stock of a product falls
below a defined threshold..

BR2

FR1 The system shall allow the creation of a new user account with the following
attributes:e-mail address, first name, last name, address line 1, address line 2, city,
postal code, ….

SR1

FR2 The system shall allow users to log in using e-mail and password. SR1

NFR1 The system shall enforce passwords of at least 8 characters.

NFR2 The system shall run on all Java platforms including 64-bit versions.

… …

● Column Parent reqs - may contain
multiple parent requirements

● Poor support for detailed rationale
● Still difficult to read and maintain

Structured (hierarchical) text - example
1. Business Requirements
 BR1. Achieve at least a 10% increase in repeat purchases within the first year.
 Priority: High
 BR2. The platform should attract new customers and generate at least 15% of
 total revenue online.
 Priority: High

2. Stakeholder Requirements
 SR1. The customer must be able to create and use a user account.
 → supports BR1 (+ rationale)
 Priority: Medium
 …

3. System Requirements
 3.1 Functional
 FR1. The system shall allow creation of a new user account with fields: e-mail,
 name, address, etc.
 → supports SR1 (+ rationale)
 …
 3.2 Non-functional
 NFR1. The system shall enforce passwords of at least 8 characters.
 → supports BRX (+ rationale)
 …

➔ Hierarchy is mostly based on
vertical/horizontal slicing,
logical grouping or a
combination

➔ Possibility to add both
attributes and explanatory
unstructured paragraphs if
needed

➔ Tool support (different views of
the same requirements,
sorting / filtering)

We’ll take a look at ….
Basic approaches
● Requirements - structured text
● Glossary - structured text
● Conceptual model - UML class diagram
● GUI mockups - ad-hoc modeling

Specific approaches
● Functional requirements - UML use case diagram / model, Activity diagram
● Agile requirements - user stories

Glossary
● Use the same terms for the same concepts throughout the whole

requirements definition
● It makes it easier to understand the requirements
● Examples

○ System vs. e-commerce store vs e-shop
○ User vs customer vs buyer
○ Item vs product
○ Shopping basket vs shopping cart vs cart

● Requirements with inconsistent terms:
○ The system shall enable the customer to insert items into the shopping basket.
○ The e-shop shall enable the buyer to remove products from the cart.

User roles may be
described separately from
the glossary

Glossary - example
Order
A request by a customer to purchase one or more products, typically including delivery and
payment information.
Product
A tangible or intangible item that can be offered for sale in the e-commerce store
Shopping cart
A temporary container for storing products that a customer intends to purchase.
Shopping cart item (or item)
A specific product along with the quantity selected, representing one line in the shopping cart.
Customer
A user of the e-shop who can browse products, add them to the shopping cart, and place orders.
….

We’ll take a look at ….
Basic approaches
● Requirements - structured text
● Glossary - structured text
● Domain - UML class diagram
● GUI mockups - ad-hoc modeling

Specific approaches
● Functional requirements - UML use case diagram / model, Activity diagram
● Agile requirements - user stories

Domain (conceptual) model
● High-level static model, visualization of domain concepts
● UML Class diagram, E-R diagram
● Aligned with glossary

UML class diagram
● Conceptual classes = domain concepts

○ Attributes
○ Operations - different views:

■ No operations in domain models (e.g. Larman 2004)
■ Operations are allowed, but describing responsibilities, not interfaces (Fowler 2003)

● Associations = relations between domain concepts
○ Cardinalities
○ Association names with “reading direction”
○ Roles
○ …

 -> See also PTS1

Example

We’ll take a look at ….
Basic approaches
● Requirements - structured text
● Glossary - structured text
● Domain model - UML class diagram
● GUI model - ad-hoc modeling

Specific approaches
● Functional requirements - UML use case diagram / model, Activity diagram
● Agile requirements - user stories

Requirements definition vs. UX outputs
● Solution requirements are typically associated with

mock-ups
● Mock-ups vs. requirements

○ A single mock-up may cover one or more requirements
○ A single requirement may be covered by one or more mock-ups

(or even no mock-up at all)
○ Final mockups may use different glossary than requirements

definition

Example:
FR1: The system shall allow the creation of new user account with the
following attributes: e-mail address, first name, last name, address line 1,
address line 2, city, postal code, phone number,password, timestamp.

NFR1: The system shall enforce passwords of at least 8 characters.

Mock-up: a visual
representation or
screenshot of how
the final website or
product will look

MU1, MU2

MU1

MU1: MU2:

We’ll take a look at ….
Basic approaches
● Requirements - structured text (possibly with tool support)
● Glossary - structured text
● Domain model - UML class diagram
● GUI model - ad-hoc modeling

Specific approaches
● Functional requirements - UML use case diagram / model, Activity diagram
● Agile requirements - user stories

Use Case model
● Use Case diagram + Use Case descriptions
● Can be supported by Activity / State / Sequence diagrams (or other

Use Case
diagram -
example

E-commerce store

Create new
user

account

Create new
order based on
a copy of past

order

View order
history

Create new
order

Check order
status

Log the
action

<<include>>

<<include>>

<<include>>

<<include>>
Customer

● Actors
● Use Cases
● Relationships
● System Boundary

<<extend>>

System boundary

Use Case

Actor

Association

Use Case diagram
Use Cases
= functionality of the system

○ Inside the system boundary

Actors
= entities that interacts with the system

○ Always outside the system boundary
○ Human users or other systems (<<system>>

stereotype)
○ Primary vs. secondary actors

Relationships
● Actor - Actor

○ Generalization
● Actor - Use Case

○ Association (represents
interaction)

● Use Case - Use Case
○ Generalization
○ “Extend” dependency
○ “Include” dependency

E-commerce store

…

…

Print order

Primary vs secondary actor, actor inheritance

Customer Printer
<<system>>

Primary Secondary

User

Customer

Inventory
manager

E-commerce store

Update
product
stock

quantity

Browse
products

Create
new order

Include vs extend dependency
“Include” dependency

● An including use case always contains the behavior defined in another,
included (base), use case. Included use case can be seen as subroutine.

“Extend” dependency

● The behavior defined in the extending use case can be inserted into the
behavior defined in the extended use case

E-commerce store

Create new
user

account

Create new
order based on
a copy of past

order

View order
history

Create new
order

Check order
status

Log the
action

<<include>>

<<include>>

<<include>>

<<include>>
Customer

<<extend>>

Include

Extend

Use Case
description -
example

E-commerce store

…

…

View order
history

View order history

Goal:
To display all orders associated with given
user account
Preconditions:
Customer is logged into their user account
Postconditions:
The list of all orders associated with given
user account is displayed

Steps:
1. If no orders are associated with given

user account, inform the user that
there are no orders.

2. If one or more orders are associated
with given user account, display the
list of these orders sorted by order
time from newest to oldest. For each
order display order ID, order status
and list of ordered items. For each
ordered item display …

● UC diagram - only overview, no details
● UC description - complete specification
● Issues: Might get verbose and difficult to

maintain

Customer

Activity diagrams
Example (“Checkout” functionality)

http://www.dcs.fmph.uniba.sk/~kosticova/202324/pts3_materialy/PTS3_Activity_diagram.png

We’ll take a look at ….
Basic approaches
● Requirements - structured text
● Glossary - structured text
● Domain model - UML class diagram
● GUI model - ad-hoc modeling

Specific approaches
● Functional requirements - UML use case diagram / model, Activity diagram
● Agile requirements - user stories

Agile methodologies
● Software development runs in short, flexible iterations
● Lightweight documentation

SCRUM
● Self-organizing team, 5-9 people responsible for the product

(scrum master, product owner, developers, UX, QA)
● Iteration: 2-4 weeks
● Input for the team: product backlog = prioritized list of “user stories”

Scrum assumes that the product backlog contains the requirements for the
product, but does not specify where they come from.

● Typically a part of the analysis has to be completed outside SCRUM

User stories
“A user story is an informal, general explanation of a software feature written from
the perspective of the end user or customer”

● Somewhere between stakeholder and solution requirements
○ They capture needs from the user’s perspective but often include hints about how the system should

behave (especially in acceptance criteria)
● Alistair Cockburn (1998): "A user story is a promise for a conversation."
● Common template

○ As a <role> I want to <capability>, so that <receive benefit>

○ “So that” part optional

● User stories = placeholders for further discussion, can be split / refined to more detailed
specification if needed

● Placed into product backlog and prioritized, supplemented by acceptance criteria

User stories - examples
As a customer
I want to create new user account
so that I do not need to enter my data repeatedly.

As a customer
I want to create new order
so that I can purchase the products I want efficiently.

As a customer
I want to view order history
so that I can easily repurchase items I liked.

As an inventory manager
I want to be notified automatically when stock of a product falls below a defined
threshold
so that I can timely order more products from suppliers.

Priority

Acceptance criteria
● Conditions that the given feature must fulfill in order to be accepted by stakeholders
● Provides more details about User story

Example:

As a customer I want to view order history so that I can easily repurchase items I liked.

● Customer can access a page showing all their past orders, sorted by most recent.
● Each order displays order ID, date, status, total amount, and items.
● Items have a “Buy Again” button that adds them to the shopping cart.
● If an item is out of stock, the customer is notified and cannot add it.
● Only the authenticated customer can view their orders.

Tools

● Document-based
○ MS Word / Excel, Google Docs / Sheets, ..
○ Example: Book E-Commerce System (Michigan State University example)
○ Convenient for formal requirement documents (e.g., in case of contracts)

● CASE (Computer-aided software engineering tool)
○ Enterprise Architect,.. EA Screenshots
○ More difficult to create and maintain the specification
○ Provides complete system description

● Collaborative Software, Wiki
○ Atlassian Confluence, .. Medium article with short example

● Agile / issue tracking system
○ Atlassian Jira, Azure DevOps, Trello

https://www.cse.msu.edu/~chengb/RE-491/Papers/SRS-BECS-2007.pdf
https://sparxsystems.com/products/ea/screenshots.html
https://medium.com/@muhammadrado1612/how-to-make-product-requirement-with-confluence-cc9e539c6100

Key best practices
● Insist on clear business requirements
● Gather requirements from all stakeholders and validate

requirements with all stakeholders
● Only accept traceable requirements
● Only accept requirements that solve real stakeholder needs
● Take into account all types of requirements
● Avoid grey zones
● Document requirements accurately and consistently

References
● Ian Sommerville: Software Engineering (10th edition), 2016
● Karl Wiegers, Joy Beatty: Software Requirements (3nd Edition), 2013
● Karl Wiegers’ checklists & templates: https://softwarereqs.com/ -> Downloads
● Dean Leffingwell: Agile software requirements, 2011
● Alistair Cockburn: Writing Effective Use Cases, 2000
● Alistair Cockburn: Agile Software Development (2nd edition), 2006
● A Guide to the Business Analysis Body of Knowledge v3 (BABOK® Guide), 2015
● IEEE Std 29148-2018 (Systems and Software Engineering — Life Cycle Processes —

Requirements Engineering), 2018
● Craig Larman: Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development (3rd edition), 2004
● Martin Fowler: UML Distilled: A Brief Guide to the Standard Object Modeling Language

3rd Edition, 2003

https://softwarereqs.com/

