Requirements

Principy tvorby softvéru 2, FMFI UK Jana Kosticova, 01.10.2025, 15,10,205

Terminology

“‘Requirements”

“‘Requirements analysis”
“‘Requirements engineering”

“System analysis”

“‘Analysis” only (if the context is clear)

Informally also
e “IT analysis”
e “Software analysis”
e “IT business analysis” (typically overlapping with Business analysis)

Why requirements engineering?

Requirement

e A function, constraint or other property that the system must provide to fill the
stakeholder needs

Engineering

e Implies that a systematic and repeatable techniques should be used
Requirements engineering

e The systematic process which covers all of the activities involved in

discovering, documenting, and maintaining a set of requirements for a
computer-based system

(@)

Requirements vs other phases

Requirements define WHAT the system should do

e not WHY it should be developed
e not HOW it should do it

In practice, “requirements” phase overlaps with neighboring phases:

Architecture
and design

Business
analysis

Requirements
analysis

Business Examples:

- GUI design as a part of requirements specification

requirements _ : _
- Using system architecture to structure requirements

Why are requirements important?

75% of all IT projects fail due to errors in the set-up phase.
According to the study, the most common reasons for the failure of
IT projects are unclear or inadequate requirements, incorrect

time and budget planning, and inadequate communication between
project participants.

BITKOM e.V. (Germany digital association), 2021)

Requirements analysis approach

Traditional approach

e Requirements analysis: a clearly identifiable phase before the implementation
e More commonly used for large systems

Agile approach

e Requirements are elicited concurrently as the system is developed

Hybrid approaches

e Some requirements are analyzed up front (core features, constraints) in a
separate phase, while others evolve incrementally through agile iterations

We start with the traditional approach.

Levels of Requirements

The term “requirement” is not used consistently in the SW industry. In some
cases, a requirement is simply a high-level, abstract statement of a
service that a system should provide or a constraint on a system. At the
other extreme, it is a detailed formal definition of a system function.

Some of the problems that arise during the requirements engineering
process are a result of failing to make a clear separation between these
different levels of description.

(Sommerville, 2015)

e We will consider 3 levels of requirements, based on BABOK guide

Three levels of requirements (BABOK guide)

Business
requirements These do not describe the solution sufficiently

4

Stakeholder (user) Even these do not describe the solution
requirements sufficiently

A,

Solution (system)

: These describe the solution quite well
requirements

(we still abstract from the architecture &
design)

Three levels of requirements

Business Analysis vs. Requirements
Analysis
- These two activities overlap
especially at the level of business
requirements
- ldeally, business requirements
should be provided as a business
Stakeholder (user) requirements S ?.r]?.IY.S.I.S..O.L.].tPE'

e Based on real stakeholder/user needs
e Statements in natural language plus diagrams
e Written for stakeholders (but also input for next steps)

Business requirements
e High-level, abstract statements in nature language
e Written for management (but also basis for next phases)

Solution (system) requirements

Describe system’s functions, services and operational constraints in detail
Technical language, diagrams, models

Written for development team, architects (basis for designing the system)
May be incorporated into contract

Types of solution (system) requirements

Functional requirements

e Describes services (functions) the system should provide, how the system
should react to particular inputs and how the system should behave in
particular situations

Non-functional requirements

e Describes constraints put on the services (functions) offered by the system
e E.g., interface requirements, GUI requirements, localization requirements

Domain requirements

e Requirements that come from the application domain of the system and that
reflect characteristics of that domain

Non-functional
requirements

Non-functional
requirements

Usability
requirements

Performance
requirements

requirements

Source: Somerville
(see References)

requirements

Product Organizational External
requirements requirements requirements
Efficiency Dependability Security Regulatory Ethical
requirements requirements requirements requirements requirements
Environmental Operational Development Legislative
requirements requirements requirements requirements
Space Accounting Safety/security

requirements

Examples

Business

BR1: Achieve at least a 10% increase in repeat purchases within the first year by enabling customers to
browse, select, and purchase products.

BR2: The platform should attract new customers and generate at least 15% of total revenue online in the
first year

Stakeholder (user)

SR1: The customer must be able to create and use a user account.

SR2: The customer must be able to view order history.

SR3: The inventory manager must be notified automatically when stock of a product falls below a defined
threshold..

Solution (system)

FR1: The system shall allow the creation of a new user account with the following attributes:e-mail
address, first name, last name, address line 1, address line 2, city, postal code,

FR2: The system shall allow users to log in using e-mail and password.

NFR1: The system shall enforce passwords of at least 8 characters.

NFR2: The system shall run on all Java platforms including 64-bit versions.

More examples

e Non-functional requirements:
o PRODUCT REQUIREMENT: The system’s user interface shall be implemented in HTMLS,
without the use of frames or Java applets.
o ORGANIZATIONAL REQUIREMENT: The system development process and deliverable
documents shall conform to the process and deliverables defined in XYZCo-SP-STAN-14.
o EXTERNAL REQUIREMENT: The system shall not disclose any personal information about
customers apart from their name and reference number to the operators of the system.

e Domain requirement:
o The deceleration of the train shall be computed as: D (train) = D (control) + D (gradient),
where D (gradient) is 9.81ms2 * compensated gradient/alpha and the values of 9.81ms2
/alpha are known for different types of train.

Requirements
traceability Business

-~ requirements

/ Refinement

Stakeholder (user)

I

I

']
Traceabiity '| requirements
\

\ Refinement

hN Solution (system)
requirements

Requirements traceability

Business

requirements

Stakeholder
requirements

Solution

requirements

FR1

Test Cases

SR1
BR1 <

SR2
BR2 \

SR3
BR3 \

SR4

FR2

TCA1

NFR1

Code

TC2

NFR2

TC3

e - - - = -

TC4

Requirements Engineering Process

Inputs and outputs

Business
requirements
(of varying quality)

Existing
system
information

_/—

Organisational +

standards / \
_/— '
ReqUIrementS Requirements

Rules and —> engineering > specification

regulations prOCGSS
- _

Initial project
documents

Domain
information

_/—

Initial project documents

Project Initiation Document (PID) / Project charter
Business Case (see Example)
Feasibility studies

...other

Requirements levels
VS process Business

-~ requirements

/ Refinement - requirements engineering process

Stakeholder (user)

I

I

' =
Traceabiity | requirements
\

' Refinement - requirements engineering process

hN Solution (system)
requirements

Why do we need requirements?

Input for next phases
e Architecture and design, implementation, validation
and verification, maintenance

Input for supporting activities
e Documentation, project management, ...

Input for establishing a contract
e Basis for a bid for a contract
e Part of the contract (scope definition - what will be
delivered)

Audlence for requirements:
; => People participating in
' these next phases / .
supporting activities, or
| establishing a contract !
' = Also people validating
' the requirements

Requirements engineering process

Stakeholder identification

/ Elicitation

\ documentation,

v

Specification
(decomposition,

structured
notation,
models, ..)

l -~
\/ ;
A"
(meetings & interviews (t:iizﬁls
with stakeholders, \TinKIng.
, discussions,
watching the users, notes
studying ’
)) sketches,..)
Meeting
minutes,
Notes

-

Validation
(meetings, draft
presentation,
negotiations, GUI
model presentation, ..)

Requirements
specification -

draft

\

Requirements
specification -
final

Stakeholder: an

Stakeholder identification individual, group or

organization who may

- . affect or be affected by the
PrlnC|pIes result of the project

e To identify stakeholders as soon as possible
o Various stakeholders in various domains / companies / environments
o Checklists exist for IT projects (see next slide)
o Include project team members
e To identify specific representatives
o We need to communicate with real people
e Some stakeholders are discovered later
o We do our best to make “later” as soon as possible
o Rework may be needed

e Business stakeholders vs technological (IT) stakeholders

Stakeholder examples - literature

IEEE Std 29148-2018 BABOK guide SWENG book
Stakeholders include, but are e Customer e Users
not limited to:
e end users, end user
organizations,
e supporters,

e Domain Subject Matter Expert e Customers
e EndUser e Market analysts
[J

e Implementation Subject Matter Regulators

e trainers, maintainers, e Sponsor
e disposers, acquirers, e Other
operators,

e customers,
e supplier organizations, Karl Wiegers’
e accreditors and regulatory

bodies checklist: DOCX

| End users vs customers See References

https://softwarereqs.com/files/Checklist%20of%20Questions%20for%20Identifying%20Stakeholders.docx

Stakeholder examples - summary poject owner: bears

business responsibility for
: successful project
° PI‘OJeCt customer implementation. Typically head

e Product/ service end users of the business unit receiving

_ , the product.
o May have internal representative (often product manager)

e Company management / various levels
o Sponsor, project owner, ...
e Project team members

o Project manager, Analysts, UX designers, Architects, Developers, Testers, Document writers, ...

e Other teams

o Sales representative, Marketing representative, Legal dept. representative, IT support, IT
operations,

e Other external entities

o Regulators, suppliers, ..

Requirements engineering process

[Stakeholder identification]

l s
R e ;

TR y Y
.EI|C|taF|on : Analysis Specification Validation
(meetings & interviews L ”» :
) (thinking. (decomposition, (meetings, draft
with stakeholders, : : :
, discussions, structured presentation,
watching the users, . .
. notes, notation, negotiations, GUI
studying)
. sketches,..) models, ..) model presentation, ..)
documentation,..) \
Meeting Requirements Requi ¢
minutes, specification - equ_::err:fen S
Notes specification -
. sl final

Elicitation phase - techniques

Active techniques:

Interviews - structured (with prepared questions), semi-structured, open ended
Workshops - multiple stakeholders in collaborative session

Brainstorming - group activity to generate a wide range of ideas quickly
Questionnaires / Surveys

Prototyping - building & discussing paper sketches / wireframes / mockups / SW models

Indirect techniques:

Domain understanding

Observation - watching users in the real environment AS-IS vs TO-BE
Document analysis analysis !
Current system analysis

Elicitation phase - common issues

e Stakeholders don’t know what they want from a system

e Stakeholders describe SOLUTION that does not solve their real NEED
e Stakeholders are busy and it is difficult to “catch” them

e Changing requirements

e Language and terminology differences (business vs IT vs analyst)

e Conflicting requirements / priorities among stakeholders

e Undefined decision makers

e Incomplete or missing documentation

e Difficulties in getting access to existing systems

We want
lightweight
suitcases

4 Detailed research N

on materials, >
> design, prototyping,
testing, ... > Super lightweight
_ J - Higher cost
(expensive
Development team materials)
Customers P

(implementing the
requirement blindly)

How successful were the new suitcases?

Nobody buys them!

Customers have bought suitcases from competitors that
were cheaper and heavier, but they hadi wheels.

e The original requirement described a SOLUTION

e Real NEED:: “We want suitcases that are easy to
transport”

e The solutions described by customers were
over-engineered and did not even meet their real needs!

o If they put heavy load into the lightweight suitcases,
they were again hard to move

Source: Wiegers, Beatty (see References)

Five whys method

e Atool for root-cause analysis

e Comes from Toyota Motor Corporation

e The number of whys may be higher or lower depending on the complexity of
the analysis

“‘We need lightweight suitcases.” -> REQUIREMENT DESCRIBING SOLUTION
WHY?
“Because we want suitcases that are easy to transport.” -> REAL NEED

Now that we know the real need, we can start thinking about a suitable solution...

Requirements engineering process

[Stakeholder identification

‘ L L A A N N N T L L R R E R R

/ Elicitation

(meetings & interviews
with stakeholders,

studying

watching the users,

) J

\ documentation,

Meeting
minutes,

Y
Analysis
(thinking.

> discussions,

notes,
sketches,..)

v

Specification
(decomposition,
structured
notation,
models, ..)

Notes

-

Validation
(meetings, draft
presentation,
negotiations, GUI
model presentation, ..)

Requirements
specification -

draft

\

Requirements
specification -
final

Analysis phase

Goal: to analyze the requirements gathered so far and resolve identified issues

TYPICAL ISSUES

SOLUTION

Ambiguous, incomplete

Clarify / complete or re-elicitate

Conflicting requirements (with each other or with constraints)

Resolve conflicts / modify

Not aligned with business requirements / stakeholder real needs

Remove / modify / re-elicitate

Infeasible requirements (technical, financial, schedule, ...)

Remove / modify

Unclear or under-specified areas (“grey zones”)

Gather / complete / refine

e Local vs global analysis

e Further discussions with stakeholders typically overlap with another round of elicitation

e Karl Wieger’s Analysis phase checklist: DOCX

https://softwarereqs.com/files/Requirements%20Analysis%20Checklist.docx

Requirements quality characteristics

Clear and understandable
o Written in plain, precise language so that all
stakeholders interpret it the same way
Unambiguous
o Each requirement can only be interpreted
in one way
Consistent
o No internal conflicts between requirements;
terms and concepts are used consistently
Design-independent

o Should not prescribe GUI (1), architecture,
or technology (exceptions in NFRs if
prescribed by constraints)

Complete

o Fully covers the required scope, leaving no
grey zones or implicit assumptions

e T[raceable
o Aligned with business requirements / real
stakeholder needs
e Feasible
o Can be implemented within known technical,
business, and project constraints.
e \erifiable / testable
o It must be possible to check objectively
whether the requirement is satisfied
e Detailed appropriately
o Provide enough input for subsequent design
and implementation phases
(or contract if relevant)

e Prioritized

References: BABOK guide, IEEE Std 29148-2018, Karl Wiegers’ checklist

Requirements engineering process

[Stakeholder identification]

‘ L L A A N N N T L L R R E R R

" Elicitation v ¥ __ i
(meetings & interviews Analysis Specification Validation
with stakeholders (thinking. (decomposition, (meetings, draft
watching the useré discussions, structured > presentation,
stl?d in ’ notes, notation, negotiations, GUI
_ documenﬁat?on)) sketches,..) models, ..) model presentation, ..)
- M_eetii:ng AL Requirements
minutes, e
Notes specification specification -
draft final

-

Specification & Validation phase

Specification
e How the requirements are written -> we’ll deal with this in detail
Validation

e Final checks on requirements quality (see quality characteristics)
o Similar to tasks in “analysis phase”, but the input should be polished and complete,
minimizing the need to revisit prior phases

e Documentation check
e Might include formal approval

Requirements Specification

How the requirements are written”?

There is much variation in how they are written and presented

Software Requirements Definition
e Output of “Requirements” phase
e Also “Software Requirements Specification (SRS)”

FORM: Typically structured text + figures / models / diagrams
o UML, BPMN, E-R diagrams, ad-hoc models
(drawback: intended audience has poor knowledge of used notation)

CONTENT: Requirements, Glossary, Domain model*, GUI model,

| Itis important to
take into account the
audience so that they
are able to read and
understand the
requirements definition
(or the part that is
intended for them)

+ Stakeholder and environment description, Constraints and assumptions, High-level data model

Agile / hybrid approaches - more lightweight documentation

* Note: The domain model (& business process models) are often created already during overall business analysis

Three levels of requirements - requirements definition

Business R m::ﬁ - Requirements slicing
requirements Vertical slice:
= A specific level of requirements (BRs,
SRs, FRs / NFRs)
Stakeholder (user) Horizontal slice
requirements = Requirements for one delivery iteration,
across levels
Solution (system) More structured text,

requirements VY diagrams, figures

We'll take a look at

Basic approaches

Requirements - structured text
Glossary - structured text

Domain model - UML class diagram
GUI model - ad-hoc modeling

Specific approaches

e Functional requirements - UML use case diagram / model, Activity diagram
e Agile requirements - user stories

Requirements - structured text

e Unstructured text - “Victorian novel”

o Massive narrative sequential description, seldom used today
e Flat catalogue of requirements

o Often used, not optimal
e [Y4Combination - structured text

Unstructured text - example

The ecommerce store will be expanded with user accounts so that each account will contain the email
address of the given user. Our marketing department will be able to reach users by email with various
marketing campaigns if the user gives such permission. This way we expect to increase repeat orders.
See also our internal Reports that show number of repeat orders in last 12 months and Case study that
show how account management can help to increase repeat orders.

The e-commerce store will provide the possibility to create a user account, log in to this account, log out of
this account. Before creating an account, the user must agree to the storage of his personal data in
accordance with (GDPR).

¥ Lacks any structure, difficult to distinguish specific requirements and to track their attributes
(priority / progress / estimates)

Flat catalogue - example 1

ID Requirement Priority Estimates

BR1 |Achieve at least a 10% increase in repeat purchases within the first year by enabling
customers to browse, select, and purchase products.

BR2 |The platform should attract new customers and generate at least 15% of total
revenue online in the first year.

SR1 | The customer must be able to create a new user account.
SR2 | The customer must be able to view order history.

SR3 | The inventory manager must be notified automatically when stock of a product falls
below a defined threshold..

FR1 |The system shall allow the creation of a new user account with the following
attributes:e-mail address, first name, last name, address line 1, address line 2, city,
postal code,

FR2 |The system shall allow users to log in using e-mail and password.

X Difficult to read and

maintain for larger systems.
NFR2 | The system shall run on all Java platforms including 64-bit versions. No traceability_

NFR1 | The system shall enforce passwords of at least 8 characters.

Flat catalogue - example 2

ID Requirement Priority |Estimates |Parent reqs
BR1 |Achieve at least a 10% increase in repeat purchases within the first year by enabling -
customers to browse, select, and purchase products.
BR2 |The platform should attract new customers and generate at least 15% of total -
revenue online in the first year.
SR1 | The customer must be able to create and use a user account. BR1
SR2 | The customer must be able to view order history. BR1
SR3 | The inventory manager must be notified automatically when stock of a product falls BR2
below a defined threshold..
FR1 |The system shall allow the creation of a new user account with the following SR1
attributes:e-mail address, first name, last name, address line 1, address line 2, city,
postal code,
FR2 | The system shall allow users to log in using e-mail and password. SR1
NFR1 | The system shall enforce passwords of at least 8 characters. ¢ Colu.mn Felisal reqs.- may contain
multiple parent requirements
NFR2 | The system shall run on all Java platforms including 64-bit versions. ® Poor support for detailed rationale

Still difficult to read and maintain

Structured (hierarchical) text - example

1. Business Requirements
BR1. Achieve at least a 10% increase in repeat purchases within the first year.
Priority: High
BR2. The platform should attract new customers and generate at least 15% of
total revenue online.
Priority: High

2. Stakeholder Requirements
SR1. The customer must be able to create and use a user account.

— supports BR1 (+ rationale)
Priority: Medium

3. System Requirements
3.1 Functional
FR1. The system shall allow creation of a new user account with fields: e-mail,
name, address, etc.
— supports SR1 (+ rationale)

3.2 .Non-functional
NFR1. The system shall enforce passwords of at least 8 characters.
— supports BRX (+ rationale)

Hierarchy is mostly based on
vertical/horizontal slicing,
logical grouping or a
combination

Possibility to add both
attributes and explanatory
unstructured paragraphs if
needed

Tool support (different views of
the same requirements,
sorting / filtering)

We'll take a look at

Basic approaches

Requirements - structured text
Glossary - structured text

Conceptual model - UML class diagram
GUI mockups - ad-hoc modeling

Specific approaches

e Functional requirements - UML use case diagram / model, Activity diagram
e Agile requirements - user stories

Glossary

e Use the same terms for the same concepts throughout the whole
requirements definition

e |t makes it easier to understand the requirements

e Examples

o System vs. e-commerce store vs e-shop User roles may be

o User vs customer vs buyer described separately from
o Item vs product the glossary

o Shopping basket vs shopping cart vs cart

e Requirements with inconsistent terms:
o The system shall enable the customer to insert items into the shopping basket.
o The e-shop shall enable the buyer to remove products from the cart.

Glossary - example

Order

A request by a customer to purchase one or more products, typically including delivery and
payment information.

Product

A tangible or intangible item that can be offered for sale in the e-commerce store

Shopping cart

A temporary container for storing products that a customer intends to purchase.

Shopping cart item (or item)

A specific product along with the quantity selected, representing one line in the shopping cart.
Customer

A user of the e-shop who can browse products, add them to the shopping cart, and place orders.

We'll take a look at

Basic approaches

Requirements - structured text
Glossary - structured text
Domain - UML class diagram
GUI mockups - ad-hoc modeling

Specific approaches

e Functional requirements - UML use case diagram / model, Activity diagram
e Agile requirements - user stories

Domain (conceptual) model

e High-level static model, visualization of domain concepts
UML Class diagram, E-R diagram

e Aligned with glossary -> See also PTS1

UML class diagram
e Conceptual classes = domain concepts
o Attributes

o Operations - different views:
m No operations in domain models (e.g. Larman 2004)
m Operations are allowed, but describing responsibilities, not interfaces (Fowler 2003)

e Associations = relations between domain concepts
Cardinalities

Association names with “reading direction”

Roles

(@)

o O O

Examp

Unit price in shopping cart cart / order item is a time
snapshot of the unit price of referenced product

T
'
'
L]

Customer
Shopping Cart) Shopping Cart Iltem
first name has » 0.1 contains » 0.*
middle name cartID quantity
last name date created 0..* |unit price
e-mail / total price {quantity * unit price}
phone o
1 ‘90@& Order : Order Item
4 contains » 0.
g Ol'del' ID quanﬁty "
1.7 | v Tl bl 1. |unit price 5 3,
= status: Order Status / total price {quantity * unit price} v
Address
address line 1
address line 2
city
postal code Order Status 1 contains »
country ==enumeration== e 0.1
Pending 3 Product Category
Processing ﬁg?:e < contains = -
Shipped R 0.* 1. |] Laaemm=1
Delivered ﬂﬁﬁcﬁfctf" ==
Cancelled stock quantily

P
siajel

Only leaf product
categories contain
products. A product can
be contained in more
categories.

We'll take a look at

Basic approaches

Requirements - structured text
Glossary - structured text

Domain model - UML class diagram
GUI model - ad-hoc modeling

Specific approaches

e Functional requirements - UML use case diagram / model, Activity diagram
e Agile requirements - user stories

Requirements definition vs. UX outputs

e Solution requirements are typically associated with Mock-up: a visual
representation or

mock-ups screenshot of how

e Mock-ups vs. requirements the final website or

o Asingle mock-up may cover one or more requirements product will look

o Asingle requirement may be covered by one or more mock-ups
(or even no mock-up at all)

o Final mockups may use different glossary than requirements
definition

Example:

FR1: The system shall allow the creation of new user account with the
following attributes: e-mail address, first name, last name, address line 1, <:> MU1, MU2
address line 2, city, postal code, phone number,password, timestamp.

NFR1: The system shall enforce passwords of at least 8 characters. > MU

MU1:

MU2:

Registracia

Cme
Heslo *
Opaku) heslo *
| | Neprajem si odoberat newslettre

Registrovat

Nastavenie mojho uctu

Osobné udaje

Meno a priezvisko

Nove heslo (kontrola)

Dorucdovacia adresa

Ulica a dislo domu *

Slovensko

Zostanme v kontakte

' | Neprajem st cdoberat

newslettre

We'll take a look at

Basic approaches

Requirements - structured text (possibly with tool support)
Glossary - structured text

Domain model - UML class diagram

GUI model - ad-hoc modeling

Specific approaches

e Functional requirements - UML use case diagram / model, Activity diagram
e Agile requirements - user stories

Use Case model

e Use Case diagram + Use Case descriptions
e Can be supported by Activity / State / Sequence diagrams (or other

Use Case
diagram -
example

Actor

X

Customer

Actors

Use Cases
Relationships
System Boundary

Association

}

E-commerce store

Create new
user
account

Create new
order

<<extend>> h

View order
history

Check order
status

Create new
order based on
a copy of past

\ System boundary

order

= . /
_~<<include>>~
7/

_4<include>>

/ Use Case

Use Case diagram

Use Cases Relationships

= functionality of the system e Actor - Actor
o Generalization

e Actor - Use Case
o Association (represents
interaction)
e Use Case - Use Case
o Generalization
o “Extend” dependency
o “Include” dependency

o Inside the system boundary

Actors
= entities that interacts with the system
o Always outside the system boundary
o Human users or other systems (<<system>>
stereotype)
o Primary vs. secondary actors

Primary vs secondary actor, actor inheritance

%/

Customer

E-commerce store

Print order

e

- X

Printer
<<system>>

Primary

Secondary

[User

N

—— Customer

T

| Inventory
manager

E-commerce store

Create
new order

Browse
products

Update
product
stock
quantity

Include vs extend dependency

“Include” dependency

e An including use case always contains the behavior defined in another,
included (base), use case. Included use case can be seen as subroutine.

“Extend” dependency

e The behavior defined in the extending use case can be inserted into the
behavior defined in the extended use case

Customer

Exten

E-commerce store

Create new
user
account

Create new
order

\

<<extend>>

d —

Create new
order based on
a copy of past
order

- . /
_~<<include>>~
7/
_4<include>>

View order
history

Check order / Include

status

E-commerce store View order history

Use Case Goal:

To display all orders associated with given

deSCrIptIOn = user account
Preconditions:
example

Customer is logged into their user account
Postconditions:

The list of all orders associated with given
user account is displayed

View order
history

Steps:

| 1. If no orders are associated with given
user account, inform the user that
there are no orders.

2. If one or more orders are associated

Customer with given user account, display the

list of these orders sorted by order

time from newest to oldest. For each

e UC diagram - only overview, no details order display order ID, order status
e UC description - complete specification and list of ordered items. For each
. e ordered item display ...
e |ssues: Might get verbose and difficult to
maintain

Activity diagrams

Example (“Checkout” functionality)

http://www.dcs.fmph.uniba.sk/~kosticova/202324/pts3_materialy/PTS3_Activity_diagram.png

We'll take a look at

Basic approaches

Requirements - structured text
Glossary - structured text

Domain model - UML class diagram
GUI model - ad-hoc modeling

Specific approaches

e Functional requirements - UML use case diagram / model, Activity diagram
e Aqile requirements - user stories

Agile methodologies

e Software development runs in short, flexible iterations
e Lightweight documentation

SCRUM

e Self-organizing team, 5-9 people responsible for the product
(scrum master, product owner, developers, UX, QA)

e |teration: 2-4 weeks

e Input for the team: product backlog = prioritized list of “user stories”

Scrum assumes that the product backlog contains the requirements for the
product, but does not specify where they come from.

e Typically a part of the analysis has to be completed outside SCRUM

User stories

“A user story is an informal, general explanation of a software feature written from
the perspective of the end user or customer”

e Somewhere between stakeholder and solution requirements

o They capture needs from the user’s perspective but often include hints about how the system should
behave (especially in acceptance criteria)

e Alistair Cockburn (1998): "A user story is a promise for a conversation."
e Common template
O As a <role> | want to <capability>, so that <receive benefit>

o “So that” part optional

e User stories = placeholders for further discussion, can be split / refined to more detailed
specification if needed
e Placed into product backlog and prioritized, supplemented by acceptance criteria

User stories - examples

As a customer
| want to create new user account
so that | do not need to enter my data repeatedly.

As a customer
| want to create new order

so that | can purchase the products | want efficiently. o
Priority
As a customer

| want to view order history
so that | can easily repurchase items | liked.

As an inventory manager
| want to be notified automatically when stock of a product falls below a defined
threshold

so that | can timely order more products from suppliers.

Acceptance criteria

e Conditions that the given feature must fulfill in order to be accepted by stakeholders
e Provides more details about User story

Example:

As a customer | want to view order history so that | can easily repurchase items | liked.

Customer can access a page showing all their past orders, sorted by most recent.
Each order displays order ID, date, status, total amount, and items.

ltems have a “Buy Again” button that adds them to the shopping cart.

If an item is out of stock, the customer is notified and cannot add it.

Only the authenticated customer can view their orders.

Tools

e Document-based

O MS Word / Excel, Google Docs / Sheets, ..

o Example: Book E-Commerce System (Michigan State University example)

o Convenient for formal requirement documents (e.g., in case of contracts)
e CASE (Computer-aided software engineering tool)

o Enterprise Architect,.. EA Screenshots

o More difficult to create and maintain the specification

o Provides complete system description
e Collaborative Software, Wiki

o Atlassian Confluence, .. Medium article with short example

o Agile /issue tracking system
o Atlassian Jira, Azure DevOps, Trello

https://www.cse.msu.edu/~chengb/RE-491/Papers/SRS-BECS-2007.pdf
https://sparxsystems.com/products/ea/screenshots.html
https://medium.com/@muhammadrado1612/how-to-make-product-requirement-with-confluence-cc9e539c6100

Key best practices

e |Insist on clear business requirements

Gather requirements from all stakeholders and validate
requirements with all stakeholders

Only accept traceable requirements

Only accept requirements that solve real stakeholder needs
Take into account all types of requirements

Avoid grey zones

Document requirements accurately and consistently

References

e lan Sommerville: Software Engineering (10th edition), 2016
e Karl Wiegers, Joy Beatty: Software Requirements (3nd Edition), 2013
e Karl Wiegers’ checklists & templates: https://softwarereqs.com/ -> Downloads

e Dean Leffingwell: Agile software requirements, 2011

e Alistair Cockburn: Writing Effective Use Cases, 2000

e Alistair Cockburn: Agile Software Development (2nd edition), 2006

e A Guide to the Business Analysis Body of Knowledge v3 (BABOK® Guide), 2015

e |EEE Std 29148-2018 (Systems and Software Engineering — Life Cycle Processes —
Requirements Engineering), 2018

e Craig Larman: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and lterative Development (3rd edition), 2004

e Martin Fowler: UML Distilled: A Brief Guide to the Standard Object Modeling Language
3rd Edition, 2003

https://softwarereqs.com/

