Algorithms and Data Structures for Mathematicians

Lecture 1: An Introduction

Peter Kostolányi
kostolanyi at fmph and so on
Room M-258

28 September 2017

Some Not Really Formal Definitions

Computational problems:

- Mappings $F: \mathbb{I} \rightarrow \mathbb{O}$
- \mathbb{I} is the set of inputs, \mathbb{O} is the set of outputs
- Example 1: Given n in \mathbb{N}, find out if n is prime
- Example 2: Given n in \mathbb{N} and a_{1}, \ldots, a_{n} from a totally ordered set (S, \preceq), find a permutation $\varphi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $a_{\varphi(1)} \preceq \ldots \preceq a_{\varphi(n)}$ (sorting)

Algorithms:

- Well defined and always halting sequences of elementary operations solving a given computational problem
- Each I in \mathbb{I} is transformed to $F(I)$ in \mathbb{O}
- Might or might not be implemented on a computer
- We shall be particularly interested in efficient algorithms

Some Not Really Formal Definitions

Data Structures:

- Representations of data in memory (e.g., arrays, linked lists, ...)
- Aim: to access and/or modify data efficiently

Design and analysis of algorithms (and data structures):

- Can make programming efficient, but is not programming
- Uses some elementary mathematics, but is not mathematics
- A truly mathematical approach: computation theory
- 2-MPG-218 Complexity theory (this summer)

Course Organisation

Web page for the first half of the semester (or so):

- http://www.dcs.fmph.uniba.sk/~kostolanyi/ads/

Lectures in the second half of the semester:

- Dana Pardubská (Room M-250)
- pardubska@dcs.fmph.uniba.sk

Lectures interleaved with exercises when needed
Grading:

- 100 points in total
- Mid-term exam: 40 points
- Final examination: 60 points
- A: 90+, B: $80-89$, C: $70-79$, D: $60-69$, E: $50-59, F X: 0-49$

Suggested Textbooks

Principal Sources:

- Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms, 3rd edition. Cambridge: MIT Press, 2009.
- Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms.
Reading: Addison-Wesley, 1974.
A Book Including Implementations (in Java):
- Sedgewick, R., Wayne, K.:

Algorithms, 4th edition. Upper Saddle River: Addison-Wesley, 2011.

A More Gentle Introduction:

- Cormen, T. H.:

Algorithms Unlocked.
Cambridge : MIT Press, 2013.

First Example: Finding the Maximum

- Let (S, \preceq) be a totally ordered set
- Assume that $\perp \prec x$ for all x in S
- Given n elements of S, we want to find the greatest one

Algorithm:
Input : Integer $n \geq 0$, array $a=\langle a[1] \ldots, a[n]\rangle$ of elements of (S, \preceq) Output: $\max \{a[i] \mid i \in\{1, \ldots, n\}\}$
max $\leftarrow \perp$;
for $i \leftarrow 1$ to n do
if $a[i] \succeq$ max then
$\max \leftarrow a[i] ;$
end
end
return max;
How fast is the above algorithm?

Time Complexity of an Algorithm

Algorithm:
Input : Integer $n \geq 0$, array $a=\langle a[1] \ldots, a[n]\rangle$ of elements of (S, \preceq)
Output: $\max \{a[i] \mid i \in\{1, \ldots, n\}\}$
max $\leftarrow \perp$;
for $i \leftarrow 1$ to n do
if $a[i] \succeq$ max then
$\max \leftarrow a[i] ;$
end
end
return max;

- How many elementary operations on an input of a given size?
- Size of the input can be measured by n
- Elementary operations: perhaps $x \leftarrow y$ and if $y \succeq x$ then $x \leftarrow y \ldots$
- Exactly $n+1$ elementary operations on each input of size n

Time Complexity of an Algorithm

Algorithm:

```
Input : Integer \(n \geq 0\), array \(a=\langle a[1] \ldots, a[n]\rangle\) of elements of \((S, \preceq)\)
Output: \(\max \{a[i] \mid i \in\{1, \ldots, n\}\}\)
```

$\max \leftarrow \perp$;
for $i \leftarrow 1$ to n do
if $a[i] \succeq$ max then
$\max \leftarrow a[i] ;$
end
end
return max;

- What about elementary "operations" $x \leftarrow y$ and $x \preceq y$?
- Worst case: $2 n+1$ operations on input of size n
- Best case: $n+2$ operations on input of size n
- Or $3 n+1$ and $2 n+2$???
- Does not really matter, in each case the number is linear in n
- Time complexity can only be given with respect to some underlying model (e.g., set of elementary operations)

Time Complexity of an Algorithm

Need not be the same for all inputs of size n

- Worst-case complexity
- Expected complexity (w.r.t. some probability distribution of inputs)
- Best-case complexity

We have seen that there is an algorithm for finding a maximum in linear worst-case time

- There definitely is an algorithm that is slower in worst case
- And there also might be a substantially faster algorithm...
- ... But there is no such algorithm (proof?)

Second Example: Insertion Sort

- Let (S, \preceq) be a totally ordered set
- Given n elements of S, we wish to sort them in increasing order Algorithm:
Input : Integer $n \geq 0$, array $a=\langle a[1] \ldots, a[n]\rangle$ of elements of (S, \preceq) Behaviour: Sorts a in increasing order

```
for }i\leftarrow2\mathrm{ to }n\mathrm{ do
    key }\leftarrowa[i]
    j\leftarrowi;
    while j\geq2 and a[j-1]}\succ\mathrm{ key do
        A[j]}\leftarrowA[j-1]
        j\leftarrowj-1;
    end
    A[j]}\leftarrow\mathrm{ key
end
```

- Worst-case time complexity?
- It will get much more complicated later
- Seems that we need some techniques that would help us forget about unimportant details...

Motivation for Asymptotic Analysis

Consider the following two pieces of information:

- The time complexity of an algorithm is

$$
\begin{aligned}
T(n) & =3 n(1+\lfloor\sqrt{n}\rfloor+9 n\lceil\sqrt{n}\rceil)+\frac{1}{6} n\left(2 n^{2}+9 n+7\right)+ \\
& +11\lceil\log n\rceil(n+1)^{2}-2\lceil\log n\rceil+42
\end{aligned}
$$

- The time complexity of an algorithm grows "similarly" to n^{3} as n tends to ∞

Which one is more useful?
Exact time complexity is not only hard to compute, but may also be hard to comprehend:

- Solution: asymptotic analysis
- We shall be primarily interested in time complexity for large inputs
- That is, when $n \rightarrow \infty$

How Large is This Number? (Think of Money)

4280851899489560848691

And How Large is This Number? (Think of Money)

847955518187334829283589897040119655235863919601693531238414 992751617165416141302480796865188930627435280282706613547980 294932630735849850955629756390189988065670926936776080112344 478419587070503835005599718728588150686533243684009181797426 171883222991245962132902198193449147350817134122866534527139 324266014275038885469315531344270843365472877851040028341343 446812975361588038115962323696276213633010227723117346742793 809486832344936918539522695019005474402586729448774658329488 313043282804390925188410810300110289559989160868665250433758 583040150144399344168406565330785174160961264728256705619645 503580555958532651067869506317081480329379589924149250096656 021238118034770836265089287436131069459108907243619617600703 335393461805670822333994164179926751412897021280473168238505 249057658869931528787705337703014030771056967154328101426613 199719676876144322924501319536021077133567603615839764872627 762350534910009155649512153176581308880648714210251982144207 662692294855573895970855089312576731955964946046833813864004 631753962686876000391297519828520284626088552126304691777575 316106827163895406324359401238410333876306989075934741951911

Asymptotic Analysis

- Number of digits \rightsquigarrow error up to $10 \times$
- Number of slides \rightsquigarrow error 10^{6} makes little difference
- Each constant factor $c>0$ seems to be a reasonable error for large enough n
- We shall say that $f: \mathbb{N} \rightarrow \mathbb{N}$ grows "similarly" to $g: \mathbb{N} \rightarrow \mathbb{N}$ if there is such constant factor c

Asymptotic Analysis

Definition

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be functions. Then we shall write:
(i) $f(n)=O(g(n))$ if $\exists c>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: f(n) \leq c \cdot g(n)$.
(ii) $f(n)=\Omega(g(n))$ if $g(n)=O(f(n))$.
(iii) $f(n)=\Theta(g(n))$ if $f(n)=O(g(n))$ and $g(n)=O(f(n))$.

Some stronger notation:
(iv) $f(n)=o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
(v) $f(n)=\omega(g(n))$ if $g(n)=o(f(n))$.
(vi) $f(n) \sim g(n)$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$.

Asymptotic Analysis

Example

- If $f(n)=2 n^{3}+n^{2}+10$, then $f(n)=O\left(n^{3}\right)$ and $f(n)=\Theta\left(n^{3}\right)$
- If $f(n)=2 n^{3}+n^{2}+10$, then $f(n)=O\left(n^{4}\right)$, but not $f(n)=\Theta\left(n^{4}\right)$

In calculus, you used to write:

- $f(x)=1+x+x^{2}+O\left(x^{3}\right)$, or so
- Thus x^{3} is negligible compared to x^{2}, we have $x^{4}=O\left(x^{3}\right)$, etc.

For us:

- n^{2} is negligible compared to n^{3}, we have $n^{3}=O\left(n^{4}\right)$, etc.
- Reason: $n \rightarrow \infty$ instead of $x \rightarrow 0$

Two important properties of Θ-notation:

- If $f_{1}(n)=\Theta\left(f_{2}(n)\right)$ and $g_{1}(n)=\Theta\left(g_{2}(n)\right)$, then $f_{1}(n)+g_{1}(n)=\Theta\left(f_{2}(n)+g_{2}(n)\right)$
- If $f_{1}(n)=\Theta\left(f_{2}(n)\right)$ and $g_{1}(n)=\Theta\left(g_{2}(n)\right)$, then $f_{1}(n) \cdot g_{1}(n)=\Theta\left(f_{2}(n) \cdot g_{2}(n)\right)$

Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer $n \geq 0$, array $a=\langle a[1] \ldots, a[n]\rangle$ of elements of (S, \preceq) Behaviour: Sorts a in increasing order

```
for \(i \leftarrow 2\) to \(n\) do
    key \(\leftarrow a[i]\);
    \(j \leftarrow i\);
    while \(j \geq 2\) and \(a[j-1] \succ\) key do
        \(A[j] \leftarrow A[j-1]\);
        \(j \leftarrow j-1 ;\)
    end
    \(A[j] \leftarrow\) key
end
```

- Let $T(n)$ be the worst-case time complexity of insertion sort
- The for loop executes $\leq n$ times on each input
- The while loop executes $\leq n$ times for each i
- Hence, $T(n)=O\left(n^{2}\right)$
- Considering inputs sorted in decreasing order: $T(n)=\Omega\left(n^{2}\right)$
- $T(n)=\Theta\left(n^{2}\right)$

When Model Matters. . .

Algorithm:
Input : Integer $n \geq 0$
Output: n^{n}
$k \leftarrow 1$;
for $i \leftarrow 1$ to n do
$k \leftarrow k \cdot n ;$
end
return k;

- Worst-case time complexity: $\Theta(n)$?
- $n^{n}=2^{n \log n}$ - we need at least $n \log n$ bits to store n^{n}
- At least $n \log n$ bit operations, and this is not $\Theta(n)$
- Even worse if we take $\log n$ as the size of the input

