Algorithms and Data Structures for Mathematicians

Lecture 1: An Introduction

Peter Kostolányi kostolanyi at fmph and so on Room M-258

28 September 2017

Some Not Really Formal Definitions

Computational problems:

- Mappings $F : \mathbb{I} \to \mathbb{O}$
- ▶ I is the set of inputs, O is the set of outputs
- **Example 1**: Given n in \mathbb{N} , find out if n is prime
- Example 2: Given n in \mathbb{N} and a_1, \ldots, a_n from a totally ordered set (S, \preceq) , find a permutation $\varphi: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ such that $a_{\varphi(1)} \preceq \ldots \preceq a_{\varphi(n)}$ (sorting)

Algorithms:

- Well defined and always halting sequences of elementary operations solving a given computational problem
- Each I in \mathbb{I} is transformed to F(I) in \mathbb{O}
- Might or might not be implemented on a computer
- ► We shall be particularly interested in efficient algorithms

Some Not Really Formal Definitions

Data Structures:

- ▶ Representations of data in memory (e.g., arrays, linked lists, ...)
- Aim: to access and/or modify data efficiently

Design and analysis of algorithms (and data structures):

- Can make programming efficient, but is not programming
- Uses some elementary mathematics, but is not mathematics
- A truly mathematical approach: computation theory
 - 2-MPG-218 Complexity theory (this summer)

Course Organisation

Web page for the first half of the semester (or so):

http://www.dcs.fmph.uniba.sk/~kostolanyi/ads/

Lectures in the second half of the semester:

- Dana Pardubská (Room M-250)
- pardubska@dcs.fmph.uniba.sk

Lectures interleaved with exercises when needed

Grading:

- 100 points in total
- Mid-term exam: 40 points
- Final examination: 60 points
- ► A: 90+, B: 80 89, C: 70 79, D: 60 69, E: 50 59, FX: 0 49

Suggested Textbooks

Principal Sources:

- Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms, 3rd edition. Cambridge : MIT Press, 2009.
- Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms. Reading : Addison-Wesley, 1974.
- A Book Including Implementations (in Java):
 - Sedgewick, R., Wayne, K.: *Algorithms*, 4th edition. Upper Saddle River : Addison-Wesley, 2011.
- A More Gentle Introduction:
 - Cormen, T. H.: Algorithms Unlocked.
 Cambridge : MIT Press, 2013.

First Example: Finding the Maximum

- ▶ Let (S, \preceq) be a totally ordered set
- Assume that $\perp \prec x$ for all x in S
- Given *n* elements of *S*, we want to find the greatest one

Algorithm:

```
max \leftarrow \bot;
for i \leftarrow 1 to n do
\begin{vmatrix} if & a[i] \succeq max \text{ then} \\ & | & max \leftarrow a[i]; \\ & end \\ end \\ return max; \end{vmatrix}
```

```
How fast is the above algorithm?
```

Time Complexity of an Algorithm

```
Algorithm:

Input : Integer n \ge 0, array a = \langle a[1] \dots, a[n] \rangle of elements of (S, \preceq)

Output: \max\{a[i] \mid i \in \{1, \dots, n\}\}

max \leftarrow \perp;

for i \leftarrow 1 to n do

\mid if a[i] \succeq \max then

\mid \max \leftarrow a[i];

end

end
```

return max;

- How many elementary operations on an input of a given size?
- Size of the input can be measured by n
- Elementary operations: perhaps $x \leftarrow y$ and if $y \succeq x$ then $x \leftarrow y$...
- Exactly n + 1 elementary operations on each input of size n

Time Complexity of an Algorithm

Algorithm:

```
\begin{array}{l} \max \leftarrow \bot; \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ & | \begin{array}{c} \textbf{if } a[i] \succeq \max \textbf{ then} \\ & | \begin{array}{c} \max \leftarrow a[i]; \\ \textbf{end} \end{array} \end{array}
```

end

return max;

- What about elementary "operations" $x \leftarrow y$ and $x \preceq y$?
- Worst case: 2n + 1 operations on input of size n
- Best case: n + 2 operations on input of size n
- Or 3n + 1 and 2n + 2???
- Does not really matter, in each case the number is linear in n
- Time complexity can only be given with respect to some underlying model (e.g., set of elementary operations)

Time Complexity of an Algorithm

Need not be the same for all inputs of size n

- Worst-case complexity
- Expected complexity (w.r.t. some probability distribution of inputs)
- Best-case complexity

We have seen that there is an algorithm for finding a maximum in linear worst-case time

- There definitely is an algorithm that is slower in worst case
- And there also might be a substantially faster algorithm...
- ...But there is no such algorithm (proof?)

Second Example: Insertion Sort

▶ Let (S, \preceq) be a totally ordered set

• Given n elements of S, we wish to sort them in increasing order

Algorithm:

Input : Integer $n \ge 0$, array $a = \langle a[1] \dots, a[n] \rangle$ of elements of (S, \preceq) **Behaviour**: Sorts *a* in increasing order

```
for i \leftarrow 2 to n do

\begin{vmatrix} \text{key} \leftarrow a[i]; \\ j \leftarrow i; \\ \text{while } j \ge 2 \text{ and } a[j-1] \succ \text{key do} \\ & | A[j] \leftarrow A[j-1]; \\ j \leftarrow j-1; \\ \text{end} \\ & A[j] \leftarrow \text{key} \\ \text{end} \\ \end{vmatrix}
```

- Worst-case time complexity?
- It will get much more complicated later
- Seems that we need some techniques that would help us forget about unimportant details...

Motivation for Asymptotic Analysis

Consider the following two pieces of information:

The time complexity of an algorithm is

$$T(n) = 3n \left(1 + \lfloor \sqrt{n} \rfloor + 9n \lceil \sqrt{n} \rceil\right) + \frac{1}{6}n \left(2n^2 + 9n + 7\right) + 11 \lceil \log n \rceil (n+1)^2 - 2 \lceil \log n \rceil + 42$$

 \blacktriangleright The time complexity of an algorithm grows "similarly" to n^3 as n tends to ∞

Which one is more useful?

Exact time complexity is not only hard to compute, but may also be hard to comprehend:

- Solution: asymptotic analysis
- ▶ We shall be primarily interested in time complexity for large inputs
- That is, when $n \to \infty$

How Large is This Number? (Think of Money)

4280851899489560848691

And How Large is This Number? (Think of Money)

Asymptotic Analysis

- Number of digits \rightsquigarrow error up to $10 \times$
- ▶ Number of slides \rightsquigarrow error 10^6 makes little difference
- Each constant factor c > 0 seems to be a reasonable error for large enough n
- ▶ We shall say that $f : \mathbb{N} \to \mathbb{N}$ grows "similarly" to $g : \mathbb{N} \to \mathbb{N}$ if there is such constant factor *c*

Asymptotic Analysis

Definition

Let $f, g: \mathbb{N} \to \mathbb{N}$ be functions. Then we shall write:

(i)
$$f(n) = O(g(n))$$
 if $\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : f(n) \le c \cdot g(n)$.
(ii) $f(n) = \Omega(g(n))$ if $g(n) = O(f(n))$.

(iii) $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and g(n) = O(f(n)).

Some stronger notation:

(iv)
$$f(n) = o(g(n))$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
(v) $f(n) = \omega(g(n))$ if $g(n) = o(f(n))$.
(vi) $f(n) \sim g(n)$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$.

Asymptotic Analysis

Example

- If $f(n) = 2n^3 + n^2 + 10$, then $f(n) = O(n^3)$ and $f(n) = \Theta(n^3)$
- ► If $f(n) = 2n^3 + n^2 + 10$, then $f(n) = O(n^4)$, but not $f(n) = \Theta(n^4)$

In calculus, you used to write:

•
$$f(x) = 1 + x + x^2 + O(x^3)$$
, or so

► Thus x^3 is negligible compared to x^2 , we have $x^4 = O(x^3)$, etc.

For us:

- n^2 is negligible compared to n^3 , we have $n^3 = O(n^4)$, etc.
- Reason: $n \to \infty$ instead of $x \to 0$

Two important properties of Θ -notation:

▶ If
$$f_1(n) = \Theta(f_2(n))$$
 and $g_1(n) = \Theta(g_2(n))$, then $f_1(n) + g_1(n) = \Theta(f_2(n) + g_2(n))$

▶ If
$$f_1(n) = \Theta(f_2(n))$$
 and $g_1(n) = \Theta(g_2(n))$, then $f_1(n) \cdot g_1(n) = \Theta(f_2(n) \cdot g_2(n))$

Insertion Sort: Worst-Case Time Complexity

Algorithm:

Input : Integer $n \ge 0$, array $a = \langle a[1] \dots, a[n] \rangle$ of elements of (S, \preceq) **Behaviour**: Sorts *a* in increasing order

```
for i \leftarrow 2 to n do

\begin{vmatrix} \text{key} \leftarrow a[i]; \\ j \leftarrow i; \\ \text{while } j \ge 2 \text{ and } a[j-1] \succ \text{key do} \\ & | A[j] \leftarrow A[j-1]; \\ & j \leftarrow j-1; \\ \text{end} \\ & A[j] \leftarrow \text{key} \\ \text{end} \\ \end{vmatrix}
```

- Let T(n) be the worst-case time complexity of insertion sort
- The **for** loop executes $\leq n$ times on each input
- The **while** loop executes $\leq n$ times for each *i*
- Hence, $T(n) = O(n^2)$
- Considering inputs sorted in decreasing order: $T(n) = \Omega(n^2)$
- $T(n) = \Theta(n^2)$

When Model Matters...

Algorithm: Input : Integer $n \ge 0$ Output: n^n $k \leftarrow 1$; for $i \leftarrow 1$ to n do $\mid k \leftarrow k \cdot n$; end return k;

- Worst-case time complexity: $\Theta(n)$?
- $n^n = 2^{n \log n}$ we need at least $n \log n$ bits to store n^n
- At least $n \log n$ bit operations, and this is not $\Theta(n)$
- Even worse if we take log n as the size of the input