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Abstract

Complexity classes such as #P, ⊕P, GapP, OptP, NPMV, or the class of fuzzy languages realised
by polynomial-time fuzzy nondeterministic Turing machines, can all be described in terms of a class NP[S]
for a suitable semiring S, defined via weighted Turing machines over S similarly as NP is defined via
the classical nondeterministic Turing machines. Other complexity classes of decision problems can be lifted
to the quantitative world using the same recipe as well, and the resulting classes relate to the original
ones in the same way as weighted automata or logics relate to their unweighted counterparts. The article
surveys these too-little-known connexions between weighted automata theory and computational complexity
theory implicit in the existing literature, suggests a systematic approach to the study of weighted complexity
classes, and presents several new observations strengthening the relation between both fields. In particular,
it is proved that a natural extension of the Boolean satisfiability problem to weighted propositional logic is
complete for the class NP[S] when S is a finitely generated semiring. Moreover, a class of semiring-valued
functions FP[S] is introduced for each semiring S as a counterpart to the class P, and the relations between
FP[S] and NP[S] are considered.
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1. Introduction

Weighted automata theory [10, 23, 24, 50, 51, 58, 61], origins of which go back to the seminal article
of M.-P. Schützenberger [63], encompasses the study of quantitative generalisations of automata and related
formalisms such as grammars [29, 45, 65] and systems of equations [51, 57], rational expressions [58, 60],
and MSO logics [19, 20]. A weight taken from some structure – most typically a semiring – is assigned
to each transition of a weighted automaton, so that these automata no longer describe formal languages;
instead, they realise functions mapping words over some alphabet to elements of the underlying semiring.
After identifying the most natural algebra for such functions, one usually interprets them as formal power
series in several noncommutative variables [10, 22, 24, 58, 59, 61], also called weighted languages [41, 54].

Among the objects of study of weighted automata theory, weighted finite automata and the corresponding
class of rational series are undoubtedly the best understood [59]. Nevertheless, a great deal of research
has also focused on weighted generalisations of models that are not expressive equivalents of finite automata:
for instance, there are now well-developed theories of weighted counterparts to context-free languages [51, 57],
one-counter languages [52], or Lindenmayer systems [42].

On the other hand, weighted Turing machines received comparably little attention. These were intro-
duced as “algebraic Turing machines” by C. Damm, M. Holzer, and P. McKenzie [17], who also discovered
many of the applications of such machines to computational complexity surveyed in this article. However,
the authors used this model mainly as an auxiliary tool for studying complexity aspects of evaluating tensor
formulae over various semirings, and they did not make a natural connexion to weighted automata theory
explicit. Their work thus remained essentially unnoticed by the weighted automata community.
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To the author’s best knowledge, an explicit study of weighted Turing machines over structures incor-
porating at least all semirings only appeared in [53], where several variants of such machines over strong
bimonoids1 were considered. There also is a mention of weighted Turing machines in [13]; however, these are
understood there on a more-or-less informal level and in a much broader sense. Finally, a class of so-called
“semiring Turing machines” similar to weighted Turing machines was recently introduced in [32, 33].

This article can be seen as an attempt to convey the significance of weighted Turing machines, defined
by analogy to weighted automata, for a substantial part of computational complexity theory.

As decision problems are captured by languages, the usual complexity classes of decision problems –
such as P, NP, PSPACE, or EXPTIME – are actually classes of languages. On the other hand, counting
or optimisation problems no longer correspond to languages, but to their quantitative extensions. Applying
an approach standard in weighted automata theory, these problems can be regarded as formal power series.
The classes such as #P or OptP can thus be seen as weighted – or quantitative – complexity classes
of noncommutative formal power series.

The key observation to be highlighted in this article is that many of such quantitative complexity classes,
commonly studied in computational complexity theory, can in fact be naturally characterised by weighted
Turing machines over a suitable semiring. For instance, one may consider a complexity classNP[S] consisting
of all power series realised by polynomial-time weighted Turing machines over a semiring S. As usual,
setting S to the Boolean semiring corresponds to disregarding weights – that is, NP[S] becomes just NP
for S = B. On the other hand, the semiring of natural numbers N typically takes the role of counting; it is
thus not surprising that the class NP[N] coincides with the counting complexity class #P [66, 67, 4, 36, 55].
This example, which can be seen as a leading source of inspiration for studying the classes NP[S], was
actually already observed – and presented in their terminology of algebraic Turing machines – by C. Damm,
M. Holzer, and P. McKenzie [17].

Moreover, several other examples of semirings S, for which NP[S] corresponds to a known complexity
class, were identified in [17] as well: over the finite field F2 = Z/2Z, the “parity-P” class⊕P [56] is represented
by NP[F2]; similarly, the class of supports of series from NP[Z/kZ], for a natural number k ≥ 2, corresponds
to MODkP [8, 14], and the class NP[Z] can be seen as GapP [38, 39, 34].

This list is extended in this article by a few less straightforward examples: we observe that the class
of optimisation problems OptP[O(log n)] [49] can be captured by NP[Nmax], where Nmax is the max-plus
semiring of natural numbers; moreover, the class OptP [49] can also be modelled as NP[Smax] for Smax

being a suitable “max-plus semiring of binary words”. Furthermore, over semirings of finite languages 2Σ∗

fin ,
the classes NP[2Σ∗

fin ] relate to the complexity class of multivalued functions NPMV [11], and the class
of all fuzzy languages realisable by polynomial-time fuzzy Turing machines, understood in the sense of [68]
(see also [7] for more on this model and [69] for the first mention of fuzzy algorithms), can also be viewed
as NP[F∗] for a suitable semiring F∗ depending on the triangular norm ∗ considered.

The existence of a problem complete for NP[S] when S is finitely generated as an additive monoid
was also essentially established in [17] and the subsequent article by M. Beaudry and M. Holzer [6] –
it was proved there that the evaluation problem for scalar tensor formulae over S has this property. In this
article, we gain some more insight into the concept of NP[S]-completeness by showing that in fact already
the Cook-Levin theorem [64] generalises to the weighted setting: a suitably defined “satisfiability” problem
for weighted propositional logics, SAT[S], is NP[S]-complete with respect to polynomial-time many-one
reductions whenever the semiring S is finitely generated (in the usual algebraic sense, i.e., as a semiring).
Here, the weighted propositional logics are precisely the propositional fragments of the weighted MSO logics
of M. Droste and P. Gastin [19, 20]. In addition, we identify one more artificial NP[S]-complete problem
for every finitely generated semiring S, inspired by the TMSAT problem of S. Arora and B. Barak [4];
this problem involving weighted Turing machines can be proved to be NP[S]-complete quite readily, but
otherwise is of limited use. Finally, we observe that NP[S]-complete problems with respect to polynomial-
time many-one reductions do not exist when S is not finitely generated.

1The theory of weighted finite automata over strong bimonoids is a well-understood generalisation of their usual theory over
semirings [15, 26]; strong bimonoids are essentially semirings without distributivity.
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In addition to the class NP[S], we also introduce its “deterministic counterpart” FP[S]; this class
of semiring-valued functions generalises both P and the class FP, which relates to #P similarly as P
does to NP [4]. Quite naturally, FP[S] ⊆ NP[S] holds for all semirings S; we also observe that there is
a semiring, for which this inclusion is provably strict. We finally gather some basic observations concerning
the role of the semiring S when it comes to the relation of the classes FP[S] and NP[S]: we prove that
when T is a factor semiring of S, then FP[S] = NP[S] implies FP[T ] = NP[T ].

The original among the results presented in this survey are based on an unpublished work of the author
from 2019. Meanwhile, some similar results were also obtained by T. Eiter and R. Kiesel [32, 33] in their
related framework of semiring Turing machines.

The author believes that a consistent study of weighted complexity classes and related concepts, suggested
by this article, can be worthwhile for at least the following three reasons:

1. Traditionally, weighted automata theory has mostly dealt with what S. Eilenberg [31] aptly described
as rational and algebraic phenomena – or with their further specialisations. Solid generalisations
to the weighted setting have thus been obtained over the years for the classical theories of rational
and context-free languages, corresponding to the two lowermost levels of the Chomsky hierarchy.
The study of weighted computational complexity might help to understand how the principal concepts
of weighted automata theory relate to classes of languages beyond these two levels, usually studied
within the theory of computation. It should become clearer that virtually all of the main concepts
covered in a typical first course on formal languages and automata theory such as [43] – including
the theory of computation – can not only be consistently generalised to the weighted setting, but these
generalisations are actually meaningful and often related to important concepts from other areas.

2. Plenty of complexity classes have been introduced over the years, and many of them are quantitative
in their essence – i.e., instead of decision problems, they classify problems in which a value from some
algebra is assigned to each input [4, 55]. It turns out that these classes can often be characterised via
weighted Turing machines, which makes the analogies with the corresponding complexity classes of de-
cision problems more transparent, while the nature of such analogies can be described by the semiring
considered. The landscape of quantitative complexity classes thus in a sense becomes more readable.

3. Universal importance of weighted logics becomes apparent in the study of weighted complexity classes.
Weighted MSO logics over words were introduced by M. Droste and P. Gastin [19] in order to charac-
terise the class of rational series in a similar spirit as rational languages are captured by unweighted
MSO logics over words [12]; this result was also extended from finite words to other settings such
as infinite words [25], trees [27, 28], or graphs [18]. Later, weighted first-order logics and their rela-
tion to aperiodic weighted automata were also considered [21]. In connexion to weighted complexity
classes, weighted logics tend to arise in new unexpected ways. As we observe, the Boolean satisfiability
problem SAT admits a natural weighted generalisation SAT[S] over a semiring S, which can be seen
as the “satisfiability” problem for the weighted propositional logic over S, the propositional fragment
of the weighted MSO logic over S. This problem turns out to be NP[S]-complete whenever S is finitely
generated, which generalises the Cook-Levin theorem to the weighted setting. In yet another direction,
there have been attempts [2, 3, 30, 62] to extend the results of descriptive complexity [44, 37] to count-
ing complexity classes. A relatively recent approach of M. Arenas, M. Muñoz, and C. Riveros [2, 3]
successfully uses weighted logics over the semiring of natural numbers for this purpose. The theory
of weighted complexity classes over abstract semirings opens a door to possible extensions of these re-
sults, in which quantitative descriptive complexity theory based on weighted logics would be developed
over some fairly general class of semirings.

Note added in revision: After a preprint of this article was made available, the study of descriptive
complexity in the weighted setting was initiated by G. Badia, M. Droste, C. Noguera, and E. Paul [5].
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2. Preliminaries

We denote by N the set of all natural numbers including zero. Given a setX, we write 2X for the powerset
of X and 2Xfin for the set of all finite subsets of X. When not stated otherwise, alphabets are understood
to be finite and nonempty. The reversal of a word w ∈ Σ∗ over an alphabet Σ is denoted by wR.

A monoid is a triple M = (M, ·, 1), where M is a set, · is an associative binary operation on M , and 1 is
a neutral element of M with respect to this operation. A monoid (M, ·, 1) is said to be commutative if · is.
A semiring is an algebra S = (S,+, ·, 0, 1) such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid,
the multiplicative operation · distributes over + both from left and from right, and 0 · a = a · 0 = 0 holds
for all a ∈ S. See [22, 35, 40] for a reference on semirings.

A subsemiring of a semiring S is a semiring T such that T ⊆ S, the operations of T are those of S
restricted to T , and the neutral elements of T are the same as for S. The subsemiring of S generated
by a set G ⊆ S is the smallest subsemiring 〈G〉 of S containing G – this is the same as the smallest superset
of G ∪ {0, 1} contained in S and closed under both operations of S, or the intersection of all subsemirings
of S containing G. A semiring S is finitely generated if it is generated by some finite G ⊆ S.

Let S be a semiring and Σ an alphabet. A formal power series over S and Σ [10, 22, 24, 50, 58, 59, 61]
is a mapping r : Σ∗ → S. One usually writes (r, w) for the value of r on w ∈ Σ∗, and calls (r, w) the coefficient
of w in

r =
∑
w∈Σ∗

(r, w)w.

The set of all series over S and Σ is denoted by S⟪Σ∗⟫.
The support of a series r ∈ S⟪Σ∗⟫ is the language supp(r) of all w ∈ Σ∗ such that (r, w) 6= 0. A series

with finite support is called a polynomial and the set of all polynomials over S and Σ is denoted by S〈Σ∗〉.
The sum of series r1, r2 ∈ S⟪Σ∗⟫ is a series r1+r2 defined for all w ∈ Σ∗ by (r1+r2, w) = (r1, w)+(r2, w),

and the Cauchy product of r1, r2 ∈ S⟪Σ∗⟫ is a series r1 · r2 such that

(r1 · r2, w) =
∑

u,v∈Σ∗
uv=w

(r1, u)(r2, v)

for all w ∈ Σ∗. This choice of a multiplicative operation is actually the reason behind adopting the termi-
nology and notation of formal power series for the mappings r : Σ∗ → S.

A formal power series r such that (r, ε) = a for some a ∈ S and (r, w) = 0 for all w ∈ Σ+ is identified
with a; similarly, a series r such that (r, w) = 1 for some w ∈ Σ∗ and (r, x) = 0 for all x ∈ Σ∗ \ {w}
is identified with w.

Given a semiring S and alphabet Σ, the algebras (S⟪Σ∗⟫,+, ·, 0, 1) and (S〈Σ∗〉,+, ·, 0, 1) are semirings
as well [22]. The semirings of power series S⟪Σ∗⟫ are common generalisations of both the usual semirings
of univariate formal power series and the semirings of formal languages. The former are obtained when
the alphabet Σ is unary. The latter arise when S is the Boolean semiring B = (B,∨,∧, 0, 1): a series r
over B can be identified with the language supp(r); conversely, every language can be turned into a series
over the semiring B by taking its characteristic function.

A family of series (ri | i ∈ I) from S⟪Σ∗⟫ is locally finite if the set I(w) := {i ∈ I | (ri, w) 6= 0} is finite
for all w ∈ Σ∗. One then writes

∑
i∈I ri = r for a series r ∈ S⟪Σ∗⟫ defined by (r, w) =

∑
i∈I(w)(ri, w)

for all w ∈ Σ∗.
By an algebra of terms T (G) over a generator set G, we understand the algebra (T (G),+, ·, 0, 1) of terms

of type (2, 2, 0, 0); see, e.g., [1]. In other words, T (G) is a language over G ∪ {0, 1,+, ·, (, )} such that each
g ∈ G ∪ {0, 1} is in T (G), the terms (t1 + t2) and (t1 · t2) are in T (G) for all t1, t2 ∈ T (G), and nothing
else is in T (G). The operations + and · are defined by +: (t1, t2) 7→ (t1 + t2) and · : (t1, t2) 7→ (t1 · t2)
for all t1, t2 ∈ T (G). For every semiring S generated by G, there is a unique algebra homomorphism
hG[S] : T (G)→ S such that hG[S](g) = g for all g ∈ G∪{0, 1}, which we call the evaluation homomorphism;
a term t ∈ T (G) evaluates to a in S if hG[S](t) = a. We often omit parentheses in terms that have no effect
on evaluation in semirings – e.g., we write a+ b+ c instead of (a+ (b+ c)).
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Finally, recall that similarly as in any other variety of algebras [1, 9], a semiring T is (isomorphic to)
a factor semiring of a semiring S if and only if T is a homomorphic image of S.

3. Weighted Turing Machines

We now define weighted Turing machines, the basic model for our later considerations, related to nonde-
terministic Turing machines in the same way as weighted finite automata relate to nondeterministic finite
automata without weights. A weight from a semiring is thus assigned to each transition of a weighted Turing
machine; the value of a computation is then obtained by taking the product of its constituent transition
weights, and the value of an input word w is the sum of values of all computations on w. Weighted Turing
machines were introduced as “algebraic Turing machines” by C. Damm, M. Holzer, and P. McKenzie [17];
the change in terminology reflects the natural place of these machines in weighted automata theory.

To guarantee validity of the above-described definition of weighted Turing machine semantics, we confine
ourselves to machines with finitely many computations upon each input word. It is clear that nothing
important is lost by such a restriction when it comes to complexity questions. Moreover, we only consider
single-tape weighted Turing machines for simplicity, as we eventually embark upon the study of properties
that do not depend on the number of tapes. Nevertheless, multitape weighted Turing machines can be
defined by analogy.

Definition 3.1. Let S be a semiring and Σ an alphabet. A weighted Turing machine over S and input
alphabet Σ is a septuple M = (Q,Γ,∆, σ, q0, F,�), where Q is a finite set of states, Γ ⊇ Σ is a working
alphabet, ∆ ⊆ (Q \F )×Γ×Q× (Γ \ {�})×{−1, 0, 1} is a set of transitions, σ : ∆→ S \ {0} is a transition
weighting function, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and � ∈ Γ \ Σ
is the “blank” symbol.

A transition (p, c, q, d, s) ∈ ∆ has the following interpretation: if M finds itself in some state p, while
a letter c is being read by the machine’s head, thenM can perform a computation step, in which the state is
changed to q, the symbol read by the head is rewritten to d, and finally the head moves s cells to the right.
Note that there are no transitions leading from accepting states.

A configuration of M can be defined in the same way as for nondeterministic Turing machines: it is
a unique description of the machine’s state, the contents of the working tape, as well as the position
of the machine’s head (any of the usual formal definitions is applicable). Moreover, if e = (p, c, q, d, s) ∈ ∆
is a transition and C1, C2 are configurations ofM, we write C1 →e C2 if C1 is a configuration with state p
and the head reading c, while C2 is obtained from C1 by changing the state to q, rewriting the originally
read c to d, and moving the head s cells to the right. We write C1 → C2 if C1 →e C2 for some e ∈ ∆.

Moreover, let us define a computation ofM to be a finite sequence γ = (C0, e1, C1, e2, C2, . . . , Ct−1, et, Ct)
such that t ∈ N, C0, . . . , Ct are configurations of M, e1, . . . , et ∈ ∆ are transitions of M, Ck−1 →ek Ck
for k = 1, . . . , t, and C0 is a configuration with the initial state q0, a word from Σ∗ on the working tape,
and the head at the leftmost non-blank cell (if there is some). We then write |γ| := t to denote the length
of γ and σ(γ) := σ(e1)σ(e2) . . . σ(et) to denote the value of γ. We say that γ is a computation on w ∈ Σ∗,
and write λ(γ) = w, if C0 is a configuration with w on the working tape. We call γ accepting if Ct is
a configuration with a state from F . We denote the set of all computations of M by C(M), and the set
of all accepting computations by A(M). Note that in general, computations might be lengthened by going
through some additional transitions – but this is never the case for accepting computations.

Now, the behaviour of a weighted Turing machine should be given by the sum of the monomials σ(γ)λ(γ)
over all accepting computations γ. As this sum is infinite in general, the behaviour is not well-defined
for all Turing machines over all semirings in this way. For this reason, we confine ourselves to what
we call halting weighted Turing machines in what follows: we say that a weighted Turing machine M
over a semiring S and input alphabet Σ is halting if the set Cw(M) := {γ ∈ C(M) | λ(γ) = w} is
finite for all w in Σ∗. The sum of σ(γ)λ(γ) over all γ ∈ A(M) is clearly locally finite – and hence
well-defined – for such machines. The terminology of “halting” machines comes from the observation that
finiteness of Cw(M) is equivalent to the nonexistence of an infinite sequence (C0, e1, C1, e2, C2, . . .) such that
(C0, e1, C1, e2, C2, . . . , Ct−1, et, Ct) is a computation ofM on w for all t ∈ N, by König’s infinity lemma.
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All weighted Turing machines are assumed to be halting in what follows. It is not hard to see that this
is no real restriction when it comes to questions of computational complexity.

Definition 3.2. Let S be a semiring, Σ an alphabet, andM a (halting) weighted Turing machine over S
and Σ. The behaviour ofM is a formal power series ‖M‖ ∈ S⟪Σ∗⟫ defined by

‖M‖ :=
∑

γ∈A(M)

σ(γ)λ(γ),

the sum being over a locally finite family of monomials.

One could define weighted Turing machines over algebras more general than semirings – for instance,
over strong bimonoids [15, 26] – in a similar way. Nevertheless, we stick with semirings here, as they provide
the arguably most robust and best explored mathematical framework for weighted automata theory. Possible
extensions are left for future research.

4. NP[S]: Complexity Classes of Power Series

Let M = (Q,Γ,∆, σ, q0, F,�) be a weighted Turing machine over S and Σ. Given a word w ∈ Σ∗,
we write TIME(M, w) for the maximal length of a computation ofM on w:

TIME(M, w) := max{|γ| | γ ∈ Cw(M)};

note that the maximum is well-defined, as all weighted Turing machines are assumed to be halting. Moreover,
given n ∈ N, we write

TIME(M, n) := max{TIME(M, w) | w ∈ Σ∗; |w| ≤ n}.
When f : N → N is a function, we write 1NTIME[S,Σ](f(n)) for the set of all power series r ∈ S⟪Σ∗⟫

such that r = ‖M‖ for some weighted Turing machineM over S and Σ satisfying TIME(M, n) = O(f(n)).
The “1” stands for single-tape machines in this notation. Moreover, let us define the complexity class
1NTIME[S](f(n)) by

1NTIME[S](f(n)) :=
⋃

Σ is an alphabet

1NTIME[S,Σ](f(n)).

The class NP[S], which is the counterpart of NP for formal power series over a semiring S, can now be
defined in an expectable way; C. Damm, M. Holzer, and P. McKenzie [17] denote this class by S-#P.

Definition 4.1. Let S be a semiring. The class NP[S] is given by

NP[S] :=
⋃
k∈N

1NTIME[S](nk).

It turns out that weighted Turing machines and the classes NP[S] can be used to capture a large
variety of well-known complexity-theoretic settings, providing a natural framework for their consistent study.
The first five of the following examples were already observed by C. Damm, M. Holzer, and P. McKenzie [17].

Example 4.2. Weighted Turing machines over the Boolean semiring B = (B,∨,∧, 0, 1) can obviously be
identified with ordinary nondeterministic Turing machines without weights. Hence, NP[B] can be identified
with the usual complexity class NP.

Example 4.3. Let M = (Q,Γ,∆, σ, q0, F,�) be a weighted Turing machine over the semiring of natural
numbers N = (N,+, ·, 0, 1) and over some alphabet Σ. When each transition is weighted by 1 – i.e., σ(e) = 1
for all e ∈ ∆ – the coefficient of each w ∈ Σ∗ in ‖M‖ is the number of accepting computations ofM on w.
Moreover, each weighted Turing machineM over N is equivalent to some other weighted Turing machineM′
such that all transitions of M′ are weighted by 1 and M′ runs in polynomial time if and only if M does.
To construct M′ from M, it is enough to replace each transition e = (p, c, q, d, s) of M by transitions
(p, c, [e, 1], c, 0) , . . . , (p, c, [e, σ(e)], c, 0) and ([e, 1], c, q, d, s) , . . . , ([e, σ(e)], c, q, d, s), where [e, 1], . . . , [e, σ(e)]
are new states. It follows that NP[N] can be identified with the counting class #P [67].
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Example 4.4. A weighted Turing machine M over the finite field F2 = Z/2Z and over an alphabet Σ
can only contain transitions weighted by 1. It is then immediate that ‖M‖ is a power series in F2⟪Σ∗⟫
such that (‖M‖, w) is, for each w ∈ Σ∗, the parity of the number of accepting computations of M on w.
As a result, NP[Z2] can be identified with the complexity class ⊕P – i.e., “parity-P” [56].

Example 4.5. Let k ≥ 2 be a natural number. Then similarly as above, a weighted Turing machine M
over the ring Z/kZ with all transitions weighted by 1 realises a power series ‖M‖ such that (‖M‖, w) is,
for each w ∈ Σ∗, the congruence class of the number of accepting computations of M on w modulo k.
Moreover, the same reasoning as in Example 4.3 can be used to observe that every weighted Turing machine
over Z/kZ is equivalent to some machine with all transitions weighted by 1. It follows that NP[Z/kZ]
is precisely the class of all series over Z/kZ with support in MODkP [8, 14].

Example 4.6. The class GapP, introduced in [38, 39] as Z#P, and independently in [34], is the closure
of the class #P under subtraction. It can be equivalently described as the class consisting of all functions
gapM : Σ∗ → Z, for some alphabet Σ, such that gapM(w) is the difference between the number of accepting
and rejecting computations of some polynomial-time nondeterministic Turing machine M on w ∈ Σ∗ [34].
Given any polynomial-time nondeterministic Turing machine M, one can construct a polynomial-time
weighted Turing machineM′ over the ring of integers Z that first simulatesM using transitions weighted
by 1. IfM accepts,M′ makes a single step using a transition weighted by 1 and accepts; ifM rejects,M′
makes a single step using a transition weighted by −1 and accepts as well. Clearly (‖M′‖, w) = gapM(w)
for all w ∈ Σ∗. Conversely, a reasoning similar to the one of Example 4.3 shows that every weighted Turing
machineM over Z can be assumed to only contain transitions weighted by 1 or −1. GivenM like this, one
can construct a nondeterministic Turing machineM′ that simulatesM and maintains in state the product
of weights of the transitions used in the computation so far – which is always either 1, or −1. If the com-
putation ofM accepts with value 1, thenM′ accepts; if it accepts with value −1,M′ rejects; if it rejects,
M′ nondeterministically branches into two states such that one of them is accepting and the other one is
rejecting. Clearly gapM′(w) = (‖M‖, w) for all w ∈ Σ∗, so that NP[Z] can be identified with GapP.

We now identify several new examples of known complexity classes that can be described as NP[S]
for a suitable semiring S.

Example 4.7. Fuzzy Turing machines in the sense of [68] can be viewed as weighted Turing machines over
a semiring as well. A triangular norm (or t-norm, for short) is an associative and commutative binary
operation ∗ on the real interval [0, 1] that is nondecreasing – i.e., x1 ∗ y ≤ x2 ∗ y whenever x1, x2, y ∈ [0, 1]
are such that x1 ≤ x2 – and the equality 1∗x = x is satisfied for all x from the interval in consideration [48].
It follows that ∗ distributes over max and 0 ∗ x = 0 holds for all x ∈ [0, 1]. Thus, F∗ = ([0, 1],max, ∗, 0, 1)
is a semiring for each t-norm ∗. Every fuzzy Turing machineM, as understood in [68], can then be viewed
as a weighted Turing machine over the semiring F∗ for some t-norm ∗. Coefficients of particular words
in ‖M‖ represent their degrees of membership to the fuzzy language realised by M. The class NP[F∗]
can thus be interpreted as the class of all fuzzy languages realisable by fuzzy Turing machines with t-norm ∗
in polynomial time. (Note that fuzzy machines can also be seen as acceptors for “ordinary” languages [68].)

Example 4.8. Let Σ1 and Σ2 be alphabets, and M a weighted Turing machine with input alphabet Σ1

over the semiring of finite languages 2
Σ∗2
fin = (2

Σ∗2
fin ,∪, ·, ∅, {ε}). Then ‖M‖ can be viewed as a multivalued

function assigning a finite subset of Σ∗2 to each w ∈ Σ∗1. It is easy to see that M can be turned into
a nondeterministic transducer machine – in the sense of [11] – such that there is an accepting computation
on u ∈ Σ∗1 with the output tape containing a word v ∈ Σ∗2 at its end if and only if v ∈ (‖M‖, u). Conversely,
given a nondeterministic transducer machine realising some multivalued function, it is possible to construct
an “equivalent” weighted Turing machine over 2

Σ∗2
fin . What needs to be done is to first simulate the transducer

on a single tape of a weighted Turing machine with polynomial overhead, while the transitions responsible
for this simulation are weighted by {ε}. After the simulation finally reaches an accepting state of the original
transducer, the simulating weighted machine just goes over the output from left to right using a transition
weighted by {c} whenever c ∈ Σ2 is being read; only then the simulating machine accepts. This in particular
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implies that there is a weighted Turing machine realising a series r ∈ 2
Σ∗2
fin⟪Σ∗1⟫ in polynomial time if and only

if there is a polynomial-time nondeterministic transducer machine realising r interpreted as a multivalued
function. As a result, the union of NP[2Σ∗

fin ] over all alphabets Σ can be interpreted as the class NPMV
of all multivalued functions realised by nondeterministic polynomial-time transducer machines [11].

Example 4.9. Multivalued functions of the previous example are, in principle, set-valued functions. In case
the free semiring N〈Σ∗2〉 = (N〈Σ∗2〉,+, ·, 0, 1) is used instead of 2

Σ∗2
fin , then the setting is changed from set-valued

functions to “multiset-valued” functions computed by “nondeterministic transducer machines with counting”,
i.e., transducer machines in which each accepting computation with input u ∈ Σ∗1 and output v ∈ Σ∗2 adds 1
to the multiplicity of v in the finite multiset corresponding to u. The union ofNP[N〈Σ∗〉] over all alphabets Σ
then corresponds to the class of all multiset-valued functions computed by “nondeterministic polynomial-
time transducer machines with counting”. As we observe later in this article, weighted computation over
free semirings can be described as “hardest” among all semirings (cf. Proposition 7.2).

Example 4.10. The radix order � on {0, 1}∗ is defined for all x, y ∈ {0, 1}∗ by x � y if and only if either
|x| < |y|, or |x| = |y| and x is smaller than or equal to y according to the lexicographic order. Let us
consider the semiring Smax = ({0, 1}∗ ∪ {−∞},max, ·,−∞, ε) such that the restriction of max to {0, 1}∗
is the maximum according to the radix order �, max(x,−∞) = max(−∞, x) = x for all x ∈ Smax,
the restriction of · to {0, 1}∗ is the usual concatenation operation, and x · (−∞) = (−∞) · x = −∞
for all x ∈ Smax. If num(x) denotes a number with binary representation x ∈ {0, 1}∗, then ϕ : {0, 1}∗ → N,
defined by ϕ : x 7→ num(1x)− 1, is clearly an isomorphism of linearly ordered sets ({0, 1}∗,�) and (N,≤).

Given a weighted Turing machineM over Smax with input alphabet Σ, it is straightforward to construct
a nondeterministic Turing machineM′ with binary encoded nonnegative integer output such that an accept-
ing configuration with output ϕ(x) for x ∈ {0, 1}∗ is reachable inM′ upon an input word w if and only if
there is an accepting computation γ of the weighted Turing machineM such that λ(γ) = w and σ(γ) = x.

A converse construction can be done similarly as in Example 4.8. Moreover, it is easy to see that both
constructions result in at most polynomial overhead.

Hence, as the maximum is used as an additive operation of the semiring Smax, the class NP[Smax]
corresponds in principle to maximisation problems in the class OptP of [49]: the class OptP consists
of all problems, in which the objective is to compute the value of an optimal solution to a given instance
of an optimisation problem in NPO [46, 47, 16]; a minor difference between this class and the Smax-weighted
setting is that the value −∞ is not permitted for problems in OptP.

In addition, one can also describe the class of minimisation problems in OptP using the semiring
Smin = ({0, 1}∗ ∪ {∞},min, ·,∞, ε), for which the operations are defined in a similar way as for Smax.

Example 4.11. Considering the max-plus – or arctic [22] – semiring Nmax = (N ∪ {−∞},max,+,−∞, 0)
of natural numbers instead of Smax has an effect of requiring unary outputs in the corresponding nondeter-
ministic Turing machine instead of binary outputs. The complexity classNP[Nmax] thus roughly corresponds
to maximisation problems from the class OptP[O(log n)] of [49], which is the same to NPO PB [46, 47, 16]
as OptP is to NPO.

Moreover, the class of minimisation problems from OptP[O(log n)] can be captured via the tropical
semiring Nmin = (N ∪ {∞},min,+,∞, 0).

In addition to NP[S], other time complexity classes of power series can be introduced as well by gen-
eralising the usual definition of a nondeterministic time complexity class to weighted Turing machines –
for instance,

NEXPTIME[S] :=
⋃
k∈N

1NTIME[S]
(

2n
k
)
.

Similarly, weighted space complexity classes can be defined using weighted multitape Turing machines with
a read-only input tape.
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5. FP[S]: Complexity Classes of Semiring-Valued Functions

By analogy to the relation between P and NP, the class FP [4] is usually considered to be the proper
“deterministic counterpart” of #P in the presence of counting. In this context, FP can be described
as the class of all functions f computable by polynomial-time deterministic Turing machines that, given
an input word w, return some natural number f(w) encoded in binary; it is known that FP ⊆ #P and that
the equality FP = #P would imply P = NP.

In a similar way, we now define a “deterministic counterpart” FP[S] to the class NP[S] for an arbitrary
semiring S; as we observe, this coincides with P in case S = B and with FP in case S = N. As a basic
ingredient for the definition of FP[S], we use the complexity classes FPG[S,Σ] for a finite alphabet Σ
and a finite subset G of S. The class FPG[S,Σ] consists of all functions f from Σ∗ to the subsemiring 〈G〉
of S generated by G, for which there is a polynomial-time deterministic Turing machine that, given w ∈ Σ∗,
outputs some word in the algebra of terms T (G) that evaluates to f(w) in the semiring S. The class FP[S]
is then defined to be the union of FPG[S,Σ] over all such G and Σ. As functions from Σ∗ to S are formally
the same objects as power series over Σ with coefficients in S, it is reasonable to ask about the relationship
of the class FP[S] to NP[S] – and indeed, we easily obtain the inclusion FP[S] ⊆ NP[S] for all semirings S.

Definition 5.1. Let S be a semiring, G a finite subset of S, and Σ an alphabet. The class FPG[S,Σ]
consists of all functions f : Σ∗ → 〈G〉, for which there exists a polynomial-time multitape deterministic
Turing machine with output that transforms each input word w ∈ Σ∗ to some term t(w) ∈ T (G) satisfying
hG[S](t(w)) = f(w).

The following lemma shows that the class FPG[S,Σ] is actually the same for all G generating the same
subsemiring of S.

Lemma 5.2. Let S be a semiring, G,H finite subsets of S, and Σ an alphabet. If 〈G〉 ⊆ 〈H〉, then
FPG[S,Σ] ⊆ FPH [S,Σ]. As a result, FPG[S,Σ] = FPH [S,Σ] whenever 〈G〉 = 〈H〉.

Proof. Let f : Σ∗ → 〈G〉 be in FPG[S,Σ]. LetM be a polynomial-time deterministic Turing machine that
outputs a term t(w) ∈ T (G) such that hG[S](t(w)) = f(w) for each input word w ∈ Σ∗. As 〈G〉 ⊆ 〈H〉, there
is a term tg ∈ T (H) for each g ∈ G such that hH [S](tg) = g. Let M′ be a deterministic Turing machine
that first simulatesM on each w ∈ Σ∗, so that it outputs t(w) on a working tape. After this is done, M′
copies t(w) to the output tape, while replacing each g ∈ G by the term tg (which is of length independent
of w). It is clear that the resulting term t′(w) satisfies hH [S](t′(w)) = hG[S](t(w)) = f(w) and that M′
operates in polynomial time. Hence, f is in FPH [S,Σ].

Definition 5.3. Let S be a semiring. For each alphabet Σ, let

FP[S,Σ] :=
⋃
G⊆S
G finite

FPG[S,Σ].

Similarly, given a finite subset G of S, let

FPG[S] :=
⋃

Σ is an alphabet

FPG[S,Σ].

We then write
FP[S] :=

⋃
Σ is an alphabet

FP[S,Σ] =
⋃
G⊆S
G finite

FPG[S].

It follows by Lemma 5.2 that FP[S] = FPG[S] when S is a semiring is finitely generated by G.
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Example 5.4. Let S = B. As evaluation of Boolean expressions can be done in polynomial time, each
f ∈ FP[B] corresponds to a problem in P. Conversely, each problem in P can be turned into a function
in FP[B] by outputting the term 1 if an input is accepted and the term 0 if it is rejected. The class FP[B]
can thus be identified with P.

Example 5.5. The situation is similar for S = N. Here FP[N] = FP∅[N], as 〈∅〉 = N. Outputs of deter-
ministic Turing machines corresponding to functions in this class take the form of arithmetic expressions
consisting of the constants 0 and 1 and operators + and ·. Such expressions can be evaluated in polynomial
time in binary – every function in FP[N] thus also is in FP. On the other hand, when a function f : Σ∗ → N
is in FP, there exists a deterministic Turing machine that outputs, for each w ∈ Σ∗, a binary representation
bin(f(w)) of f(w). However, bin(f(w)) can be transformed in polynomial time into a term t(w) ∈ T (∅) such
that h∅[N](t(w)) = f(w) – it suffices to observe that there is a polynomial function p : N → N independent
of w and a set K(w) ⊆ {0, . . . , p(|w|)} such that the length of bin(f(w)) is at most p(|w|) + 1 and the k-th
order bit of bin(f(w)) is 1 if and only if k ∈ K(w). Then

f(w) =
∑

k∈K(w)

2k =
∑

k∈K(w)

(1 + 1)k =
∑

k∈K(w)

k∏
i=1

(1 + 1).

The term t(w) can thus be constructed from bin(f(w)) in polynomial time as a sum of at most p(|w|) + 1
products of at most p(|w|) terms (1 + 1). Hence f is in FP[N] and FP coincides with FP[N].

Proposition 5.6. Let S be a semiring. Then FP[S] ⊆ NP[S].

Proof. In case an FP[S]-machine M exists for r ∈ S⟪Σ∗⟫, an equivalent NP[S]-machine M′ can first
simulateM on its input word w, using transitions weighted by 1 (and with at most polynomial overhead).
Next, it can use the output of the machine M – i.e., a term t ∈ T (G) for some finite G ⊆ S – to assure
that (‖M′‖, w) = hG[S](t). It is trivial to do so when t is in G ∪ {0, 1}. In case t = (t1 + t2) for some
t1, t2 ∈ T (G), then M′ nondeterministically “chooses” one of these terms and evaluates it recursively;
for t = (t1 · t2), the machineM′ evaluates t1 followed by t2. Correctness follows by distributivity of S.

6. Reductions and NP[S]-Complete Problems

Let us now consider reductions between problems represented by formal power series and complete-
ness for the classes NP[S]. These concepts were actually already studied in the framework of algebraic
Turing machines and the resulting complexity classes [6, 17]. In particular, M. Beaudry and M. Holzer [6]
managed to prove NP[S]-completeness of the evaluation problem for scalar tensor formulae over additively
finitely generated semirings S under polynomial-time many-one reductions. In what follows, we show that
two fundamental NP-completeness results do actually generalise to the weighted setting: for every finitely
generated semiring S, we prove NP[S]-completeness of a problem WTMSAT[S] inspired by TMSAT of [4],
as well as of SAT[S], a generalisation of SAT to weighted propositional logics; the latter observation gener-
alises the Cook-Levin theorem.

Several different notions of reduction seem to be reasonable in the setting of the weighted classes NP[S]
– in fact, this is already so in the particular case of counting problems, which can be identified with series
over the semiring of natural numbers. We mostly consider the weakest among these reductions resulting
in the strongest completeness requirement – over N, this is precisely the parsimonious reduction between
counting problems. Over a general semiring, we use the term polynomial-time many-one reduction instead.

Definition 6.1. Let S be a semiring and Σ1,Σ2 alphabets. A problem – i.e., a power series – r ∈ S⟪Σ∗1⟫
is polynomially many-one reducible to a series s ∈ S⟪Σ∗2⟫, written r ≤m s, if there is a function f : Σ∗1 → Σ∗2
computable deterministically in polynomial time such that (s, f(w)) = (r, w) for all w ∈ Σ∗1.

As usual, we say that s ∈ S⟪Σ∗⟫ is NP[S]-hard with respect to polynomial-time many-one reductions
if r ≤m s for all r ∈ NP[S]; a series s is NP[S]-complete with respect to ≤m if it belongs to NP[S]
and at the same time, it is NP[S]-hard under ≤m.
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Theorem 6.2. Let S be a semiring. An NP[S]-complete problem with respect to ≤m exists if and only if
S is finitely generated.

Proof. Let us first assume that S is finitely generated, and let G ⊆ S be a finite set such that 〈G〉 = S.
Each a ∈ S can then be encoded by a finite word

τG(a) = g1,1 · . . . · g1,m1
+ . . .+ gk,1 · . . . · gk,mk

with k,m1, . . . ,mk ∈ N \ {0} and gi,j ∈ G ∪ {0, 1} for i = 1, . . . , k and j = 1, . . . ,mi, such that

g1,1 . . . g1,m1
+ . . .+ gk,1 . . . gk,mk

= a

holds in S. Every weighted Turing machineM over S and Σ = {0, 1} thus admits an effective encoding 〈M〉
– the weight σ(e) of each transition e is encoded via τG(σ(e)) and the rest can be done in the same way
as for nondeterministic machines without weights. It is straightforward to construct a universal weighted
Turing machine U over S such that (‖U‖, 〈M〉#w) = (‖M‖, w) holds for all weighted machinesM over S
with input alphabet Σ = {0, 1} and all w ∈ Σ∗, while

TIME (U , 〈M〉#w) ≤ p (|〈M〉|+ |w|) · TIME (M, w)
k

+ q (|〈M〉|+ |w|)

for some constant k ∈ N and polynomial functions p, q : N→ N independent ofM and w.
Next, let us consider the problem – a power series – WTMSAT[S] inspired by TMSAT for Turing machines

without weights [4] and given as follows: upon input of the form 〈M〉#w#1m for some weighted Turing
machineM over S with input alphabet Σ = {0, 1}, some w ∈ Σ∗, and some m ∈ N, let

(WTMSAT[S], 〈M〉#w#1m) :=
∑

γ∈A(M)
λ(γ)=w
|γ|≤m

σ(γ).

This in particular implies that (WTMSAT[S], 〈M〉#w#1m) = (‖M‖, w) whenever TIME(M, w) ≤ m holds.
Moreover, set (WTMSAT[S], x) := 0 for all other words x over the input alphabet of WTMSAT[S].

It is not hard to see that WTMSAT[S] is in NP[S] – one can simulate m steps of the machineM using
the universal machine U upon input 〈M〉#w. On the other hand, if a series r ∈ S⟪Σ∗⟫ for Σ = {0, 1}
belongs to NP[S] – so that there is a weighted Turing machine M over S and Σ such that ‖M‖ = r
and TIME(M, n) ≤ cnk + d =: p(n) for some constants c, k, d ∈ N and all n ∈ N – then(

WTMSAT[S], 〈M〉#w#1p(|w|)
)

= (r, w)

for all w ∈ Σ∗. Hence, clearly r ≤m WTMSAT[S]. Moreover, series in NP[S] over other alphabets can be
reduced to a series over Σ = {0, 1} via encoding and ≤m is clearly transitive. This proves that WTMSAT[S]
is NP[S]-complete.

It remains to prove that NP[S] has no complete problems with respect to ≤m when S is not finitely
generated. Suppose for the purpose of contradiction that S is not finitely generated and that r ∈ S⟪Σ∗⟫,
for some alphabet Σ, isNP[S]-complete. Then there is a weighted Turing machineM = (Q,Γ,∆, σ, q0, F,�)
over S and Σ such that ‖M‖ = r and it is easy to see that the coefficients of r in fact belong to the finitely
generated subsemiring 〈G〉 of S for G = {σ(e) | e ∈ ∆}. Hence, there is an element a ∈ S \〈G〉 and it follows
that, e.g., the series

∑
w∈Σ∗ aw from NP[S] cannot be many-one reduced to r.

We now proceed to describe, for each finitely generated semiring S, a slightly more interesting example
of an NP[S]-complete problem: a weighted generalisation of the Boolean satisfiability problem SAT, which
we call SAT[S]. This is the “satisfiability” problem for weighted propositional logics over semirings – that is,
for propositional fragments of the weighted MSO logics of M. Droste and P. Gastin [19, 20]. Basically,
the weighted propositional logic over S is obtained from the usual propositional logic by incorporating
constants from S and defining the semantics of logical connectives ∨ and ∧ via the operations + and ·
of the underlying semiring S; negation is permitted for propositional variables only, for which it has the usual
semantics. Each weighted propositional formula ϕ thus admits a value in S as its semantics for a fixed
assignment of truth values to propositional variables.
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Let us fix an infinite alphabet X of all propositional variables for the rest of this section; all variables
occurring in our constructions below are assumed to be taken from X. The language of the weighted
propositional logic over a semiring S is built upon an infinite alphabet consisting of all symbols in X, all
elements of S, symbols “∨”, “∧”, and “¬” for logical connectives, and symbols “(” and “)” for parentheses.
The syntax of the weighted propositional logic over S is defined as follows:

1. For each propositional variable x ∈ X, both x and ¬x are well-formed propositional formulae over S.
Moreover, each a ∈ S is a well-formed propositional formula over S.

2. Let ϕ,ψ be well-formed propositional formulae over S. Then (ϕ ∨ ψ) and (ϕ ∧ ψ) are well-formed
propositional formulae over S as well.

3. Nothing else is a well-formed propositional formula over S.

When the underlying semiring S is finitely generated, we denote by 〈ϕ〉 an effective encoding of a formula ϕ
into some finite alphabet Σ independent of ϕ; in particular, variables are represented by binary numbers
and elements of S are encoded in terms of generators of S as in the proof of Theorem 6.2.

A truth assignment is a mapping V : X → {0, 1}. The semantics of propositional formulae over S with
respect to the truth assignment V is defined as follows:

1. For each propositional variable x ∈ X, let V (x) = V (x); moreover, let V (¬x) = 1 if V (x) = 0
and V (¬x) = 0 if V (x) = 1. In addition, let V (a) = a for each a ∈ S.

2. For each two well-formed propositional formulae ϕ,ψ over the semiring S, let V (ϕ∨ψ) = V (ϕ)+V (ψ)
and V (ϕ ∧ ψ) = V (ϕ) · V (ψ).

Values V (ϕ) depend just on the restriction of V to the set Xϕ of all variables x ∈ X occurring in ϕ. In case
this restriction is given by a mapping W : Xϕ → {0, 1}, we also write W (ϕ) for V (ϕ).

Observe that an equivalent of the usual propositional logic is obtained when the Boolean semiring B
is taken for S.

The problem SAT[S] is to determine, for a given weighted propositional formula ϕ over a finitely generated
semiring S represented by its encoding 〈ϕ〉, the sum of values of ϕ over all choices of truth values of variables
from Xϕ. The series SAT[S] ∈ S⟪Σ∗⟫ is thus given by

(SAT[S], 〈ϕ〉) =
∑

W∈{0,1}Xϕ

W (ϕ)

for all formulae ϕ and by (SAT[S], w) = 0 for all w ∈ Σ∗ that do not encode weighted propositional formulae
over S. We now prove that this problem is NP[S]-complete with respect to polynomial-time many-one
reductions.

Theorem 6.3. Let S be a finitely generated semiring. Then SAT[S] is NP[S]-complete with respect to ≤m.

Proof. It is not hard to see that SAT[S] is in NP[S]. Upon an input word 〈ϕ〉, the weighted Turing machine
for SAT[S] first “guesses” the assignment W ∈ {0, 1}Xϕ and then evaluates ϕ according to W , in the sense
that the sum of values of “computation suffixes” started in the given configuration is W (ϕ). This evaluation
is done similarly as in the proof of Proposition 5.6: it is trivial for formulae x and ¬x with x ∈ Xϕ –
the machine accepts the formula if and only if its truth value is 1, while this is done using transitions
weighted by 1; the evaluation of a ∈ S can easily be done by evaluating its encoding τG(a), which takes
the form of an expression involving elements of a fixed finite generating set G ⊆ S; the evaluation of ϕ∨ψ is
done by nondeterministically evaluating either ϕ, or ψ; the evaluation of ϕ∧ψ is done by first evaluating ϕ
and subsequently evaluating ψ (correctness follows by distributivity of S).
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The nontrivial part of the proof is to show that SAT[S] is NP[S]-hard. The general idea is to observe
that the usual reduction of a problem in NP to SAT can be done such that even if the formula constructed
there is interpreted over S, its value is still 0 or 1, based on its truth value over B – in other words, it is
unambiguous in the sense of [19, 20]. Moreover, this formula can be assembled to contain a conjunction
“over all computation steps” of a machine M for the problem being reduced, while for the i-th step it is
guaranteed that the (i + 1)-th configuration is obtained from the i-th using some transition e. To deal
with the weighted case, it is enough to incorporate the weight σ(e) of such a transition, so that the value
of an assignment corresponding to a computation γ is σ(γ).

Let us now describe the reduction of a given problem r ∈ NP[S] to SAT[S] in more detail. Suppose that
r ∈ S⟪Σ∗⟫ for some alphabet Σ. Then there obviously exists a polynomial-time weighted Turing machine
M = (Q,Γ,∆, σ, q0, F,�, .) over S and Σ with semi-infinite tape such that ‖M‖ = r. The definition
of such machines is analogous to the double-infinite case. A difference is that there is an end-marker . ∈ Γ
at the leftmost cell such that the head reading . can write . only, while it cannot move to the left; the head
cannot replace other symbols by .. Moreover, let us denote

∆′ := {(p, c, p, c, 0) | p ∈ Q; c ∈ Γ; (p, c, q, d, s) 6∈ ∆ for all q ∈ Q, d ∈ Γ, and s ∈ {−1, 0, 1}}.

We write C →e C
′, for configurations C,C ′ ofM and e = (p, c, p, c, 0) ∈ ∆′, if the machineM is in the state p

and reads c in its configuration C, while at the same time C ′ = C. We write C ↪→ C ′ if and only if C →e C
′

for some e ∈ ∆ ∪∆′. We also write σ(e) = 1 for all “pseudo-transitions” e ∈ ∆′.
Without loss of generality, assume that Q and Γ are disjoint. Each configuration ofM is then uniquely

determined by a word C ∈ Γ∗QΓ∗ such that C contains precisely one occurrence of . that precedes all other
symbols from Γ, and no occurrence of �. The unique occurrence of a symbol from Q represents the state
of the machineM, as well as the position of the machine’s head (which reads either the next symbol of C,
or the first blank cell in case the state is the last symbol of C). Moreover, let us assume that F = {qacc}
for some single accepting state qacc .

As M runs in polynomial time, there exists a function f : N → N, defined by f(n) = cnk + d for some
c, k, d ∈ N and all n ∈ N, such that TIME(M, w) ≤ f(|w|) for all w ∈ Σ∗ and at the same time, every
configuration C ofM reachable upon an input word w is of length at most f(|w|). This makes it possible
to “normalise” the length of configurations of M by padding them with blank symbols from the right –
in this way, a configuration C becomes C�f(|w|)−|C|. All configurations are understood to be padded like this
in what follows.

Let n := |w|. It is clear that there is a one-one correspondence between accepting computations in

Aw(M) := {γ ∈ A(M) | λ(γ) = w}

and words C0C1 . . . Cf(n) such that C0, . . . , Cf(n) are (padded) configurations ofM such that:

1. The configuration C0 is initial for input w, i.e., C0 = .q0w�f(n)−n−2.

2. One has Ci−1 ↪→ Ci for i = 1, . . . , f(n). This is clearly equivalent to saying that

C0 →e1 C1 →e2 C2 →e3 . . .→ef(n)
Cf(n),

where e1, . . . , em ∈ ∆ and em+1 = . . . = ef(n) ∈ ∆′ for some m ∈ N.

3. The configuration Cf(n) is accepting, i.e., Cf(n) contains qacc .

We now describe a deterministic polynomial-time construction of a weighted propositional formula ϕ
for each w ∈ Σ∗ such that some of the (restricted) truth assignments W : Xϕ → {0, 1} correspond to a word
from (Γ∪Q)(f(n)+1)f(n) representing an accepting computation ofM on w – that is, to a word C0C1 . . . Cf(n)

satisfying the three conditions above. In case this happens for γ ∈ Aw(M), then W (ϕ) = σ(γ). If W does
not correspond to a word representing a computation from Aw(M) (or to a word from (Γ ∪Q)(f(n)+1)f(n)

at all), then W (ϕ) = 0.
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The construction of ϕ is done similarly as for nondeterministic Turing machines without weights; however,
some additional care is needed in the weighted setting. The construction described below finishes the proof
of the theorem.

The formula ϕ constructed in what follows contains variables xi,j,c for i = 0, . . . , f(n), j = 1, . . . , f(n),
and c ∈ Γ∪Q. The intuitive meaning of a variable xi,j,c is that W (xi,j,c) = 1 if and only if the (if(n)+j)-th
symbol of the word in (Γ∪Q)(f(n)+1)f(n) corresponding to the assignment W is c. In case the corresponding
word represents a computation of M in the sense explained above, then this is precisely the j-th symbol
of the configuration Ci. Of course, assignments W : Xϕ → {0, 1} such that W (xi,j,c) = W (xi,j,d) = 1
for some i, j and two distinct c, d ∈ Γ∪Q do not correspond to any word in (Γ∪Q)∗. Our construction of ϕ
guarantees that W (ϕ) = 0 whenever this happens.

At the highest level, we take

ϕ := ϕvalid ∧ ϕinit ∧ ϕ1 ∧ . . . ∧ ϕf(n) ∧ ϕfin ,

where:

0. The formula ϕvalid satisfies W (ϕvalid) = 1 if and only if W (xi,j,c) = 1 for precisely one c ∈ Γ ∪ Q
for i = 0, . . . , f(n) and j = 1, . . . , f(n) – or, in other words, if and only if W corresponds to a word
in (Γ ∪Q)(f(n)+1)f(n). Otherwise W (ϕvalid) = 0.

1. ProvidedW (ϕvalid) = 1, the formula ϕinit satisfiesW (ϕinit) = 1 if and only if the prefix of length f(n)
of the word corresponding to W is precisely the initial configuration C0 = .q0w�f(n)−n−2; otherwise
W (ϕinit) = 0.

2. Let i ∈ {1, . . . , f(n)}. Then, provided W (ϕvalid) = 1 and if the word corresponding to W starts
with i valid (padded) configurations C0, . . . , Ci−1, the formula ϕi satisfies W (ϕi) = σ(e) whenever
the next f(n) symbols of the corresponding word form a configuration Ci such that Ci−1 →e Ci
for e ∈ ∆ ∪∆′; otherwise W (ϕi) = 0.

3. Provided W (ϕvalid) = 1 and in case the word corresponding to W consists of f(n) + 1 valid configu-
rations C0, . . . , Cf(n), the formula ϕfin satisfies W (ϕfin) = 1 if and only if Cf(n) is accepting (i.e., if it
contains qacc); otherwise W (ϕfin) = 0.

It is clear that if ϕ is constructed for w in this way, then (‖M‖, w) = (SAT[S], 〈ϕ〉). It thus suffices
to construct the formulae ϕvalid , ϕinit , ϕ1, . . . , ϕf(n), ϕfin with the properties above. We describe these
constructions using the “big” operators ∨

and
∧

for convenience. However, note that the use of “big” conjunction is problematic, as semiring multiplication
might not be commutative. We nevertheless use this operator just in the following two contexts:

1. We may use it freely when its operands evaluate to 0 or 1 under all truth assignments – as 0 and 1
commute, the use of the problematic operator is justified in this case.

2. We also use this operator in some cases when its operands are not guaranteed to evaluate to 0 or 1.
More precisely, let us fix the following linear order on the subformulae to be constructed:

ϕvalid ≺ ϕinit ≺ ϕ1 ≺ . . . ≺ ϕf(n) ≺ ϕfin .

If ψ denotes any of these subformulae, then we may use the “big” conjunction operator in the construc-
tion of ψ in case its operands evaluate to 0 or 1 under all truth assignments such that subformulae ψ′
with ψ′ ≺ ψ evaluate to a nonzero value. This means that the formula ϕ is guaranteed to evaluate
to 0 whenever some of the operands of a “big” conjunction in ψ evaluate to a value other than 0 or 1.
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Clearly, ϕvalid can be constructed as

ϕvalid :=

f(n)∧
i=0

f(n)∧
j=1

∨
c∈Γ∪Q

xi,j,c ∧ ∧
d∈Γ∪Q
d 6=c

¬xi,j,d

 .

As the content of the parentheses can evaluate to 1 for at most one c for any given i and j, while for all
other c it evaluates to 0, the formula ϕvalid is well-defined and always evaluates either to 0, or to 1, according
to what has been claimed above.

In case w = c1 . . . cn for c1, . . . , cn ∈ Σ, let ϕinit be defined by

ϕinit := x0,1,. ∧ x0,2,q0 ∧ x0,3,c1 ∧ x0,4,c2 ∧ . . . ∧ x0,n+2,cn ∧ x0,n+3,� ∧ . . . ∧ x0,f(n),�.

It is clear that ϕinit has the desired properties.
We now describe the construction of the formula ϕi for i = 1, . . . , f(n). Let

ϕi :=
∨

e∈∆∪∆′

e=(p,c,q,d,s)

σ(e) ∧
f(n)∧
j=1

(ψ1(i, j) ∨ ψ2(i, j) ∨ ψ3(i, j, p, c, q, d, s)) .

Here, ψ1(i, j), ψ2(i, j), and ψ3(i, j, p, c, q, d, s) are subformulae to be specified below, satisfying the following
properties in case W (ϕvalid) = 1 and in case the word corresponding to W starts with i valid configurations
C0, . . . , Ci−1:

1. The formula ψ1(i, j) satisfies W (ψ1(i, j)) = 1 when the j-th symbol of the configuration Ci−1 – which
we may denote by c – cannot be altered in the following computation step (i.e., c 6∈ Q and the same
holds for both neighbouring symbols of c in Ci−1, in case they exist) and, at the same time, the j-th
symbol following the end of Ci−1 is c as well; otherwise W (ψ1(i, j)) = 0. The symbol c is thus “copied
to the next configuration”.

2. The formula ψ2(i, j) satisfies W (ψ2(i, j)) = 1 when the j-th symbol of the configuration Ci−1 is not
in Q, but either the (j−1)-th, or the (j+1)-th symbol of Ci−1 is in Q; otherwiseW (ψ2(i, j)) = 0. This
formula just “skips” symbols in Ci−1 adjacent to the symbol representing the machine’s head, as their
correct replacement in the following configuration is taken care of by the formula ψ3(i, j, p, c, q, d, s).

3. The formula ψ3(i, j, p, c, q, d, s) satisfies W (ψ3(i, j, p, c, q, d, s)) = 1 if the j-th symbol of the configu-
ration Ci−1 is in Q and if the (j − 1)-th (if j − 1 > 0), the j-th, and the (j + 1)-th symbol following
the end of Ci−1 represent the symbols obtained from the respective symbols of Ci−1 using the transition
(p, c, q, d, s); otherwise W (ψ3(i, j, p, c, q, d, s)) = 0. Note that we may assume j < f(n) here, as other-
wise the next “unpadded” configuration would be longer than f(n), contradicting the choice of f .

It is clear that no more than one of the formulae ψ1(i, j), ψ2(i, j), ψ3(i, j, p, c, q, d, s) can evaluate to 1
for given i, j, p, c, q, d, s in case the above properties are satisfied. Hence, once the constructions for these
formulae are described, the formula ϕi is well-defined and has the desired properties.

The formula ψ1(i, j) can be constructed as follows:

ψ1(i, j) :=

∧
q∈Q
¬xi−1,j−1,q

 ∧
∧
q∈Q
¬xi−1,j,q

 ∧
∧
q∈Q
¬xi−1,j+1,q

 ∧(∨
c∈Γ

xi−1,j,c ∧ xi,j,c

)

if 0 < j < f(n),

ψ1(i, j) :=

∧
q∈Q
¬xi−1,j,q

 ∧
∧
q∈Q
¬xi−1,j+1,q

 ∧(∨
c∈Γ

xi−1,j,c ∧ xi,j,c

)

if j = 0, and
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ψ1(i, j) :=

∧
q∈Q
¬xi−1,j−1,q

 ∧
∧
q∈Q
¬xi−1,j,q

 ∧(∨
c∈Γ

xi−1,j,c ∧ xi,j,c

)

if j = f(n).
Similarly, the formula ψ2(i, j) can be constructed as follows:

ψ2(i, j) :=

∧
q∈Q
¬xi−1,j,q

 ∧
∨
q∈Q

xi−1,j−1,q ∨ xi−1,j+1,q


if 0 < j < f(n),

ψ2(i, j) :=

∧
q∈Q
¬xi−1,j,q

 ∧
∨
q∈Q

xi−1,j+1,q


if j = 0, and

ψ2(i, j) :=

∧
q∈Q
¬xi−1,j,q

 ∧
∨
q∈Q

xi−1,j−1,q


if j = f(n).

Finally, let us construct ψ3(i, j, p, c, q, d, s). For 0 < j < f(n), this should “rewrite” a subword c′pc –
where c′ ∈ Γ and p is at the j-th position of Ci−1 – to some other subword α(q, s, c′)β(q, d, s, c′)γ(q, d, s),
where

α(q, s, c′) :=

{
q if s = −1,
c′ otherwise,

β(q, d, s, c′) :=

 c′ if s = −1,
q if s = 0,
d if s = 1,

and
γ(q, d, s) :=

{
q if s = 1,
d otherwise.

The formula ψ3(i, j, p, c, q, d, s) can thus be constructed as

ψ3(i, j, p, c, q, d, s) :=
∨
c′∈Γ

xi−1,j−1,c′ ∧ xi−1,j,p ∧ xi−1,j+1,c ∧ xi,j−1,α(q,s,c′) ∧ xi,j,β(q,d,s,c′) ∧ xi,j+1,γ(q,d,s)

in case 0 < j < f(n). If j = 0, then s cannot be −1 and ψ3(i, j, p, c, q, d, s) can be constructed as

ψ3(i, j, p, c, q, d, s) := xi−1,j,p ∧ xi−1,j+1,c ∧ xi,j,β(q,d,s,c′) ∧ xi,j+1,γ(q,d,s)

for any c′ ∈ Γ. If j = f(n), then we can set, according to what has been observed above,

ψ3(i, j, p, c, q, d, s) := 0.

To complete the proof, it remains to construct the formula ϕfin . However, this can clearly be done
as follows:

ϕfin := xf(n),1,qacc
∨ xf(n),2,qacc

∨ . . . ∨ xf(n),f(n),qacc
.

This finishes the construction.
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Let us finally touch on a possibility of studying NP[S]-completeness with respect to different types
of reductions. The definitions of the following two reductions – in our terminology, the polynomial-time
Turing reduction and the polynomial-time one-call reduction – are in fact based on reductions most typically
used to define #P-completeness [66, 67, 4, 55]. These reductions are clearly stronger than the polynomial-
time many-one reduction; this means that the problems proved to be NP[S]-complete above with respect
to ≤m stay NP[S]-complete under the reductions introduced below as well.

Following the usual approach, we define Turing reductions by means of oracle machines. One usually
considers FP-machines with access to an oracle f : Σ∗ → N for counting problems, while outputs of the oracle
are given in binary. In view of our generalisation of the complexity class FP to FP[S], it seems natural
to consider FP[S]-machines with an oracle f : Σ∗ → 〈G〉 for some finite G ⊆ S, outputs of the oracle being
represented as terms from T (G).

However, unlike for binary representations of numbers, it is problematic to canonically choose a single
term t ∈ T (G) such that hG[S](t) = a for given a ∈ 〈G〉. On the other hand, allowing the oracle to output
any such term is of little use for the machine that accesses it – for instance, it could start by an exponentially
long sum of zeros. For these reasons, we define a G-oracle to be a pair O = (f, L), where f : Σ∗ → 〈G〉 is
a function and L ∈ P is a “filter” language; a machine with access to O can “ask” for an output of f upon
w ∈ Σ∗, for which the oracle “returns” a term t(w) ∈ T (G) ∩ L such that hG[S](t(w)) = f(w), or reaches
some special state in case there is no such t(w).

Definition 6.4. Let S be a semiring and Σ1,Σ2 alphabets. A series r ∈ S⟪Σ∗1⟫ (or a function r : Σ∗1 → S)
is polynomially Turing-reducible to s ∈ S⟪Σ∗2⟫, written r ≤T s, if there is a finite set G ⊆ S such that
r ∈ 〈G〉⟪Σ∗1⟫ and s ∈ 〈G〉⟪Σ∗2⟫, and a polynomial-time deterministic Turing machine with access to some
G-oracle O = (s, L) that transforms each w ∈ Σ∗1 to some term t(w) ∈ T (G) such that hG[S](t(w)) = (r, w).

By a polynomial-time one-call reduction, we understand a polynomial-time Turing reduction, in which
the machine can access the oracle at most once.

As the reductions just introduced are stronger than≤m for problems inNP[S], problemsNP[S]-complete
with respect to ≤m remain NP[S]-complete with respect to them as well. On the other hand, the argument
ruling out the existence of NP[S]-complete problems for semirings that are not finitely generated can
no longer be applied here. A more detailed study of NP[S]-completeness with respect to Turing reductions
is left for future research.

7. Hardness of Problems over Different Semirings

Given semirings S, S′, a semiring homomorphism α : S → S′, and a formal power series r ∈ S⟪Σ∗⟫ over
some alphabet Σ, we denote by α(r) the series

α(r) :=
∑
w∈Σ∗

α(r, w)w.

We now prove that the image of an NP[S]-complete series under a surjective homomorphism from S onto S′
is NP[S′]-complete.

Proposition 7.1. Let S, S′ be semirings, α : S → S′ a surjective homomorphism, and s ∈ S⟪Σ∗⟫ a series.
If s is NP[S]-complete with respect to ≤m, then α(s) is NP[S′]-complete with respect to ≤m.

Proof. It is clear that α(s) ∈ NP[S′] whenever s ∈ NP[S]. Let s be NP[S]-hard, and let us prove that each
r ∈ NP[S′] reduces to α(s). Let r be given. As α is surjective, there is r′ ∈ NP[S] such that α(r′) = r.
Then r′ ≤m s. As a result, r = α(r′) ≤m α(s).

By virtue of the first isomorphism theorem, the proposition established above actually says that if s
is NP[S]-complete with respect to ≤m, then its “natural images” are NP[S′]-complete over the factor semi-
rings S′ of S. Note that this is not true for stronger reductions – already for S = N and its factor semiring B,
the problem of bipartite matchings is a notorious counterexample [66].
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The following proposition states a similar property: weighted computation over a semiring S is always
in some sense “harder” than over its factor semirings.

Proposition 7.2. Let S be a semiring such that FP[S] = NP[S]. Then FP[T ] = NP[T ] for all factor
semirings T of S.

Proof. When T is a factor semiring of S, a surjective homomorphism α : S → T has to exist. Suppose
FP[S] = NP[S]. Let r ∈ T⟪Σ∗⟫ be a formal power series in NP[T ]. By surjectivity of α, there is a problem
r′ ∈ NP[S] such that α(r′) = r. Let M be an FP[S]-machine for r′. Given w ∈ Σ∗, the machine M
outputs a term t(w) ∈ T (G), for some finite G ⊆ S, such that hG[S](t(w)) = (r′, w). The FP[T ]-machine
for r can then just simulateM and finally replace each g ∈ G by α(g) in t(w); let us denote the term thus
obtained by α(t(w)). Clearly hα(G)[T ](α(t(w))) = α(r′, w) = (r, w).

8. FP[S] vs. NP[S]

Recall from Proposition 5.6 that FP[S] ⊆ NP[S] for all semirings S, generalising both the inclusion
P ⊆ NP and the inclusion FP ⊆ #P. We now give an example of S, over which provably FP[S] 6= NP[S].

Theorem 8.1. Let Σ = {a, b,#}. Then FP[2Σ∗

fin ] ( NP[2Σ∗

fin ].

Proof. Let PAL be a power series in 2Σ∗

fin⟪c∗⟫ defined for all n ∈ N by

(PAL, cn) = {w#wR | w ∈ {a, b}n}.

It is clear that PAL ∈ NP[2Σ∗

fin ].
We now prove that PAL is not in FPΣ[2Σ∗

fin ] (each c ∈ Σ is identified with {c} here), so that it is
not in FP[2Σ∗

fin ] by Lemma 5.2. To do so, we show that |t(n)| ≥ 2n for every t(n) ∈ T (Σ) satisfying
hΣ[2Σ∗

fin ](t(n)) = (PAL, cn) and for all n ∈ N.
Let a term t(n) be given and let us form a term t′(n) by labelling occurrences of # in t(n) uniquely

by #1, . . . ,#m for some m ∈ N; fix Γ := {a, b,#1, . . . ,#m} and L := hΓ[2Γ∗

fin ](t′(n)). Then it is clear
that h(L) = (PAL, cn) for a homomorphism h : Γ∗ → Σ∗ given by h(a) = a, h(b) = b, and h(#i) = #
for i = 1, . . . ,m. However, it is also clear that if u#iu

R and v#iv
R are in L for some u 6= v from {a, b}n

and some i ∈ {1, . . . ,m}, then a non-palindrome u#iv
R is in L as well. Hence, each #i can correspond

to at most one w ∈ L, implying |t(n)| ≥ m ≥ 2n.

It would be interesting to know about some other examples of semirings S, preferably smaller than 2Σ∗

fin

in the ordering by factorisation, such that provably FP[S] 6= NP[S].
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