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Abstract

The class of all finitely generated semigroups with a deterministic context-free word problem is shown to be
closed under free products, answering a question of T. Brough, A. J. Cain, and M. Pfeiffer. On the other
hand, it is proved that the class of all finitely generated monoids with a deterministic context-free word
problem is not closed under monoid free products.
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1. Introduction

The word problem for a semigroup S gener-
ated by a finite set A can be described as fol-
lows: given two nonempty words u, v over the al-
phabet A upon input, decide whether these two
words evaluate to the same element in S. The word
problem for a finitely generated monoid is defined
in a similar way, except that the input words
need not be nonempty; the definition is the same
for groups, i.e., one views a finitely generated
group G as a monoid generated by some finite
set A, and asks which pairs of words over A evaluate
to the same element of G.

Every decision problem can in principle be repre-
sented by a formal language; for word problems,
this representation turns out to be most natu-
ral in the case of groups. When G is a group
finitely generated by A as a monoid, then actu-
ally already the language of all words over A eval-
uating to the identity element of G contains all
the essential information about the word prob-
lem for G. The study of connections between
the properties of this language and the properties
of G itself was initiated by A. V. Anisimov [1],
who observed that the above-described language
is rational (i.e., regular) if and only if G is fi-
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nite. This line of study was most notably ex-
tended by the Muller-Schupp theorem [21, 6], ac-
cording to which the said language is context-free
if and only if G is virtually free. Following these
classical results, groups with word problems from
many other known classes of languages have been
studied [3, 7, 9, 11, 17, 18, 19, 20]. See, e.g., [12]
for an introduction to the language-theoretic ap-
proach to the word problem for groups.

The language-theoretic representation
of the word problem for groups makes no sense
for semigroups and usually does not contain
enough information for monoids. For this rea-
son, A. Duncan and R. H. Gilman [5] proposed
to represent the word problem for a semigroup S,
generated by a finite set A, by the language
of all words u#vR, where u, v ∈ A+ evaluate to
the same element in S (see Section 2 for the pre-
cise definition) and # 6∈ A. Similarly, the word
problem for a monoid M , finitely generated
by A, corresponds to the language of all u#vR,
where u, v ∈ A∗ evaluate to the same element
in M and # 6∈ A. In a sense, these definitions
generalise the one for groups – the classical results
for groups [1, 21] remain valid when they are
understood as monoids.

A. Duncan and R. H. Gilman [5] asked for a char-
acterisation of finitely generated semigroups or
monoids with a context-free word problem, which
would generalise the Muller-Schupp theorem. This
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still remains an important open problem [22]. Nev-
ertheless, many basic properties of semigroups
and monoids with a context-free word problem were
explored, especially by M. Hoffmann et al. [10]
and by T. Brough, A. J. Cain, and M. Pfeiffer [4].

A classical question studied in connection
to the word problem viewed from a language-
theoretic perspective is whether the class of all
finitely generated groups, monoids, or semi-
groups, whose word problem corresponds to a lan-
guage from some class C, is closed under tak-
ing free products. Already A. V. Anisimov [1]
proved that the class of finitely generated groups
with a context-free word problem is closed un-
der free products; similar results for semigroups
and monoids with a context-free word problem
were established in [4]. Recently, a more sys-
tematic approach to such questions was initiated
by C.-F. Nyberg-Brodda [23], who proved that
a class of finitely generated semigroups or monoids
with a word problem from C is closed under free
products whenever C is a super-AFL closed under
reversal.

Although the question of closure under free prod-
ucts is settled by these results for semigroups
and monoids with word problems from many im-
portant language classes, some cases still remain
open. In particular, T. Brough, A. J. Cain,
and M. Pfeiffer [4] asked whether the class of finitely
generated semigroups with a deterministic context-
free word problem is closed under free products;
this is also mentioned as an open problem in [23].
While the class of finitely generated groups with
a deterministic context-free word problem coincides
with the class of finitely generated groups with
a context-free word problem [12], the inclusion is
strict both for semigroups and for monoids [4].

We observe in this article that the question
of [4] can actually be readily answered in affirma-
tive, as a minor change in the construction of [4]
for the context-free case is sufficient for this pur-
pose. This means that the class of all finitely
generated semigroups with a deterministic context-
free word problem is closed under free products.
On the other hand, we show that the situation is
much different for monoids, where it turns out that
the class of all finitely generated monoids with a de-
terministic context-free word problem is not closed
under monoid free products.

These two results also happen to answer a ques-
tion of C.-F. Nyberg-Brodda [23], who asked about

the existence of a class of languages C closed un-
der inverse homomorphisms such that the class
of all finitely generated semigroups with a word
problem in C is closed under semigroup free prod-
ucts, but the class of all finitely generated monoids
with a word problem in C is not closed un-
der monoid free products. The results antici-
pated above imply that the class of all determin-
istic context-free languages is an example of such
a class C.

Moreover, as already mentioned, the word prob-
lem of a finitely generated group is deterministic
context-free if and only if it is context-free [12],
and the class of all such groups is closed under free
products. As a result, the deterministic context-
free languages give an example of a class of lan-
guages C closed under inverse homomorphisms,
such that the classes of finitely generated semi-
groups and groups with a word problem in C are
closed under semigroup free products and group
free products, respectively, but the class of all
finitely generated monoids with a word problem
in C is not closed under monoid free products.

2. Preliminaries

Some familiarity with the basics of formal lan-
guage theory [13, 14] and with elementary concepts
related to semigroups and monoids [15, 16] is as-
sumed on the part of the reader.

We denote by N the set of all nonnegative in-
tegers and write [n] = {1, . . . , n} for all n ∈ N.
As usual, given any finite alphabet A, we de-
note by A∗ the free monoid on A and by A+

the free semigroup on A. The empty word over
any alphabet A is denoted by ε. Moreover,
the reversal of a word w ∈ A∗ is denoted by wR,
and the number of occurrences of a ∈ A in w ∈ A∗
by |w|a.

Recall that a pushdown automaton is a septuple
A = (Q,Σ,Γ, T, q0,a, F ), where Q is a finite state
set, Σ is a finite input alphabet, Γ is a finite push-
down alphabet, T ⊆ Q × (Σ ∪ {ε}) × Γ × Q × Γ∗

is a finite transition set, q0 ∈ Q is the initial
state, a ∈ Γ is the bottom-of-pushdown symbol,
and F ⊆ Q is the set of final states. A config-
uration of A is a triple (q, w, γ), where q ∈ Q is
a state, w ∈ Σ∗ represents the remaining suffix
of the input word, and γ ∈ Γ∗ represents the word
stored on the pushdown with bottom on the left.
A step of A is a binary relation `A on the set
of all configurations of A, defined for all p, q ∈ Q,
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u, v ∈ Σ∗, and γ1, γ2 ∈ Γ∗ by (p, u, γ1) `A (q, v, γ2)
if and only if there are z ∈ Σ ∪ {ε}, γ, β ∈ Γ∗,
and Z ∈ Γ such that u = zv, γ1 = γZ, γ2 = γβ,
and (p, z, Z, q, β) ∈ T . The language ‖A‖ recog-
nised by A then consists of precisely all w ∈ Σ∗

such that (q0, w,a) `∗A (q, ε, γ) for some q ∈ F
and γ ∈ Γ∗.

A pushdown automatonA = (Q,Σ,Γ, T, q0,a, F )
is said to be deterministic if the following conditions
are satisfied:

(i) For all p ∈ Q, z ∈ Σ ∪ {ε}, and Z ∈ Γ, there
exists at most one q ∈ Q and β ∈ Γ∗ such that
(p, z, Z, q, β) ∈ T ;

(ii) If (p, c, Z, q, β) ∈ T for some p, q ∈ Q, c ∈ Σ,
Z ∈ Γ, and β ∈ Γ∗, then there are no q′ ∈ Q
and β′ ∈ Γ∗ such that (p, ε, Z, q′, β′) ∈ T .

A language is called deterministic context-free
if it is recognised by some deterministic push-
down automaton; we denote the class of all de-
terministic context-free languages by L (detCF).
See, e.g., [13, Chapter 10] for the basic theory of de-
terministic pushdown automata and deterministic
context-free languages.

Given a semigroup S generated by a finite
set A ⊆ S and u, v ∈ A+, we write u =S v if
ν(u) = ν(v) for the unique semigroup homomor-
phism ν : A+ → S such that ν(a) = a for all a ∈ A.1
The word problem of S with respect to A is then de-
fined to be the language

WPA(S) = {u#vR | u, v ∈ A+; u =S v},

where # 6∈ A is a fixed delimiter symbol.
Similarly, when M is a monoid finitely generated

by A ⊆ M and u, v ∈ A∗, we write u =M v if
η(u) = η(v) for the unique monoid homomorphism
η : A∗ → M such that η(a) = a for all a ∈ A.
The word problem of M with respect to A is then
given by

WPA(M) = {u#vR | u, v ∈ A∗; u =M v}

for some fixed delimiter symbol # 6∈ A. Note that
this language is different from the one obtained
whenM is viewed as a semigroup; this minor ambi-
guity in notation can nevertheless be always easily
resolved from the context.

1Note that =S is actually a congruence on A+ and that
A+/=S

∼= S. This means that for a semigroup S presented
by S = 〈A | %〉, the relation % generates the congruence =S .

For every finitely generated semigroup S and any
two finite generating sets A,B ⊆ S of S, there ex-
ists a homomorphism h : (A∪{#})∗ → (B ∪{#})∗
such that WPA(S) = h−1(WPB(S)), and the same
property also holds for any two generating sets
of any finitely generated monoid. This means that
when C is a class of languages closed under inverse
homomorphisms and S is a finitely generated semi-
group, then WPA(S) ∈ C either for all finite gen-
erating sets A of S, or for no such generating set;
and the same also holds for any finitely generated
monoid. Under these circumstances, one can thus
simply say that “the word problem” of a semigroup
or a monoid is or is not in C. In this article, we use
this convention for the class C = L (detCF), which
is closed under inverse homomorphisms.

Let S1, S2 be (not necessarily finitely gener-
ated) semigroups presented by S1 = 〈A1 | %1〉
and S2 = 〈A2 | %2〉, while S1 ∩ S2 = ∅. The free
product of S1 and S2 then is the semigroup

S1 ∗ S2 = 〈A1 ∪A2 | %1 ∪ %2〉.

Similarly, let M1,M2 be monoids with iden-
tity elements 1M1 and 1M2 , which are presented
by M1 = 〈A1 | %1〉 and M2 = 〈A2 | %2〉 and satisfy
(M1 \ {1M1

}) ∩ (M2 \ {1M2
}) = ∅. The monoid

free product of M1 and M2 then is the monoid

M1 ∗M2 = 〈A1 ∪A2 | %1 ∪ %2〉.

Note that the angle brackets denote monoid presen-
tations in the context of monoids and semigroup
presentations in the context of semigroups. This
subtle difference implies that although both defini-
tions given above look precisely the same, the semi-
group free product of two monoids is actually
a different thing than their monoid free product.
In particular, the identity elements of both monoids
M1,M2 are identified in the monoid free prod-
uct, resulting in the identity element of M1 ∗M2.
On the contrary, the semigroup free product of two
monoids is not even a monoid. In case ∗ is applied
to two monoids in this article, it always denotes
the monoid free product.

The semigroup free product S1 ∗ S2 thus con-
sists of all words a1 . . . am with m ∈ N \ {0}
over a possibly infinite alphabet S1 ∪ S2 such that
for k = 2, . . . ,m, one has ak ∈ Si for i ∈ {1, 2}
if and only if ak−1 ∈ S3−i. Given a = a1 . . . am
and b = b1 . . . bn from S1 ∗ S2 with m,n ∈ N \ {0}
and a1, . . . , am, b1, . . . , bn ∈ S1 ∪ S2 satisfying
the condition above, the product ab is defined

3



by ab = a1 . . . amb1 . . . bn, where amb1 should be
interpreted as multiplication in S1 if am, b1 ∈ S1,
multiplication in S2 if am, b1 ∈ S2, and concatena-
tion otherwise.

The monoid free product M1 ∗M2 consists of all
words a1 . . . am with m ∈ N over a possibly infi-
nite alphabet (M1 \ {1M1}) ∪ (M2 \ {1M2}) such
that for k = 2, . . . ,m, one has ak ∈Mi \ {1Mi

}
for i ∈ {1, 2} if and only if ak−1 ∈M3−i \ {1M3−i};
when m = 0, we denote the empty word
a1 . . . am by 1M1∗M2

. Given a = a1 . . . am
and b = b1 . . . bn from M1 ∗ M2 with
m,n ∈ N and a1, . . . , am, b1, . . . , bn from
(M1 \ {1M1

}) ∪ (M2 \ {1M2
}) satisfying the con-

dition above, the product ab can be defined
inductively on min{m,n}: we set ab = b
if m = 0 and ab = a if n = 0; if m,n > 0,
am, b1 ∈ Mi \ {1Mi}, and amb1 = 1Mi in Mi

for some i ∈ {1, 2}, then ab is the product
of a′ = a1 . . . am−1 and b′ = b2 . . . bn; in all the re-
maining cases, ab is the same as for the semigroup
free product. Note that 1M1∗M2

is the identity
element of M1 ∗M2.

As obvious from the defining presentations,
the free factors S1, S2 are usually thought of as sub-
semigroups of S1 ∗ S2. When S1 is generated
by A1 and S2 by A2, this can be expressed by
the existence of canonical semigroup monomor-
phisms ι1 : S1 → S1 ∗ S2 and ι2 : S2 → S1 ∗ S2 such
that ι1(a) = a for all a ∈ A1 and ι2(a) = a
for all a ∈ A2. The importance of semigroup free
products mainly stems from the fact that given
any semigroup T and homomorphisms ϕ1 : S1 → T ,
ϕ2 : S2 → T , there exists a unique semigroup ho-
momorphism ϕ : S1 ∗ S2 → T such that ϕ1 = ι1ϕ
and ϕ2 = ι2ϕ, as illustrated by the following com-
mutative diagram.

T

S1 S1 ∗ S2 S2
ι1

ϕ1
ϕ

ι2

ϕ2

The situation is much the same for monoid
free products and monoid homomorphisms. Using
the language of category theory, these properties
can be concisely expressed by saying that semigroup
and monoid free products take the role of coprod-
ucts in the category of semigroups and monoids,
respectively; see, e.g., [2, Example 3.9].

3. Results

We now establish our actual results. Let us
first address the following question of T. Brough,
A. J. Cain, and M. Pfeiffer [4]: Is the class of all
finitely generated semigroups with a deterministic
context-free word problem closed under free prod-
ucts? This is also mentioned as an open problem
by C.-F. Nyberg-Brodda [23].

The affirmative answer to this question is given
by the following theorem – and it turns out that it
can be obtained quite easily. T. Brough, A. J. Cain,
and M. Pfeiffer [4] describe a construction based
on pushdown automata showing that the class of all
semigroups with a context-free word problem is
closed under free products. They observe that
their construction does not work for determinis-
tic pushdown automata, which leads them to rais-
ing the above-reproduced question. However, only
a slight modification of their construction appears
to be sufficient for the deterministic case as well,
as we show in the proof of the following theorem.

Theorem 3.1. Let S1, S2 be finitely generated
semigroups with a deterministic context-free word
problem such that S1 ∩ S2 = ∅. Then the word
problem of the semigroup free product S1 ∗S2 is de-
terministic context-free as well.

Proof. Let A1 ⊆ S1 be a finite generating set
of the semigroup S1, and A2 ⊆ S2 a finite gen-
erating set of S2. As the statement of the theorem
is trivial when S1 or S2 is empty, we may assume
nonemptiness of A1 and A2. Let A1,A2 be deter-
ministic pushdown automata recognising the lan-
guages WPA1

(S1) and WPA2
(S2), respectively. As-

sume without loss of generality that the bottom-of-
pushdown symbols a1, a2 of these two automata are
never pushed or popped during their runs, so that
they remain forever on the bottom of the pushdown
and appear only there. We construct a determin-
istic pushdown automaton A recognising the lan-
guage WPA1∪A2(S1 ∗ S2).

The automaton A has to accept precisely
the words

u1 . . . un#vRn . . . v
R
1 ,

where n ∈ N \ {0} and there exists a map-
ping σ : [n]→ {1, 2} satisfying σ(k) = 3− σ(k − 1)
for k = 2, . . . , n such that uk, vk ∈ A+

σ(k)

and uk =Sσ(k) vk holds for k = 1, . . . , n.
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As the class L (detCF) is closed under intersec-
tion with a rational language, for which we can take

A1(A1 ∪A2)∗#(A1 ∪A2)∗A1 ∪
∪ A2(A1 ∪A2)∗#(A1 ∪A2)∗A2,

we may actually assume that the input words of A
all take the form

u1 . . . um#vRn . . . v
R
1

for m,n ∈ N \ {0}, uk ∈ A+
σ(k) for k = 1, . . . ,m,

and v` ∈ A+
σ(`) for ` = 1, . . . , n, where

σ : [max{m,n}] → {1, 2} is some mapping satisfy-
ing σ(k) = 3 − σ(k − 1) for k = 2, . . . ,max{m,n}.
The automaton A thus only needs to check whether
m = n and uk =Sσ(k) vk for k = 1, . . . , n.

This is done as follows: when A reads the first
symbol from the input, this surely belongs to Ai
for some i ∈ {1, 2}. The automaton A can thus de-
termine σ(1), push aσ(1) above its own bottom-of-
pushdown symbol a, and simulate the run of Aσ(1)
on u1. Whenever a simulation of Aσ(j) on some uj
for j ∈ [m−1] is finished and a symbol from Aσ(j+1)

is encountered, the current state of the simu-
lated automaton Aσ(j) is pushed on the pushdown;
in case j = 1, the symbol representing this state
on the pushdown is also marked as corresponding
to the first factor u1. After the state is pushed,
the automatonA pushes aσ(j+1) and continues with
a new simulation ofAσ(j+1) on the next factor uj+1,
starting with the initial configuration of Aσ(j+1).

After reading #, the automaton A continues
in the simulation of Aσ(m) on um by treating #vRn
as the rest of its input in case σ(n) = σ(m);
the run of A rejects when σ(n) 6= σ(m). As-
sume that σ(n) = σ(m) and Aσ(m) successfully
goes through #vRn . Then, whenever a simulation
of Aσ(k) gets to the end of vRk for some k ∈ [n],
the automaton A rejects if the simulated automa-
ton Aσ(k) does not accept its input. If the sim-
ulated automaton accepts its input and a symbol
from A3−σ(k) is left on the input of A, the automa-
ton A pops all the symbols from the pushdown al-
phabet of Aσ(k) that find themselves on the top
of the pushdown. If the bottom-of-pushdown sym-
bol a of A is encountered after doing so, the au-
tomaton A rejects. Otherwise the automaton A
can recover the state of Aσ(k−1) that has been
stored on the pushdown below the last popped sym-
bol aσ(k). After this is performed, A continues
in the simulation of Aσ(k−1), from the configuration

given by this state and the contents of its pushdown
that now appear on the top of the pushdown store
of A, on the next factor vRk−1.

For m being the number of factors u1, . . . , um
to the left of #, the automaton can easily find out
when it is reading the m-th factor vRk to the right
of #. If m ≥ 2, this can be noticed when a marked
state corresponding to u1 is popped from the push-
down; for m = 1, the automaton A can simply
remember that it never switched between the simu-
lated automata. In any case, the information about
reading the m-th factor vRk to the right of # can be
kept in the state of A. This means that it is enough
for the automaton A to get into an accepting state
precisely when it is reading the said m-th factor
to the right of # and the simulated automaton
Aσ(1) is in an accepting state.

The construction described in the proof
of the preceding theorem is almost identical
to the construction for nondeterministic pushdown
automata given in [4]. The only modification
is that the first state of a simulated automaton
pushed to the pushdown store of A is marked,
so that the deterministic pushdown automaton can
use it to decide when it should accept (the impos-
sibility to do so for the original construction was
noted in [4]).

Let us now observe that the situation is much
different for monoids. Although T. Brough,
A. J. Cain, and M. Pfeiffer [4] proved that the class
of all finitely generated monoids with a context-free
word problem is closed under monoid free products,
we now observe that this property no longer holds
for finitely generated monoids with a deterministic
context-free word problem.

Theorem 3.2. There are finitely generated
monoids M1,M2 with deterministic context-free
word problems such that the word problem
of the monoid free product M1 ∗M2 is not deter-
ministic context-free.

Proof. Consider the monoids

M1 = 〈a, b | ba = a〉

and
M2 = 〈c, d | cd = dc, cd = 1〉,

the latter being isomorphic to Z, and their gener-
ating sets A = {a, b} and C = {c, d}. As M1 is
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presented by a finite complete rewriting system
ba→ a, we obtain

WPA(M1) = {bn#bn | n ∈ N} ∪
∪ {ubn#bnv | n ∈ N; u ∈ A∗a; v ∈ aA∗;
|u|a = |v|a}.

Moreover, clearly

WPC(M2) = {u#vR | u, v ∈ C∗;
|u|c − |u|d − |v|c + |v|d = 0}.

Both these languages are deterministic context-
free. This is obvious for the language WPC(M2).
A deterministic pushdown automaton recognis-
ing WPA(M1) can operate as follows: when b
is read from the input before # is encountered,
push it on the pushdown. When a is read un-
der these circumstances, first pop (using transi-
tions on ε) all the b’s on the top of the push-
down in case there are some, and only then push
the letter a. After # is read, the automaton can
first read several b’s, popping a b from the push-
down for each. If the bottom-of-pushdown sym-
bol finds itself on the top of the pushdown at this
point, the automaton can accept. If a is on the top
of the pushdown, the automaton can pop it while
reading a from the input and switching to another
state, in which it reads a’s from the input while pop-
ping one a from the pushdown for each, and ignores
any b on the input. When the bottom-of-pushdown
symbol finally finds itself on the top of the push-
down, the automaton can accept.

We show that the language WPA∪C(M1 ∗M2) is
not deterministic context-free.

Assume for the purpose of contradiction that
WPA∪C(M1 ∗M2) ∈ L (detCF). Then by closure
of L (detCF) under intersection with a rational lan-
guage,

L := WPA∪C(M1 ∗M2) ∩
∩ c+a+#(a+c+ ∪ a+c+d+bc+)

has to be deterministic context-free as well.
As u, v ∈ c+a+ satisfy u =M1∗M2 v if and only
if u = v, while u ∈ c+a+ and v ∈ c+bd+c+a+

satisfy u =M1∗M2
v if and only if u = cman

and v = cmbdkckan for some m,n, k ∈ N \ {0},
we actually get

L = {cman#ancm | m,n ∈ N \ {0}} ∪
∪ {cman#anckdkbcm | m,n, k ∈ N \ {0}}.

Let A be a deterministic pushdown automaton
recognising the language L.

Without loss of generality, we may assume thatA
contains no transitions upon ε leading from fi-
nal states (see, e.g., [13, Corollary on p. 239]).
Let B be a deterministic pushdown automaton ob-
tained by modifying A such that the first occur-
rence of d can only be read from a final state
of A. This implies that the first d can only fol-
low after reading a prefix cman#ancm for some
m,n ∈ N \ {0}, so that B can only accept words
of the form cman#ancm or cman#ancmdmbcm

for m,n ∈ N \ {0}. On the other hand, as A is de-
terministic without ε-transitions from final states
and as A recognises L, both A and B always find
themselves in a final state after reading a prefix
cman#ancm for m,n ∈ N \ {0} and going through
all subsequent ε-transitions. This means that B
actually accepts cman#ancm for all m,n ∈ N \ {0}
and that it can also continue by a transition upon d
after reading cman#ancm, while in the latter case
it eventually accepts whenever A accepts. As a re-
sult, B accepts precisely all words cman#ancm

and cman#ancmdmbcm for m,n ∈ N \ {0}.
A deterministic pushdown automaton B′ ob-

tained by modifying B to accept only if at least
one d was actually read thus recognises the lan-
guage

L′ := {cman#ancmdmbcm | m,n ∈ N \ {0}}.

However, this language clearly is not context-free –
a contradiction.

Remark 3.3. As the class of all finitely gener-
ated monoids with a context-free word problem is
closed under monoid free products [4], the word
problem of the free product M1 ∗ M2 of monoids
from the preceding proof is context-free – how-
ever, nondeterminism is crucial in the construction
of the pushdown automaton for this word problem
described in [4], where it is used to guess factors
of the input word evaluating to identity elements
in M1 and M2. On the other hand, our proof
of Theorem 3.2 heavily relies on the assumption
of the pushdown automaton A being determinis-
tic. If this was not the case, the automaton B
constructed from A would not have to recognise
the said language, as there would be no guarantee
that an accepting run ofA upon cman#ancmdmbcm

has to find itself in a final state after reading
the prefix cman#ancm – the automaton A could
accept cman#ancm via some different run.

The class of all finitely generated groups with
a deterministic context-free word problem coincides
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with the class of all finitely generated groups with
a context-free word problem [12], and as such it
is closed under group free products. This means
that L (detCF) gives an example of a class of lan-
guages C closed under inverse homomorphisms such
that the classes of finitely generated semigroups
and groups with a word problem in C are closed
under free products (of semigroups and groups,
respectively), while the class of finitely generated
monoids with a word problem in C is not closed
under monoid free products. Existence of such
a class happens to answer one of the questions
of C.-F. Nyberg-Brodda [23].

While a context-free word problem of a finitely
generated group is necessarily deterministic
context-free, it is an open problem whether
the same holds for all finitely generated cancella-
tive monoids with a context-free word problem.
As noticed by one of the anonymous reviewers,
the counterexample from the proof of Theorem 3.2
shows at least that this property does not hold
for all finitely generated left-cancellative monoids
with a context-free word problem: the monoids M1

and M2 are both left-cancellative with a context-
free word problem – their free product M1 ∗M2 is
thus again left-cancellative [8] and has a context-
free word problem [4]; however, the word problem
of M1 ∗ M2 was observed not to be deterministic
context-free.

Theorem 3.2 is an example of a result showing
that properties of semigroups and monoids with
a deterministic context-free word problem might
be slightly less satisfying compared to the case
of context-free word problems. In fact, the very
definition of the word problem of a semigroup
or a monoid becomes less robust when deterministic
context-free word problems are considered. For in-
stance, one of the anonymous reviewers noted that
the word problem

WPA(M) = {u#vR | u, v ∈ A∗; u =M v}

of a monoid M finitely generated by A is context-
free if and only if the language

WP′A(M) = {uR#v | u, v ∈ A∗; u =M v}

– i.e., an “equally good candidate” for the definition
of the word problem – is context-free (and the same

is true for semigroups).2 This reviewer asked
whether the same holds for semigroups and monoids
with a deterministic context-free word problem
as well. We now give a negative answer to this
question.

Proposition 3.4. There is a monoid M generated
by a finite set A such that WPA(M) ∈ L (detCF),
but WP′A(M) 6∈ L (detCF).

Proof. Let us consider A = {a, b}, and let M be
presented by

M = 〈a, b | aa = a, ba = a〉.

As this is equivalently presented by a finite com-
plete rewriting system aa→ a, ba→ a, we get

WPA(M) = {bn#bn | n ∈ N} ∪
∪ {ubn#bnv | n ∈ N; u ∈ A∗a; v ∈ aA∗},

which is clearly a deterministic context-free lan-
guage. However, the language

WP′A(M) = {bn#bn | n ∈ N} ∪
∪ {bnu#vbn | n ∈ N; u ∈ aA∗; v ∈ A∗a}

is not deterministic context-free, as otherwise
the language

WP′A(M) ∩ b+a#
(
ab+ ∪ ab+ab+

)
=

= {bna#abn | n ∈ N \ {0}} ∪
∪ {bna#abmabn | m,n ∈ N \ {0}}

would be in L (detCF) as well. Similarly as
in the proof of Theorem 3.2, a deterministic push-
down automaton recognising this language could be
assumed to contain no transitions upon ε leading
from final states, and modified such that the third
occurrence of a can only be read from a final state.
The resulting deterministic pushdown automaton
would then recognise the language

L = {bna#(abn)k | n ∈ N \ {0}; k ∈ {1, 2}},

which is obviously not context-free – a contradic-
tion.

One can argue almost identically when semi-
groups are considered instead of monoids.

2This follows easily, e.g., by the closure of the class of all
context-free languages under rational transductions, inter-
section with a rational language, and conjugacy – the latter
being defined for all alphabets A and languages L ⊆ A∗

by CYCLE(L) = {uv | u, v ∈ A∗; vu ∈ L} [13].
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