Neštruktúrované rozpravy o štruktúrach: kapitoly z matematiky pre informatikov (1) Zimný semester 2022/23

Homework Set #2

- 1. Find all integers $n \ge 2$, for which there exists a *real* $n \times n$ matrix A such that its spectrum $\sigma(A)$ satisfies $\sigma(A) \subseteq \mathbb{C} \setminus \mathbb{R}$.
- 2. Let $p(z) = z^k + d_{k-1}z^{k-1} + \ldots + d_0z^0$ with $d_0, \ldots, d_{k-1} \in \mathbb{C}$ be a monic polynomial with complex coefficients and A_p the corresponding companion matrix.¹
 - a) Find the geometric multiplicities of the eigenvalues of A_p .
 - b) Find a necessary and sufficient condition on p under which A_p is diagonalisable.
 - c) Find a necessary and sufficient condition on p under which A_p is of full rank.
- 3. Given $n \in \mathbb{N}$, let \mathcal{I}_n denote the set of all (nonnegative real) irreducible $n \times n$ matrices. Is \mathcal{I}_n closed under:
 - a) sum;
 - b) product;
 - c) nonnegative integer powers;
 - d) positive integer powers?
- 4. Given $n \in \mathbb{N}$, let \mathcal{P}_n denote the set of all (nonnegative real and irreducible) primitive $n \times n$ matrices. Is \mathcal{P}_n closed under:
 - a) sum;
 - b) product;
 - c) nonnegative integer powers;
 - d) positive integer powers?
- 5. Let A be an $n \times n$ nonnegative real matrix and suppose that A^t is
 - a) irreducible;
 - b) primitive

for some integer t > 0. Does A necessarily have to exhibit the same property?

- 6. Let $n \ge 2$ and A a nonnegative real $n \times n$ matrix that is both irreducible and symmetric (e.g., an adjacency matrix of a connected undirected graph). Determine all possible values of the imprimitivity index² of A.
- 7. Show that a sequence of complex numbers $(a_t)_{t=0}^{\infty}$ satisfies a recurrence

 $a_{t+k} = c_{k-1}a_{t+k-1} + \ldots + c_0a_t \qquad \text{for all } t \in \mathbb{N}$

for some $k \in \mathbb{N} \setminus \{0\}$ and $c_0, \ldots, c_{k-1} \in \mathbb{C}$ if and only if the corresponding generating function is rational.

- 8. Relate the ordinary and Laplacian spectra of *regular* graphs.
- 9. Show that for all $m, n \in \mathbb{N} \setminus \{0\}$, the number of spanning trees of the complete bipartite graph $K_{m,n}$ equals $m^{n-1}n^{m-1}$.

¹Sprievodná matica.

²Index primitívnosti.

Let \mathcal{G} be an undirected graph (simple, without loops) with vertex set [n]. A signless Laplacian matrix $Q(\mathcal{G})$ of \mathcal{G} is defined by

$$Q(\mathcal{G}) = D + \operatorname{Adj}(\mathcal{G}).$$

where $\operatorname{Adj}(\mathcal{G})$ is the adjacency matrix of the graph \mathcal{G} and $D = (d_{i,j})_{n \times n}$ is a diagonal matrix such that $d_{k,k} = \deg_{\mathcal{G}}(k)$ for $k = 1, \ldots, n$.

- 10. Show that the signless Laplacian matrix of a graph \mathcal{G} with vertex set [n] is always positive semidefinite and find a suitable $m \times n$ matrix B such that $Q(\mathcal{G}) = B^T B$.
- 11. All eigenvalues of a positive semidefinite matrix $Q(\mathcal{G})$ have to be nonnegative. Describe the class of all graphs \mathcal{G} for which zero is an eigenvalue of $Q(\mathcal{G})$.
- 12. Show that the characteristic polynomials of the Laplacian and the signless Laplacian matrix coincide for bipartite graphs.