
Principles of Software Design

Software quality

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Software quality



Software quality

What is quality of software

Software functional quality (External)

how well it complies with or conforms to design and functional
requirements
�tness for purpose, how it compares to competitors in the
marketplace
degree to which the correct software was produced

Software structural quality (Internal quality)

how it meets non-functional requirements that support the
delivery of the functional requirements, such as robustness or
maintainability.
what is under the hat, lack of technical debt

Robert Luko´ka Software quality



Software quality management

Software quality management:

Quality assurance - Setting up processes and standards within
the organization.

Quality planning - De�ne the quality attributes associated with
the output of the project and how those attributes should be
assessed.

Quality control - Reviews software at its various stages to
ensure quality assurance processes and standards are being
followed

To create quality software you need to:

Measure attributes associated with quality

Control and enforce them

This has to be an integral part of the development process.

Robert Luko´ka Software quality



Structural quality - Example

How to enforce code readability?

code reviews

linter (especially important in languages with a lot of backward
compatibility heritage)

pair programming

. . .

Automated tools can be integrated into the tools used (e.g. git
hooks).

Robert Luko´ka Software quality



Structural quality - Example

How to enforce code readability?

code reviews

linter (especially important in languages with a lot of backward
compatibility heritage)

pair programming

. . .

Automated tools can be integrated into the tools used (e.g. git
hooks).

Robert Luko´ka Software quality



Functional quality - Veri�cation and validation

Veri�cation - The evaluation of whether or not a product,
service, or system complies with a regulation, requirement,
speci�cation, or imposed condition.

Validation - The assurance that a product, service, or system
meets the needs of the customer and other identi�ed
stakeholders.

You should verify and validate not only the whole product but all
artefacts.

Example: How to validate requirements?

Customer may read the requirements document (however, this
is often insu�cient)
Prototyping, Test case generation, . . .

Robert Luko´ka Software quality



Functional quality - Veri�cation and validation

Veri�cation - The evaluation of whether or not a product,
service, or system complies with a regulation, requirement,
speci�cation, or imposed condition.

Validation - The assurance that a product, service, or system
meets the needs of the customer and other identi�ed
stakeholders.

Veri�cation

Manual - preferred only in certain circumstances

Automated - seems like a time wasting sometimes but actually
saves a lot of time in projects that take longer than a few days.

Robert Luko´ka Software quality



Software testing

Software testing is an investigation conducted to provide

stakeholders with information about the quality of the software

product or service under test.

Defect detection techniques (the numbers are probably not too
precise, but you should check it out to see what the techniques
are).

Robert Luko´ka Software quality

https://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/


Testing

Testing pyramid

Small-scale automated tests (unit tests) are fast - we can and
should perform a lot of them.

Medium-scale test (integration tests) - they check, if the
smaller parts work well together. You do not need to catch
each exceptional case as this should be done on the lowest
level. They take a bit longer, but you need less of them. You
should automate them too.

High level tests (system tests) - a few test that check if the
parts of the application are correctly put together. Even if you
need just few of them, it is still a good idea to automate them.

GUI tests - you want just to assure that each element is
associated with the correct action. You should consider to
automate these test (there are many tools to do this), but
testing by humans has some merit here.

Robert Luko´ka Software quality

https://www.google.com/


Testing

Besides that you should perform tests for non-functional
requirements when it makes sense (e.g. performance, resource
consumption, etc). These test are outside the testing pyramid and
may take quite long. You can run them e.g. overnight / weekend.

Robert Luko´ka Software quality



Testing automation

Automating the tests saves a lot of resources in long term
projects.

To bene�t fully from the automated testing the tests should
be created and improved consistently during the software
development process.

You want to have con�dence in your automated tests. That is,
if the test passes, there is a good chance that you did not
break something while performing changes.
Good tests should give you con�dence to �ght against software
entropy - refactor when necessary.
If you do not do this, you might end with very fragile code �If
it ain't broke, don't �x it�. This approach guarantees that the
software entropy takes over and the source may become
unmaintainable over time.

Robert Luko´ka Software quality



Testing automation

Perhaps the most important concern is to guarantee that your tests
change as little as possible when you do refactoring.

This requires not only good design of tests but also good
design.

Robert Luko´ka Software quality



Unit tests - dependencies between classes

O-O design is based on the cooperation between objects.

Dependencies:

creates, destroys

calls method

modi�es

. . .

Robert Luko´ka Software quality



Unit tests

Class under test - class we want to test - what about its
collaborations.

Solitary - We strictly test separate classes. All other classes
should be excluded from the testing.

Sociable - We can use some classes closely related to the class
under test (especially when the tests are still fast and there are
no signi�cant side e�ects present).

Even if we prefer sociable unit tests, we want to have the control
on what to separate and what not.

Robert Luko´ka Software quality



Unit tests - dependencies between classes

How the following dependencies a�ect our ability to perform unit
test (of course, in languages like Python we can do almost
anything, but this may introduce gaps into the testing)?

creates, destroys

calls method

modi�es

. . .

All these dependencies present a huge problem. But dependencies
are important, aren't they?

Robert Luko´ka Software quality



Dependency injection and dependency inversion

A class should not create instances of other classes (if we do
sociable testing it might make some exceptions of this rule for
closely related classes) - dependency injection / dependency
injection of a factory.

A class should not depend on the implementation of the
collaborator, just on the interface - dependency inversion

Dependency injection is a way to implement dependency
inversion.

Robert Luko´ka Software quality



OO design and object dependence

All collaborators (we want to separate) should be separated by an
interface.

creates, destroys - we give a factory (implementing a factory
interface) as an argument in the constructor of the object

calls method, modi�es, . . . - we give the collaborator in the
constructor or as a method parameter

We can inject the dependency either via constructor or as a method
argument.

Robert Luko´ka Software quality



Test doubles

What about the collaborators during the tests? They are behind an
interface, thus we can create a new implementation of these classes
- test doubles.

M. Fowler: Test doubles (read this)

Robert Luko´ka Software quality

https://martinfowler.com/bliki/TestDouble.html


DI frameworks

If DI is used a lot, the instance creation may become very
complicated.

However, testing is very often the main reason to do DI (other
reasons is to gain �exibility, e.g. strategy pattern).

Thus very often it is possible to indicate defaults for the
dependencies injected.

There are subtle problems with this approach - this creates
dependencies between the sources and a�ect compilation time
negatively

Other approach is to use DI (micro)frameworks - tools
supporting DI.

Robert Luko´ka Software quality



DI and functional programming

What if we do functional programming?

DI is a notion of OO design - OO design is applicable for
functional programming.

If a function f calls function g which we want to separate
from f , we do not use it directly. We should have g injected -
that is f takes a function with the same signature as g as a
parameter (default may be set to g). This allows us to replace
g with a test double.

Robert Luko´ka Software quality



Sociable versus solitary unit tests

I prefer sociable approach

Advantage of solitary test:

they may be faster
failure precisely indicates what failed

but:

may require a lot of detailed mocking
may make tests too coupled with implementation.
This make cause that in the case of refactoring we need to
rework the tests. This goes against one of the main reasons to
white detailed unit tests. Another reason why this coupling is
bad is that it is good to have two separate approaches to
implementation and testing. If it is not the case it is possible
that we do the same mistake twice.

Solitary unit tests are an accepted approach - there are ways
to mitigate these issues.

Robert Luko´ka Software quality



When to write tests?

You can do it anytime you want

After writing implementation

- obvious choice, but not
necessary the right one

You are happy you ��nished your work�. It is easy to write too
few tests.

While writing implementation - see Test Driven Development

Between design and implementation.

During design - grantees testable design, gives exact and clear
speci�cation to the programmer, may result in easier to use
interfaces.

Robert Luko´ka Software quality



When to write tests?

You can do it anytime you want

After writing implementation - obvious choice, but not
necessary the right one

You are happy you ��nished your work�. It is easy to write too
few tests.

While writing implementation - see Test Driven Development

Between design and implementation.

During design - grantees testable design, gives exact and clear
speci�cation to the programmer, may result in easier to use
interfaces.

Robert Luko´ka Software quality



Writing the tests during the implementation

Test driven development

Three rules of TDD (I consider this a more hardcore version of
TDD).

1 You are not allowed to write any production code unless it is
to make a failing unit test pass.

2 You are not allowed to write any more of a unit test than is
su�cient to fail; and compilation failures are failures.

3 You are not allowed to write any more production code than is
su�cient to pass the one failing unit test.

This guarantees that the tests will cover boundary and
exceptional cases that were implemented

Robert Luko´ka Software quality



Resources I

Wikipedia - Software Quality Management

M. Fowler: Test doubles

Wikipedia - DI

Robert Luko´ka Software quality

https://en.wikipedia.org/wiki/Software_quality_management#Quality_management_activities
https://martinfowler.com/bliki/TestDouble.html
https://en.wikipedia.org/wiki/Dependency_injection


References I

Wikipedia - Software Quality

Wikipedia - Software Quality Management

Wikipedia - Veri�cation and Validation

Wikipedia - Software Testing

Robert Luko´ka Software quality

https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Software_quality_management
https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Software_testing

