7/1/2026 Uvod do databaz, skiiskovy test, max 60 bodov

1. Uvazujte databazu bez duplikatov a null hodno6t: capuje(Krcma, Alkohol), lubi(Pijan, Alkohol),
navstivil(Idn, Pijan, Krcma), vypil(Idn, Alkohol, Mnozstvo).

Plati: Idn — Pijan, Krcma; Idn, Alkohol — Mnozstvo; Mnozstvo > 0.

a) Sformulujte bezpe¢ny dotaz v Datalogu (6) a SQL (6) na dvojice [K, A] také, Ze alkohol A sa Capuje v
kréme K; a zaroven A I'ibi kazdy pijan, ktory vypil A pri kaZdej navsteve krémy K.

Datalog:
answer(K, A) «
capuje(K, A),
not pije_nelubi(K, A).

pije_nelubi(K, A) «
capuje(K, A),
navstivil(_, P, K),
not niekedy_nevypil(P, K, A),
not lubi(P, A).

niekedy_nevypil(P, K, A) «
capuje(_, A),
navstivil(I, P, K),
not v(I, A).

v(I, A) «
vypil(L, A, _).

SQL:
with
niekedy_nevypil as
(
select n.Pijan, n.Krcma, c.Alkohol
from capuje c, navstivil n
where not exists (
select *
from vypil v
where v.Idn = n.Idn and v.Alkohol = c.Alkohol)
),
pije_nelubi as
(
select c.Krcma, c.Alkohol
from capuje c, navstivil n
where c.Krcma = n.Krcma and not exists (
select *
from niekedy_nevypil nn
where nn.Pijan = n.Pijan and nn.Krcma = n.Krcma and nn.Alkohol = c.Alkohol)
and not exists (
select *
from lubi 1
where |.Pijan = n.Pijan and 1.Alkohol = c.Alkohol)



select c.Krcma, c.Alkohol
from capuje ¢
where not exists (
select *
from pije_nelubi pn
where pn.Krcma = c¢.Krcma and pn.Alkohol = c.Alkohol)

b) Sformulujte bezpec¢ny dotaz v Datalogu (6) a SQL (6) na dvojice [P, A] také, Ze pijan P pri kazdej
navsteve kr¢my vypil alkohol A vo vicSom mnoZstve nezZ ktorykol'vek iny pijan dokopy pocas vSetkych
navstev tej krémy.

Datalog:

answer(P, A) «
navstivil(Il, P, ),
alkohol(A),
not niekedy_malo(P, A).

niekedy_malo(P, A) «
navstivil(I, P, K),
vypil(I, A, M),
subtotal(mnozstva(_, P2, K, A, M), [P2, K, A], [S = sum(M))),
S>=M,
not P = P2.

niekedy_malo(P, A) «
navstivil(Il, P, ),
alkohol(A),
not v(I, A).

v(I, A) «
Vypil(I’ A) —)'

alkohol(A) «
capuje(_, A).

alkohol(A) «
lubi(_, A).

mnozstva(l, P, K, A, M) «
navstivil(I, P, K),
vypil(I, A, M).



SQL:

with

alkohol as

((

select c.Alkohol
from capuje ¢

)

union

(

select 1.Alkohol
from lubi |

),

total as

(

select n.Pijan, n.Krcma, v.Alkohol, sum(v.Mnozstvo) as S
from navstivil n, vypil v

where n.Idn = v.Idn

group by n.Pijan, n.Krcma, v.Alkohol

),

niekedy_malo as

((

select n.Pijan, v.Alkohol

from navstivil n, vypil v, total t

where n.Idn = v.Idn and t.Pijan <> n.Pijan, t.Krcma = n.Krcma and t.Alkohol = v.Alkohol and
t.S >= v.Mnozstvo)

)

union
(
select n.Pijan, a.Alkohol
from navstivil n, alkohol a
where not exists (
select *
from vypil v
where n.Idn = v.Idn and a.Alkohol = v.Alkohol)
)
select n.Pijan, v.Alkohol
from navstivil n, alkohol a
where not exists (
select *
from niekedy_malo nm
where nm.Pijan = n.Pijan and nm.Alkohol = a.Alkohol)



2. Uvazujte Datalogovy program s EDB databazou a(., .):

pl(X,Y) < a(X, Z), a(Z, Y), not q1(X, Y).

p2(X,Y) < a(X, Z), a(Z, Y), not g2(X, Y).

ql(X,Y) < a(X, Z2), a(Z, Y), q1(Y, X).

q2(X,Y) < a(X, Z), a(Z, Y), not q1(Y, X).

a) Rozhodnite, ¢i dotazy ?- p1(X, Y) a ?- p2(X, Y) davaju rovnaky vysledok pre I'ubovolnu inStanciu EDB.
Zdovodnite. (6)

Predikat q1 je definovany jedinym pravidlom. V tele toho pravidla sa vyZaduje splnenie q1 pre nejaku
dvojicu argumentov. Podl’a principu ,,plati len to, co platit musi®, q1(., .) neplati pre Ziadnu dvojicu
argumentov. Tym pddom moZeme predpokladat’ platnost’ not q1(., .) pre akikol'vek dvojicu argumentov v
pravidlach pre p1(., .) a g2(., .).

Program sa da ekvivalentne prepisat’ takto:
pl(X,Y) < a(X, Z2), a(Z, Y).
pP2(X,Y) < a(X, Z), a(Z, Y), not 2(X, Y).
q2(X,Y) < a(X, Z), a(Z, Y).

NIE. Dotazy ?- p1(X, Y) a ?- p2(X, Y) nedavajia rovnaky vysledok pre kazdu instanciu EDB.
Napriklad pre a(., .) = {[0, 0]} dotaz ?- p1(X, Y) vrati {[0, 0]}, zatial' ¢o dotaz ?- p2(X, Y) vrati prazdnu
mnozinu.

b) Zapiste vypocty dotazov ?- p1(1, 1) a ?- p2(1, 1) naivnou evaluaciou. (6)

Vypocet dotazu ?- p1(1, 1) naivnou evaluaciou:
pl:={}p2:={};ql:={}; q2:={}

o (
pl = Max 22y (@ May=a2x Pa2(a)) - q1;
P2 = Max, a2y (@ XMay=a2x Pa2(a)) - 92;
gl := Max a2y (@ Pay=a2x Pa2(a)) Phazy=qx nax=q1.xql);
g2 1= Max, a2y (@ Doy =a2x Pa2(@)) = Parcy, x) (q1);
);

T Ox=1,v=1(pl);

Vypocet dotazu ?- p2(1, 1) je rovnaky, aZ na posledny krok:
T Ox=1aY=1 (DZ);

Optimalizovany vypocet ?- p1(1, 1):
7 (7 (0x-1(a)) Bv-x 70 (Ov-1(a)))

Optimalizovany vypocet ?- p2(1, 1):
{}



3. a) NapiSte algoritmus (v zrozumiteI'nom pseudokdde), ktory bezstratovo dekomponuje relacnid schému
[r, F] do Boyce-Coddovej normalnej formy, a ktory sa vyhyba zbytocnej dekompozicii. Uvedte definiciu
bezstratovej dekompozicie a Boyce-Coddovej normdlnej formy. Zdovodnite preco ma vysledna
dekompozicia poZadované vlastnosti. (6)

Definicia. Dekompozicia [r, F] do [r4, F4], ..., [, Fa] je bezstratova, ak r = (1) X m.(r) X ... X 75,(T) pre
kazdu populdciu relacie r, ktora spliia funkcné zavislosti platné v r.

Definicia. Relac¢na schéma [r, F] je v Boyce-Coddovej normalnej forme, ak pre kazdui netrividlnu funkéna
zavislost X — Y z F plati, Ze X je nadklac r.

Algoritmus bezstratovej dekompozicie [r, F] do Boyce-Coddovej normalnej formy:
1. N4jdi netrivialnu funk¢nu zavislost X — Y z F* takd, Ze X nie je nadkli¢ v r (ta porusSuje BCNF).
2. Ak taka funkc¢na zavislost existuje, dekomponujrdor-{Y} a X U {Y} a s obomi novymi relaciami
opakuj tento algoritmus od kroku 1.

Tento algoritmus dekomponuje len relacnu schému, ktora nie je v BCNF. Zastavi sa az ked’ cela
dekompozicia je v BCNF (funk¢na zavislost X — Y neporusuje BCNF v Ziadnej z tych novych reldcifi).

Tento algoritmus v kroku 2 bud’ neurobi nic¢, alebo dekomponuje r do dvoch relacii, r- {Y} a X U {Y}. Pre
ten druhy pripad dokaZeme, Ze tie nové relacie sa spajaju bezstratovo do r. KedZe ide o dekompoziciu do
dvoch relacii, staci ked” ich spoloc¢né atributy st nadklicom v aspori jednej z nich. To je splnené, lebo
spolocné atribtity st X, a X je nadklicom v X U {Y}. Schémy r1 a r2 m6Zu byt d’alej dekomponované, ale

tento argument sa da aplikovat’ na kazdy dekompozicny krok.

b) Garantuje algoritmus z tlohy a) zachovanie vSetkych funkcénych zavislosti vo vyslednej dekompozicii?
Odpoved’ ANO resp. NIE zdovodnite. Uved'te tieZ definiciu zachovania vSetkych funkénych zavislosti v
dekompozicii relacnej schémy. (6)

Definicia. Dekompozicia relacnej schémy [r, F] do [r1, F1], ..., [, Fu] zachovava vSetky funkéné zavislosti,
ak F" = (U=, o F))".

NIE. Dokonca nie vZdy existuje BCNF dekompozicia, ktora zachovava v3etky funkcné zavislosti.
Uvazujme napriklad relac¢nd schému r(A, B, C) s funkénymi zavislostami A—B, BC— A. Kvdli tej prvej
funkcnej zavislosti r nie je v BCNF. AvSak po akejkol'vek dekompozicii nebude zachovana ta druha funk¢éna
zavislost.



4. a) Vysvetlite met6du validacie pre izoléaciu transakcii, v ktorej sa validacia a finalizacia transakcie
vykondva v jednom atomickom kroku. Uved'te valida¢nd podmienku. (6)

Transakcie zapisuju zmeny do databazy aZ po tspesSnej validacii. Scheduler si pre kazdud zacatu transakciu T
pamadta casovu peciatku TS(T), privatnu kopiu objektov ktoré T aktualizovala, mnoZzinu identifikatorov
objektov RS(T) (objekty, ktoré T ¢itala), a mnoZinu identifikatorov objektov WS(T) (objekty, ktoré T
aktualizovala).

Po precitani operacie sr prideli transakcii T ¢asovu peciatku TS(T).

Operacie rr(D) a wr(D) vykonava v takom poradi, ako prichadzaju (hned’ ako ich precita). Zapisy robi do
privatnej kopie objektu D prislichajicom transakcii T, nie do databazy. Pri ¢itani D preferuje privatnu képiu
objektu D, ak existuje; inak Cita hodnotu z databazy.

Po precitani operacie a; zahodi vSetky udaje o transakcii T.

Po precitani operacie cr prideli T ¢asovu peciatku TVAL(T) a otestuje validacni podmienku. Ak validacna
podmienka nie je splnend, tak abortuje T (tak, ako po precitani operacie ar). Inak zapiSe (v atomickom
kroku) privatnu képiu vSetkych objektov modifikovanych transakciou T do databazy, a vykona commit T.
Transakcie su sériované v poradi, v ktorom sa commitujui. Ak sa validacia a finalizacia vykonavaju v
jednom atomickom kroku, naslednost’ vSetkych write-write konfliktov je rovnaka ako naslednost’ commitov.
Staci sa zamerat’ na read-write konflikty. Mohlo sa stat’ toto: s1, s2, r1(D), w2(D), c2. Od tohto momentu
systém nesmie dovolit’ c1, lebo vystupny rozvrh by nebol konflikt-ekvivalentny sériovému rozvrhu

T2 — T1. Validacna podmienka pre transakciu T oSetruje tento pripad (vSetky Casové peciatky, ktoré neboli
pridelené, maju hodnotu co): = (3T2 TS(T) < TVAL(T2) < TVAL(T) A WS(T2) n RS(T) # ().

b) Uved'te triedu obnovitel'nosti, do ktorej patria rozvrhy generované systémom, ktory pouZiva metédu
izolacie z ulohy a). Zdovodnite. (6)

Preskiimajme, ¢i vystupny rozvrh méZe obsahovat’ dirty read. Predpokladajme, Ze ano. Nech je vo
vystupnom rozvrhu sekvencia operacii w1(D), ..., 12(D), kde r2(D) je prvy dirty read vo vystupnom rozvrhu.
KedZe transakcie zapisuju do databazy len sti¢asne so svojim commitom, musi tato sekvencia vyzerat takto:
wl(D), ..., cl, ..., 12(D). To je spor s predpokladom, Ze r2(D) je dirty read. Tym padom su vSetky
generované rozvrhy obnoviteI'né, a vyhybajtice sa kaskadovym abortom.

Vystupny rozvrh nemoze obsahovat’ dirty write, lebo hned’ po zapisoch vsSetkych zmien do databazy
nasleduje commit transakcie, ktora tie zapisy urobila.

Rozvrhy generované takymto systémom su striktné.



