
21/1/2026 Úvod do databáz, skúškový test, max 60 bodov

1. Uvažujte databázu bez duplikátov a null hodnôt: capuje(Krcma, Alkohol),
lubi(Pijan, Alkohol), navstivil(Idn, Pijan, Krcma),
vypil(Idn, Alkohol, Mnozstvo).
Platí: Idn → Pijan, Krcma; Idn, Alkohol → Mnozstvo; Mnozstvo > 0.
a) Sformulujte bezpečný dotaz v Datalogu (6) a SQL (6) na dvojice [P, A] také, že pijan P niekedy vypil
alkohol A; a alkohol A sa čapuje v každej takej krčme, v ktorej P vypil všetky svoje obľúbené alkoholy
počas niektorej jednej návštevy.

Datalog:
answer(P, A) 

navstivil(I, P, _),
vypil(I, A, _),
not splnil_necapuje(P, A).

splnil_necapuje(P, A) 
navstivil(I, P, K),
vypil(_, A, _),
not nevypil_nieco_oblubene(I),
not capuje(K, A).

nevypil_nieco_oblubene(I) 
navstivil(I, P, _),
lubi(P, A),
not v(I, A).

v(I, A) 
vypil(I, A, _).

SQL:
with
nevypil_nieco oblubene as
(
select n.Idn
from navstivil n, lubi l
where n.Pijan = l.Pijan and not exists (

select *
from vypil v
where v.Idn = n.Idn and v.Alkohol = lubi.Alkohol)

),
splnil_necapuje as
(
select n.Idn, n.Pijan
from navstivil n, vypil v
where not exists (

select *
from nevypil_nieco_oblubene nno
where n.Idn = nno.Idn)
and not exists (
select *
from capuje c
where c.Krcma = n.Krcma and c.Alkohol = v.Alkohol)

)
select n.Pijan, v.Alkohol
from navstivil n, vypil v
where n.Idn = v.Idn and not exists (

select *
from splnil_necapuje sn
where sn.Pijan = n.Pijan and sn.Alkohol = v.Alkohol)

b) Sformulujte bezpečný dotaz v Datalogu (6) a SQL (6) na dvojice [K, A] také, že alkohol A vypila
v K viac než polovica (rôznych) návštevníkov krčmy K; a zároveň A sa vypil v K v menšom celkovom
množstve než ľubovoľný iný alkohol, ktorý sa v K čapuje.

Datalog:
answer(K, A) 

subtotal(np(K, A, P), [K, A], [C = count(P)]),
subtotal(n(K, P), [K], [T = count(P]),
2 * C > T,
not ineho_tolko(K, A).

ineho_tolko(K, A) 
subtotal(nv(_, K, A, M), [K, A], [S = sum(M)]).
subtotal(nv(_, K, A2, M2), [K, A2], [S2 = sum(M2)]).
not A = A2,
S2 >= S1.

np(K, A, P) 
navstivil(I, P, K),
vypil(I, A, _).

n(K, P) 
navstivil(_, P, K).

nv(I, K, A, M) 
navstivil(I, P, K),
vypil(I, A, M).

SQL:
with
subtotal_np as
(
select n.Krcma, v.Alkohol, count(distinct n.Pijan) as C
from navstivil n, vypil v
where n.Idn = v.Idn
group by n.Krcma, v.Alkohol
),
subtotal_n as
(
select n.Krcma, count(distinct n.Pijan) as T
from navstivil n
),
subtotal_nv as
(
select n.Krcma, v.Alkohol, sum(v.Mnozstvo) as S
from navstivil n, vypil v
where n.Idn = v.Idn
group by n.Krcma, v.Alkohol
),
ineho_tolko as
(
select snv1.Krcma, snv1.Alkohol
from subtotal_nv snv1, subtotal_nv snv2
where snv1.Krcma = snv2.Krcma and snv1.Alkohol <> snv2.Alkohol and snv2.S >= snv1.S
)
select snp.Krcma, snp.Alkohol
from subtotal_np snp, subtotal_n as sn
where snp.Krcma = sn.Krcma and snp.Pijan = sn.Pijan and 2 * C > T and not exists (

select *
from ineho_tolko it
where it.Krcma = snp.Krcma and it.Alkohol = snp.Alkohol

)

2. Uvažujte relácie r(A, B), s(C) (bez duplikátov a bez NULL hodnôt).
a) Napíšte nasledujúci SQL dotaz ekvivalentne v Datalogu: (6)
select distinct s1.C
from s s1
where not exists

(select * from s s2, r r1, r r2 where r1.B = s1.C or r1.A = r2.B)

answer(C) 
s(C),
not inner(C).

inner(C) 
s(_),
r(_, C),
r(_, _).

inner(C) 
s(C), /* safety */
s(_),
r(A, _),
r(_, A).

?- answer(C).

b) Vypočítajte výsledok dotazu z úlohy a) pre reláciu
r(A, B) = {[3, 6], [4, 8], [5, 2], [5, 6], [8, 4], [9, 6]}, s(C) = {1, 3, 5, 7, 9}. (6)

Všimnime si to druhé pravidlo pre inner. Neformálne hovorí toto (uvažujeme o reláciách, ktoré prislúchajú
predikátom pri naivnej evaluácii tohto Datalogového programu): ak s je neprázdna relácia, a ak existuje
hodnota A, ktorá je v r na prvom mieste niektorej dvojice a tiež na poslednom mieste niektorej dvojice, tak
relácia inner je rovná relácii s. (To prvé pravidlo by mohlo do inner len pridať ďalšie záznamy, ale tie nás
nemusia zaujímať.) Všetko tie predpoklady sú splnené, lebo s je neprázdna relácia, a r obsahuje záznamy
[4, 8] a [8, 4]. Takže inner ⊇ s.

Relácia answer sa počíta ako s - inner. Tým pádom výsledok dotazu je prázdna množina.

3. Dané sú relácie r(X, Y, Z) a s(X) (bez duplikátov a null hodnôt).
a) Definujte v Datalogu reláciu t, pre ktorú platí s × t = r. (Relácie interpretujte v Datalogu ako predikáty.)
(6)

Relácia sa v Datalogu interpretuje rovnomenným charakteristickým predikátom, ktorého počet argumentov
je rovný počtu atribútov tej relácie, a ktorý platí práve pre tie n-tice, ktoré patria do tej relácie.

Kartézsky súčin s × t je relácia, ktorá je definovaná týmito vlastnosťami:
1. Jej atribúty sú zjednotením atribútov s a t.
2. Pre každú n-ticu [s1, ..., sM] a pre každú n-ticu [t1, ..., tN] platí, že ak [s1, ..., sM]∈ s a [t1, ..., tN]∈ t, tak
[s1, ..., sM, t1, ..., tN]∈ s × t.

Definícia predikátu cartesian(., ., .), ktorý interpretuje kartézsky súčin s × t:
cartesian(X, Y, Z) 

s(X),
t(Y, Z).

Definícia predikátu t:
t(Y, Z)  /* t musí mať správne argumenty, aby bola splnená vlastnosť 1 */

r(_, Y, Z), /* hodnoty Y a Z musia byť z r, inak by v s platilo aj to, čo nemá (nesmie) platiť */
not nieco_chyba(Y, Z). /* žiadna kombinácia nesmie chýbať v r, aby bola splnená vlastnosť 2 */

nieco_chyba(Y, Z) 
r(_, Y, Z),
s(X),
not r(X, Y, Z).

Nejaké podobnosti možno nájsť v celočíselnej aritmetike, bežne používanej v programovacích jazykoch.
Napríklad, asi málokoho prekvapuje, že 7 / 3 = 2. Lenže ak platí 6 / 3 = 2, 7 / 3 = 2, 8 / 3 = 2, tak hádam aj
opačne: 2 * 3 = 6, 2 * 3 = 7, 2 * 3 = 8.

b) Zapíšte výpočet relácie t z úlohy a) v relačnej algebre. Vypočítajte reláciu t pre
r(X, Y, Z) = {[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 1]},
s(X) = {[0], [1]}. (6)

Výpočet t:
nieco_chyba := πY, Z ((πY, Z(r) × s) - r);
t := πY, Z (r) - nieco_chyba;

Simulácia výpočtu po krokoch pre dané r a s:
nieco_chyba = {[1, 0], [1, 1]}
t = {[0, 0], [0, 1]}

4. Uvažujte transakčný systém, ktorý používa dvojfázové zamykanie. Do systému vstupujú nasledujúce dve
transakcie (len tieto dve sú aktívne):
T1: s1, r1(X), r1(Y), w1(X), c1. T2: s2, r2(X), r2(Y), w2(Y), c2.
a) Rozšírte T1 a T2 o operácie rlock (read-lock), wlock (write-lock) a unlock tak, aby boli konformné
s dvojfázovým zamykacím protokolom; dbajte na to, aby zámky boli získavané čím neskôr a uvoľňované
čím skôr. Rozhodnite, či existuje rozvrh takto rozšírených T1 a T2, ktorý vedie k deadlocku T1 a T2.
Odpoveď ÁNO resp. NIE zdôvodnite. (6)

Rozšírenie transakcií o získavanie a uvoľňovanie zámkov :
T1: start, wl1(X), r1(X), rl1(Y), r1(Y), ul1(Y), w1(X), ul1(X), commit.
T2: start, rl2(X), r2(X), wl2(Y), ul2(X), r2(Y), w2(Y), ul2(Y), commit.

Pri vykonávaní T1 a T2 sú dve možnosti:
1. wl1(X) sa vykoná pred rl2(X). Vtedy bude výstupný rozvrh sériový T1→T2, až na poradie vykonávania
operácií start a commit. Deadlock vzniknúť nemôže.
2. rl2(X) sa vykoná pred wl1(X). Vtedy sa vynútene vykoná časť T2 po ul2(X). Výstupný rozvrh sériový
T2→T1, až na poradie vykonávania operácií start a commit. Deadlock vzniknúť nemôže.

NIE. Pri vykonávaní týchto dvoch transakcií deadlock nevznikne.

b) Vysvetlite, ako funguje metóda wait-or-die na prevenciu deadlocku. Rozhodnite, či existuje rozvrh
rozšírených T1 a T2, ktorý vedie k abortu niektorej transakcie, ak systém používa metódu wait-or-die.
Odpoveď ÁNO resp. NIE zdôvodnite. (6)

Systém pridelí každej transakcii časovú pečiatku v čase vykonávania jej operácie start.
Ak nejaká transakcia T žiada o konfliktný zámok, ktorý v tom momente drží transakcia T’, tak systém
najskôr zistí, ktorá z nich je staršia (t.j. má menšiu časovú pečiatku). Ak je T staršia než T’, tak systém
nechá T čakať na pridelenie zámku. Inak systém abortuje T.

ÁNO. Po prečítaní rozvrhu
start2, rl2(X), start1, wl1(X)
bude T1 abortovaná.

