21/1/2026 Uvod do databéz, skiiskovy test, max 60 bodov

1. UvaZujte databazu bez duplikatov a null hodnot: capuje(Krcma, Alkohol),

lubi(Pijan, Alkohol), navstivil(Idn, Pijan, Krcma),

vypil(Idn, Alkohol, Mnozstvo).

Plati: Idn — Pijan, Krcma; Idn, Alkohol — Mnozstvo; Mnozstvo > 0.

a) Sformulujte bezpe¢ny dotaz v Datalogu (6) a SQL (6) na dvojice [P, A] také, Ze pijan P niekedy vypil
alkohol A; a alkohol A sa Capuje v kaZdej takej kr¢me, v ktorej P vypil vSetky svoje obltibené alkoholy
pocas niektorej jednej navstevy.

Datalog:
answer(P, A) «
navstivil(I, P, ),
vypil(L, A, ),
not splnil_necapuje(P, A).

splnil_necapuje(P, A) «
navstivil(I, P, K),
vypil(L, A, ),
not nevypil_nieco_oblubene(I),
not capuje(K, A).

nevypil_nieco_oblubene(I) «
navstivil(l, P, ),
lubi(P, A),
not v(I, A).

v(, A) «
vypil(L, A, _).



SQL:
with
nevypil_nieco oblubene as
(
select n.Idn
from navstivil n, lubi 1
where n.Pijan = 1.Pijan and not exists (
select *
from vypil v
where v.Idn = n.Idn and v.Alkohol = lubi.Alkohol)
),
splnil_necapuje as
(
select n.Idn, n.Pijan
from navstivil n, vypil v
where not exists (
select *
from nevypil_nieco_oblubene nno
where n.Idn = nno.Idn)
and not exists (
select *
from capuje ¢
where c.Krcma = n.Krcma and c.Alkohol = v.Alkohol)
)
select n.Pijan, v.Alkohol
from navstivil n, vypil v
where n.Idn = v.Idn and not exists (
select *
from splnil_necapuje sn
where sn.Pijan = n.Pijan and sn.Alkohol = v.Alkohol)



b) Sformulujte bezpe¢ny dotaz v Datalogu (6) a SQL (6) na dvojice [K, A] také, Ze alkohol A vypila
v K viac nez polovica (r6znych) navstevnikov krémy K; a zaroven A sa vypil v K v menSom celkovom
mnozstve nez 'ubovolny iny alkohol, ktory sa v K capuje.

Datalog:

answer(K, A) «
subtotal(np(K, A, P), [K, A], [C = count(P)]),
subtotal(n(K, P), [K], [T = count(P]),
2*C>T,
not ineho_tolko(K, A).

ineho_tolko(K, A) «
subtotal(nv(_, K, A, M), [K, A], [S = sum(M)]).
subtotal(nv(_, K, A2, M2), [K, A2], [S2 = sum(M2)]).
not A = A2,
S2 >=S1.

np(K, A, P) «
navstivil(I, P, K),
vypil(1, A, ).

n(K, P) «
navstivil(_, P, K).

nv(l, K, A, M) «
navstivil(I, P, K),
vypil(I, A, M).



SQL:

with

subtotal_np as

(

select n.Krcma, v.Alkohol, count(distinct n.Pijan) as C
from navstivil n, vypil v

where n.Idn = v.Idn

group by n.Krcma, v.Alkohol

),

subtotal_n as

(

select n.Krcma, count(distinct n.Pijan) as T
from navstivil n

),

subtotal _nv as

(

select n.Krcma, v.Alkohol, sum(v.Mnozstvo) as S
from navstivil n, vypil v

where n.Idn = v.Idn

group by n.Krcma, v.Alkohol

)s

ineho_tolko as
(
select snv1.Krcma, snv1.Alkohol
from subtotal_nv snv1, subtotal nv snv2
where snv1l.Krcma = snv2.Krcma and snv1.Alkohol <> snv2.Alkohol and snv2.S >= snv1.S
)
select snp.Krcma, snp.Alkohol
from subtotal_np snp, subtotal_n as sn
where snp.Krcma = sn.Krcma and snp.Pijan = sn.Pijan and 2 * C > T and not exists (
select *
from ineho_tolko it
where it.Krcma = snp.Krcma and it.Alkohol = snp.Alkohol



2. UvaZujte relacie r(A, B), s(C) (bez duplikatov a bez NULL hodnot).
a) NapiSte nasledujuci SQL dotaz ekvivalentne v Datalogu: (6)
select distinct s1.C
from s s1
where not exists
(select * from s s2, rrl, r r2 whererl.B = sl.Corrl.A =r2.B)

answer(C) «
s(C),
not inner(C).

inner(C) «
S(—)’
1, ©),
r(, ).
inner(C) «
s(C), /* safety */
S(—)’
(A, ),
r(_, A).

?- answer(C).

b) Vypocitajte vysledok dotazu z tlohy a) pre relaciu
(A, B) ={[3, 6], [4, 8], [5, 21, [5, 6], [8, 41, [9, 61}, s(C) = {1, 3,5, 7, 9}. (6)

VSimnime si to druhé pravidlo pre inner. Neforméalne hovori toto (uvaZzujeme o relaciach, ktoré prislichaju
predikatom pri naivnej evaluacii tohto Datalogového programu): ak s je neprazdna relacia, a ak existuje
hodnota A, ktora je v r na prvom mieste niektorej dvojice a tieZ na poslednom mieste niektorej dvojice, tak
relacia inner je rovna relécii s. (To prvé pravidlo by mohlo do inner len pridat’ d'alSie zdznamy, ale tie nas
nemusia zaujimat’.) VSetko tie predpoklady st splnené, lebo s je neprazdna relacia, a r obsahuje zaznamy
[4, 8] a [8, 4]. TakZe inner = s.

Relacia answer sa pocita ako s — inner. Tym padom vysledok dotazu je prazdna mnoZina.



3. Dané su relacie r(X, Y, Z) a s(X) (bez duplikatov a null hodnaét).
a) Definujte v Datalogu relaciu ¢, pre ktord plati s X t = r. (Relacie interpretujte v Datalogu ako predikaty.)

(6)

Relacia sa v Datalogu interpretuje rovnomennym charakteristickym predikatom, ktorého pocet argumentov
je rovny poctu atribtitov tej relacie, a ktory plati prave pre tie n-tice, ktoré patria do tej relacie.

Kartézsky sucin s X t je relacia, ktora je definovana tymito vlastnost'ami:

1. Jej atribtity su zjednotenim atribitov s a t.

2. Pre kaZzdu n-ticu [sy, ..., su] a pre kazdu n-ticu [ty, ..., tx] plati, Ze ak [s;, ..., sm]€ s a [ty, ..., tn]E t, tak
[Sl, ooy SM, T, oeoy tN]e s X t.

Definicia predikatu cartesian(., ., .), ktory interpretuje kartézsky sicin s X t:
cartesian(X, Y, Z) «

s(X),

t(Y, Z).

Definicia predikatu t:

t(Y, Z) < /* t musi mat’ spravne argumenty, aby bola splnend vlastnost’ 1 */
r(_, Y, Z), /* hodnoty Y a Z musia byt z r, inak by v s platilo aj to, ¢o nema (nesmie) platit’ */
not nieco_chyba(Y, Z). /* Ziadna kombinacia nesmie chybat’ v r, aby bola splnena vlastnost’ 2 */

nieco_chyba(Y, Z) «
l"(_, Y: Z)s
s(X),
not r(X, Y, Z).

Nejaké podobnosti moZno ndjst’v celociselnej aritmetike, beZne pouZivanej v programovacich jazykoch.
Napriklad, asi mdlokoho prekvapuje, Ze 7 /3 = 2. LenZe ak plati 6 /3 = 2,7/3 = 2,8/ 3 = 2, tak hddam aj
opacne: 2 *3=6,2*3=7,2*3=8.

b) ZapiSte vypocet relacie t z tlohy a) v relacnej algebre. Vypocitajte relaciu t pre
r(X’ Y’ Z) = {[O’ O’ O]’ [0’ 0’ ]‘]’ [0’ ]" 0]3 []" 0’ 0]’ []‘) 0) ]‘]’ []" ]" ]‘]}3
s(X) = {[0], [11}. (6)

Vypocet t:
nieco_chyba := sy, z ((7y, z(r) X s) — 1);

t := my,z(r) — nieco_chyba;

Simuldcia vypoctu po krokoch pre dané r a s:
nieco_chyba = {[1, 0], [1, 1]}
t={[0, 0], [0, 1]}



4. UvaZujte transak¢ny systém, ktory pouZziva dvojfazové zamykanie. Do systému vstupuju nasledujtice dve
transakcie (len tieto dve st aktivne):

T1: s1, r1(X), ri(Y), wi(X), cl. T2: s2, r2(X), r2(Y), w2(Y), c2.

a) Rozsirte T1 a T2 o operéacie rlock (read-lock), wlock (write-lock) a unlock tak, aby boli konformné

s dvojfazovym zamykacim protokolom; dbajte na to, aby zamky boli ziskavané ¢im neskor a uvol'iované
¢im skor. Rozhodnite, ¢i existuje rozvrh takto rozsirenych T1 a T2, ktory vedie k deadlocku T1 a T2.
Odpoved ANO resp. NIE zdévodnite. (6)

RozSirenie transakcii o ziskavanie a uvolnovanie zamkov :
T1: start, wl1(X), r1(X), rl1(Y), r1(Y), ul1(Y), w1(X), ul1(X), commit.
T2: start, r12(X), r2(X), wl2(Y), ul2(X), r2(Y), w2(Y), ul2(Y), commit.

Pri vykonavani T1 a T2 st dve mozZnosti:

1. wl1(X) sa vykona pred rl2(X). Vtedy bude vystupny rozvrh sériovy T1—T2, aZ na poradie vykonavania
operacii start a commit. Deadlock vzniknit’ nemdZze.

2. 112(X) sa vykona pred wl1(X). Vtedy sa vyntitene vykona cast’ T2 po ul2(X). Vystupny rozvrh sériovy
T2—T1, aZ na poradie vykonavania operacii start a commit. Deadlock vzniknut’ nemoZze.

NIE. Pri vykonavani tychto dvoch transakcii deadlock nevznikne.

b) Vysvetlite, ako funguje metdda wait-or-die na prevenciu deadlocku. Rozhodnite, ¢i existuje rozvrh
rozSirenych T1 a T2, ktory vedie k abortu niektorej transakcie, ak systém pouZiva met6du wait-or-die.
Odpoved ANO resp. NIE zdovodnite. (6)

Systém prideli kaZdej transakcii Casovu pecCiatku v Case vykonavania jej operacie start.

Ak nejaka transakcia T Ziada o konfliktny zamok, ktory v tom momente drZi transakcia T’, tak systém
najskor zisti, ktora z nich je starSia (t.j. ma menSiu Casovu peciatku). Ak je T starSia nez T’, tak systém
necha T Cakat na pridelenie zamku. Inak systém abortuje T.

ANO. Po preéitani rozvrhu
start2, rl12(X), startl, wl1(X)
bude T1 abortovana.



