
Classical algorithms for mutual exclusion
The program in the attachment consists of two threads. One repeatedly increments a shared variable s, the
other one repeatedly decrements s. The value of the variable n specifies the number of repetitions in both
the threads. The initial value of s is 0, hence the expected final value of s is also 0. The pthread library is
used to start one of threads, but no means of mutual exclusion are used to prevent the threads from
concurrent access to s. Note the use of symbols MUTEX_NONE, MUTEX_DEKKER and
MUTEX_PETERSON in Makefile and concurrency.c (Makefile produces 3 executables which differ only in
code fragments surrounded by corresponding #ifdef ... #endif).
a) Prove the correctness of Peterson’s algorithm for mutual exclusion of 2 threads. (Formulate the
requirements to the solution of mutual exclusion, and prove that Peterson’s algorithm fulfills them.)
b) In the designated places in the attached source code, implement Dekker’s and Peterson’s algorithms to
prevent simultaneous access of the threads to s (do not use any additional library functions, do not change
the rest of the source file). Count the number of the idle repetitions in the entry protocols (the number of
executions of the busy waiting loops in Dekker’s and Peterson’s algorithms) in the variables c1 and c2 (c1
for one thread, c2 for the other thread). Make sure that there are 0 errors and 0 warnings reported by the
compiler/linker.
c) Compare -DMUTEX_NONE, -DMUTEX_DEKKER, and -DMUTEX_PETERSON for n=2i for i=0, 1, …,
29, 30. Repeat the measurements 10 times for each i. Discuss the results. Also report the number of
processors and the highest value of signed integer in your system (the latter can probably be found as the
value of INT_MAX in /usr/include/limits.h).
Hand out a ZIP file hw3.zip containing source files and a report hw3.pdf.


