
Databases, T. Plachetka, S2024-2025 1Semantics of queries

Databases

Tomáš Plachetka, Ján Šturc

Faculty of mathematics, physics and informatics, 

Comenius University, Bratislava

Summer 2024–2025

http://www.dcs.fmph.uniba.sk/~plachetk

/TEACHING/DB2

http://www.dcs.fmph.uniba.sk/~sturc/databazy/rldb



Databases, T. Plachetka, S2024-2025 2Semantics of queries

Logic

Aristotle: There is only one logic. Those who think otherwise, think 

illogically

Questions:

What is precise reasoning?

How to decide whether a statement is true or false?

How to decide whether a theory is consistent?

How to deal with inconsistency?

…

We are working with first-order logic (extended with grouping and 

aggregation). Only variables can be quantified



Databases, T. Plachetka, S2024-2025 3Semantics of queries

Datalog program perceived as a theory

B. Russel: If we allow for one false statement (which makes a 

theory inconsistent), everything can be proved

A Datalog program is an axiomatic theory. The axioms are 

implications which define IDB predicates (intensional database). 

Consequences in all the implications are positive. The EDB 

(extensional database) contains only positive facts. The theory 

corresponding to a Datalog program is always consistent

The only rule allowed in proofs is modus ponens

This makes impossible to prove that something is false

We have to clarify the meaning of negation. Negation is perceived 

differently in whole areas of life and science



Databases, T. Plachetka, S2024-2025 4Semantics of queries

Logic: science and negation

Mathematical sciences

Something is true only if it is true in the most general 

understanding of the theory in hand (i.e. it is true in all 

models of the theory)

Alternative: only what can be proved is true

Empirical sciences (physics, medicine)

Everything is assumed to be true, until someone 

experimentally demonstrates that it is not



Databases, T. Plachetka, S2024-2025 5Semantics of queries

Logic: science and negation

Law

Everything is true, unless a law does not state otherwise

Laws can contradict each other. The following rules 

resolve the contradictions:

• Lex superior derogat legi inferiori

• Lex posterior derogat legi priori

• Lex specialis derogat legi generali

Cicero: Ius summum saepe summa est iniuria. (Supreme law is often supreme injustice.)



Databases, T. Plachetka, S2024-2025 6Semantics of queries

Theories and models

A theory is a set of formulas (axioms)

A model of a theory is an interpretation for which at least the 

axioms of the theory hold (i.e. which does not contradict the 

theory)

The minimal model of a theory is a model such that none of its 

proper non-empty subsets is a model of the theory

In mathematical logic, a model requires a domain (values which 

can be assigned to variables, concrete functions which are 

assigned to functional symbols etc.)

We are interested in formulas which do not depend on the 

domain. A domain independent formula depends only on the 

"contents of predicates" (i.e. not on their types)



Databases, T. Plachetka, S2024-2025 7Semantics of queries

Domain independent and safe formulas

Safe formulas form a subclass of domain independent 

formulas, i.e. every safe formula is domain independent

It cannot be algorithmically decided whether a 

formula is domain independent or not

But there is an algorithm which decides whether an 

arbitrary formula is safe or not (the definition of safety 

requires an algorithm, which makes the decision using 

solely a syntax analysis)



Databases, T. Plachetka, S2024-2025 8Semantics of queries

Theories, models, databases

Datalog program together with an EDB and possibly 

with a query is a theory

Indeed, a Datalog program (with EDB and possibly with 

a query) can be rewritten into a single formula as a 

conjunction of implications, in conjunction with EDB, in 

conjunction with a query. All the variables in implications 

are universally quantified, except of the variables in the 

query (which remain free)



Databases, T. Plachetka, S2024-2025 9Semantics of queries

Datalog without negation, minimal model = fix-point

The semantics of Datalog programs without negated 

subgoals agrees with the mathematical semantics. The 

minimal model is unique (it is the least model). What 

holds in this minimal model is exactly what holds in all 

the models of the program

The minimal model is equal to the fix-point which 

results from naïve iteration



Databases, T. Plachetka, S2024-2025 10Semantics of queries

Datalog with negation

Datalog with negated subgoals does not always 

have a fix-point

Example: the program p   p. 

has no fix-point, i.e. naïve iteration does not terminate. 

Its minimal model is {p}



Databases, T. Plachetka, S2024-2025 11Semantics of queries

Datalog with negation

Datalog with negation can have several minimal models

Example:

bluepath(X, Y)  blue(X, Y)

bluepath(X, Y)  blue(X, Z), bluepath(Z, Y)

redmonopol(X, Y)  red(X, Y),  bluepath(X, Y)

EDB = {blue(1, 2), red(1, 2), red(2, 3)}

Two minimal models:

EDB  {bluepath(1, 2), redmonopol(2, 3)} (a natural model)

EDB  {bluepath(1, 2), bluepath(2, 3), bluepath(1, 3)}

But only one fixpoint:

EDB  {bluepath(1, 2), redmonopol(2, 3)}

1 2 3



Databases, T. Plachetka, S2024-2025 12Semantics of queries

Datalog with negation

For some non-stratified programs, fix-point agrees with 

the minimal model(s)

Example: win(X)  move(X, Y),  win(Y).

EDB = {move(1, 2), move(1, 3), move(2, 3)}

Naïve iteration terminates

The minimal model = fix-point = 

EDB  {win(1), win(2)}

1
2

3



Databases, T. Plachetka, S2024-2025 13Semantics of queries

Datalog with negation

… but it depends on the data (contents of the EDB) whether 

naïve iteration terminates (i.e. finds a fixpoint)

The same program: win(X)  move(X, Y),  win(Y).

EDB = {move(1, 2), move(2, 1), move(2, 3), move(3, 4), 

move(4, 5), move(5, 6)}

Two nonempty minimal models (and fixpoints with respect to 

a single iteration step of naïve iteration):

EDB  {win(1), win(3), win(5)}

EDB  {win(2), win(3), win(5)}

Naïve iteration starting with win= does not terminate

1 2 3 4 5 6



Databases, T. Plachetka, S2024-2025 14Semantics of queries

Datalog with negation: locally stratified programs

Minimal model = fix-point is guaranteed for a class of programs called locally 

stratified programs (which includes the class of stratified programs). Local 

stratification depends not only on the program, but also on the EDB

Procedural definition of local stratification:

1. Create a dependence graph of instantiated IDB atoms

• Vertices are instantiated IDB atoms

• An edge pq exists if q occurs in an instantiated rule with head p. 

The edge is labeled with ‘’ if q is negated in that rule

2. Strata (integer numbers representing levels) are assigned to instantiated 

atoms (vertices of the dependence graph) as in the global stratification

3. If the number of strata is finite, then the program is locally stratified

An equivalent definition of local stratification replaces Steps 2 and 3 with:

A program with an EDB is locally stratified if the dependence graph of 

instantiated IDB atoms does not contain a cycle with a negated edge



Databases, T. Plachetka, S2024-2025 15Semantics of queries

Locally stratified programs: minimal model = fix-point

Example: win(X)  move(X, Y),  win(Y).

EDB = {move(1, 2), move(1, 3), move(2, 3)}

The minimal model = fix-point = EDB  {win(1), win(2)}

Instantiated program:

win(1)  move(1, 2),  win(2).

win(1)  move(1, 3),  win(3).

win(2)  move(2, 3),  win(3).

This program is locally stratified for the given EDB, because 

the instantiated IDB atoms can be assigned a finite number of 

strata:

win(1)
win(2)

win(3)
 



stratum 1stratum 2stratum 3

1 2 3



Databases, T. Plachetka, S2024-2025 16Semantics of queries

Beyond locally stratified programs

Motivatory example: consider rules of a two-player game

EDB = {move(., .)}

move1(X)  move(X, _).

position(X) move(X, _).

position(X)  move(_, X).

loss(X)  position(X),  move1(X). /* mate */

loss(X)  position(X),  goodmove(X).

goodmove(X)  move(X, Y),  win(Y).

win(X)  move(X, Y), loss(Y).

draw(X)  position(X),  win(X),  loss(X).

The definitions of predicates win(.), loss(.) and draw(.) are cyclic. It is 

perhaps possible to make the program locally stratified for an arbitrary 

game, but this requires a deeper understanding of each specific game. 

It is better to handle an arbitrary game with no human assistance. This 

requires to a more general semantics



Databases, T. Plachetka, S2024-2025 17Semantics of queries

Beyond locally stratified programs

Even if a program is not locally stratified, answers to queries to 

such a program can be computed with respect to some model 

other than a minimal model

The choice for the semantics includes stable models, the 

well-founded model, the inflationary model. The crucial 

concept in the construction of these models is Gelfond-Lifschitz 

transformation

Programs without negation

Stratified programs

Locally stratified programs

Well-founded semantics Stable semantics Inflationary semantics

=fixpoint 

semantics



Databases, T. Plachetka, S2024-2025 18Semantics of queries

Gelfond-Lifschitz Transformation (GLT)

Gelfond-Lifschitz transformation transforms a Datalog 

program into a Datalog program with no negated IDB 

subgoals, with respect to a partial interpretation M

Hence, it also transforms M to an interpretation GLT(M) with 

respect to the program and the interpretation M

Definition: GLT(M) w.r.t. a partial interpretation M and a 

program S is the minimal model of a program consisting (only) of:

1.rules of S with no IDB predicates in their bodies; 

2. rules 

H  P1, …, Pn for which there exists a clause in S

H  P1, …, Pn,  N1, …,  Nk

such that N1, …, Nk  M (i.e., none of N1, …, Nk belongs to M).



Databases, T. Plachetka, S2024-2025 19Semantics of queries

Gelfond-Lifschitz Transformation (GLT)

Given a program P and a partial interpretation M (in which the EDB 

and true built-in atoms are true). GLT(M) can then be computed as a 

sequence of the following steps:

1. Instantiate the rules of P in all possible ways

2. Delete all the rules with a goal of the form " <atom>", where the 

IDB <atom> is in M

3. Delete all the goals of the form " <atom>", where the IDB 

<atom> is not in M

4. Use the remaining rules to compute the fixpoint (i.e., to infer all 

the IDB atoms from the reduced program and the EDB)

The set of IDB atoms inferred in step 4 united with the EDB 

atoms and with true built-in atoms is the resulting interpretation 

GLT(M)



Databases, T. Plachetka, S2024-2025 20Semantics of queries

Gelfond-Lifschitz Transformation (GLT)

Example: program win(X)  move(X, Y),  win(Y).

EDB = {move(1, 2), move(1, 3), move(2, 3)}

A partial interpretation: M = EDB  {win(1), win(2)}

1. Instantiation (we can immediately omit rules in which move(., .) 

is not in EDB, they will be deleted anyway in Step 2):

win(1)  move(1, 2),  win(2). r1

win(1)  move(1, 3),  win(3). r2

win(2)  move(2, 3),  win(3). r3

2. Delete r1, because win(2)  M

3. Delete  win(3) from r2 and r3, because win(3)  M. Delete 

true EDB goals move(1, 3) from r2 and move(2, 3) from r3

4. What remains is 

win(1). r2’

win(2). r3’

GLT(M) = EDB  {win(1), win(2)}

1 2 3



Databases, T. Plachetka, S2024-2025 21Semantics of queries

Gelfond-Lifschitz Transformation (GLT)

Example: program

p  q,  r,  s. r1

r  q. r2

q   s. r3

A partial interpretation: M = . EDB = .

Step 1: nothing to instantiate

Step 2: nothing

Step 3: delete subgoals  r and  s, because r, s  M

Step 4: What remains is

p  q. r1’

r  q. r2’

q. r3’

GLT(M) = {p, q, r}



Databases, T. Plachetka, S2024-2025 22Semantics of queries

Gelfond-Lifschitz Transformation (GLT)

Example: program

p  q,  r,  s. r1

r  q. r2

q  r. r3

A partial interpretation: M = . EDB = .

Step 1: nothing to instantiate

Step 2: nothing

Step 3: delete subgoals  r and  s, because r, s  M

Step 4: What remains is

p  q. r1’

r  q. r2’

q  r. r3’

GLT(M) = 



Databases, T. Plachetka, S2024-2025 23Semantics of queries

Gelfond-Lifschitz Transformation (GLT)

Example: program

p  q,  r,  s. r1

r  q. r2

A partial interpretation: M = {q}. EDB = .

Step 1: nothing to instantiate

Step 2: nothing

Step 3: delete subgoals  r and  s, because r, s  M

Step 4: What remains is

p  q. r1’

r  q. r2’

GLT(M) = 

Although q  M, the program does not force q to be true (indeed, 

there is no rule which implies q)



Databases, T. Plachetka, S2024-2025 24Semantics of queries

Stable models

A model M is stable if M = GLT(M).

In other words, a stable model is a model which is invariant to GLT

Example:

bluepath(X, Y)  blue(X, Y)

bluepath(X, Y)  blue(X, Z), bluepath(Z, Y)

redmonopol(X, Y)  red(X, Y),  bluepath(X, Y)

EDB = {blue(1, 2), red(1, 2), red(2, 3)}

Stable model:

EDB  {bluepath(1, 2), redmonopol(2, 3)} (a natural model)

This looks good so far. But...

1 2 3



Databases, T. Plachetka, S2024-2025 25Semantics of queries

Stable models

Example: win(X)  move(X, Y),  win(Y).

EDB = {move(1, 2), move(2, 1), move(2, 3), move(3, 4), 

move(4, 5), move(5, 6)}

Two stable models:

EDB  {win(1), win(3), win(5)}

EDB  {win(2), win(3), win(5)}

Generally, there can be several stable models for a program with 

an EDB (it can also happen that there is no stable model). This 

non-uniqueness causes problems, because a query ?-win(X) 

could compute {1, 3, 5} as well as {2, 3, 5}

1 2 3 4 5 6



Databases, T. Plachetka, S2024-2025 26Semantics of queries

Well-founded model

The well-founded model is unique. It is a (minimal stable) 

3-valued model. An IDB atom is either true, false or unknown.

A procedural definition of the well-founded model uses so-called 

alternating-fixpoint obtained by a reiteration of GLT, starting with 

an empty partial model. In odd iteration rounds, the set of true 

(instantiated) IDB atoms increases. In odd rounds, the set of true 

IDB atoms decreases. For a finite set of IDB atoms, it is 

guaranteed that after a finite number of iterations this process 

converges, i.e. the values of all the IDB atoms in two subsequent 

even rounds or two subsequent odd rounds are equal. In all 

further iterations, the truth value of some IDB atoms does not 

change, these are true or false respectively in the well-founded 

model. The remaining IDB atoms are unknown



Databases, T. Plachetka, S2024-2025 27Semantics of queries

Well-founded model

Example: win(X)  move(X, Y),  win(Y).

EDB = {move(1, 2), move(2, 1), move(2, 3), move(3, 4), move(4, 5), move(5, 6)}

It. 0 It. 1 It. 2 It. 3 It. 4 It. 5 Truth value

win(1) F T F T F T unknown

win(2) F T F T F T unknown

win(3) F T F T T T true

win(4) F T F F F F false

win(5) F T T T T T true

win(6) F F F F F F false

The truth values in iterations 3 and 5 are the same. Iteration 6 would thus result 

in the same truth values as iteration 4, etc.

The query ?- win(X) returns {3, 5} with respect to WFM

1 2 3 4 5 6



Databases, T. Plachetka, S2024-2025 28Semantics of queries

Well-founded model

Important properties of the well founded model:

• If an instantiated IDB atom is true in the well-founded model, 

then it is true in all stable models

• If an instantiated IDB atom is false in the well-founded 

model, then it is false in all stable models

• If no instantiated IDB atom is unknown in the well-founded 

model, then there is exactly one stable model which equals 

the well-founded model

The distinction between false and unknown atoms is not important 

in answering database queries. Only the truths appear in results



Databases, T. Plachetka, S2024-2025 29Semantics of queries

Alternative for semantics: Inflationary model

A procedural definition of the inflationary model resembles the 

alternating fix-point construction of the well-founded model. But when an 

IDB atom once becomes true, it remains true forever

It. 0 It. 1 It. 2 Truth value

win(1) F T T true

win(2) F T T true

win(3) F T T true

win(4) F T T true

win(5) F T T true

win(6) F F F false

The query ?- win(X) 

returns {1, 2, 3, 4, 5}

Example: win(X)  move(X, Y),  win(Y).

EDB = {move(1, 2), move(2, 1), move(2, 3), move(3, 4), 

move(4, 5), move(5, 6)}

1 2 3 4 5 6



Databases, T. Plachetka, S2024-2025 30Semantics of queries

Other alternatives for semantics

Negation as inconsistency (Gabbay, Sergot). Idea: for a given 

Datalog program P and a partial model M, a formula  holds if  is 

consistent with P  M. This approach requires storing also the negative 

facts in the database

Disjunctive Datalog (e.g. DLV project, http://www.dlvsystem.com). 

Disjunctive Datalog extends usual Datalog rules with disjunction in the 

heads of the rules. Moreover, the atoms in the heads can be negated. 

This allows e.g. for the definition of the law of excluded third, p ∨ p 

(which cannot be expressed in usual Datalog)

Similar choices for the semantics find applications e.g. in automatic 

theorem proving and semantic web


