
Databases, T. Plachetka, S2024-2025 1Prolog

Databases

Tomáš Plachetka, Ján Šturc

Faculty of mathematics, physics and informatics,

Comenius University, Bratislava

Summer 2024–2025

http://www.dcs.fmph.uniba.sk/~plachetk

/TEACHING/DB2

Databases, T. Plachetka, S2024-2025 2Prolog

Literature

• Leon Sterling, Ehud Shapiro: The Art of Prolog, MIT Press, 1986

• Pierre M. Nugues: An Introduction to Language Processing with

Perl and Prolog, Springer Verlag, 2006, Appendix A, “An

Introduction to Prolog”,

http://www.cs.lth.se/home/Pierre?Nugues/ilppp/chapters/appA.pdf

• WWW: “+prolog +tutorial”

• Related project: http://www.zillions-of-games.com

Databases, T. Plachetka, S2024-2025 3Prolog

Brief history

• Herbrand (1930), Turing (1940), Robinson (1965): automatic

proving of theorems

• Colmerauer (1970): first implementation of Prolog

• Deransart, ISO standard (1995)

… and many others (Prívara, Ružička, ...)

• Logic (declarative) programming, based on the first-order

logic

Databases, T. Plachetka, S2024-2025 4Prolog

Prolog language components: facts (EDB predicates)

character(achilles, illiad).

character(menelaus, illiad).

character(helen, illiad).

character(menelaus, odyssey).

character(helen, odyssey).

male(achilles).

male(menelaus).

female(helen).

universe(_).

predicate / arity.

character/2

male/1

female/1

Databases, T. Plachetka, S2024-2025 5Prolog

role(menelaus, iliad, king(sparta, menelean)).

Function symbols (functors) combine simple terms into more

complex structures. Functors with the same name but different

arity are different (overloading)

(Constants are

functors of arity 0,

they should be placed here.)

Prolog language components: terms

Databases, T. Plachetka, S2024-2025 6Prolog

HEAD :- GOAL1, GOAL2, ..., GOALN.

Right side of the rule (body) is a conjunction of subgoals

It is possible to express disjunction in one rule, using ‘;’, but it is

recommended to write more rules with the same head instead of

that:

HEAD :- GOAL1; GOAL2.

Rules with an empty head are called directives, which are

executed only once, e.g.

:- dynamic(dodava / 2).

Queries are syntactically identical with rules’ bodies („anonymous

rules“)

Prolog language components: rules

Databases, T. Plachetka, S2024-2025 7Prolog

Unification, =

The key algorithm is unification of two terms (Herbrand)

no occurs-check

Databases, T. Plachetka, S2024-2025 8Prolog

Prolog implementations omit occurs-check in unification, although

it can be implemented efficiently (it was long believed that it is

responsible for Prolog being slow)

Contemporary Prologs offer a correct unification, but they do not

use it internally:

? unify_with_occurs_check(X, f(X)).

No

? unify_with_occurs_check(X, f(a)).

X=f(a)

Unification, =

Databases, T. Plachetka, S2024-2025 9Prolog

Computation of queries: SLD resolution

Derivation (proof) of truths: modus ponens

Socrates is a man.

Man is mortal.

Socrates is mortal.

Prolog uses modus ponens the other way around. It attempts to

prove , and begins with an assumption that it holds. Then it

constructs a proof for  by attempting to prove . The proof is

constructed from the consequence to axioms. When the proof of 

fails, then Prolog concludes that  does not hold, i.e.  holds

(negation as failure)

Databases, T. Plachetka, S2024-2025 10Prolog

This algorithm does not specify the order for choice of goals and

rules, the choice is non-deterministic. Prolog always makes the

choice deterministically, from left to right (a stable model)

Computation of queries: SLD resolution

Databases, T. Plachetka, S2024-2025 11Prolog

? p(X).

ENTER NEXT;

p(X) :- q(X), r(X).

Computation of queries: SLD resolution, 4-port model

Databases, T. Plachetka, S2024-2025 12Prolog

Prolog’s “tracing” (debugging) mode reports the transitions in the

4-port model

mortal(X) :- man(X).

man(socrates).

2 ?- trace.

Yes

[trace] 2 ?- mortal(socrates).

Call: (7) mortal(socrates) ? creep

Call: (8) man(socrates) ? creep

Exit: (8) man(socrates) ? creep

Exit: (7) mortal(socrates) ? creep

Yes

Computation of queries: SLD resolution, 4-port model

Databases, T. Plachetka, S2024-2025 13Prolog

Cut (!) is a special predicate, which always evaluates as TRUE,

but it also removes the backtracking (redo) from all subgoals to

the left of itself, within one rule. It is used for optimalisation

(pruning of branches which do not lead to the result). Beware, cut

is often a source of programming errors!

p(X) :- q(X), !, r(X).

Computation of queries: SLD resolution, cut, !

Databases, T. Plachetka, S2024-2025 14Prolog

Computation of queries: SLD resolution, cut, !

Databases, T. Plachetka, S2024-2025 15Prolog

min(X, Y, X) :- X < Y.

min(X, Y, Y) :- X >= Y.

[trace] 3 ?- min(1, 2, X).

Call: (7) min(1, 2, _G443) ? creep

Call: (8) 1 < 2 ? creep

Exit: (8) 1 < 2 ? creep

Exit: (7) min(1, 2, 1) ? creep

X = 1 ;

Redo: (7) min(1, 2, _G443) ? creep

Call: (8) 1 >= 2 ? creep

Fail: (8) 1 >= 2 ? creep

No

Computation of queries: minimum without cut

Databases, T. Plachetka, S2024-2025 16Prolog

min(X, Y, X) :- X < Y, !.

min(X, Y, Y) :- X >= Y, !.

[trace] 2 ?- min(1, 2, X).

Call: (7) min(1, 2, _G443) ? creep

Call: (8) 1 < 2 ? creep

Exit: (8) 1 < 2 ? creep

Exit: (7) min(1, 2, 1) ? creep

X = 1 ;

No

Computation of queries: minimum with “green cut”

Databases, T. Plachetka, S2024-2025 17Prolog

min(X, Y, X) :- X < Y, !.

min(X, Y, Y).

[trace] 1 ?- min(1, 2 ,X).

Call: (7) min(1, 2, _G431) ? creep

Call: (8) 1 < 2 ? creep

Exit: (8) 1 < 2 ? creep

Exit: (7) min(1, 2, 1) ? creep

X = 1 ;

No

The computation is the same, but it depends not only on the choice of goals

from left to right, but also on the choice of rules from left to right. Green cuts are

considered “harmless”. Red cuts should be avoided

Computation of queries: minimum with “red cut”

Databases, T. Plachetka, S2024-2025 18Prolog

Negation in Prolog is „positive“ (negation as failure):

If P holds, then not(P) does not hold.

If P does not hold, then not(P) holds

This can be expressed using a cut, which must be „red“ (fail/0 is a

predicate, which is false, i.e. always fails):

not(P) :- P, !, fail. or not(P) :- call(P), !, fail.

not(P). (call(P) forces Prolog to evaluate P)

Equivalently, with if-then-else: “if P succeeds then fail, otherwise

succeed”

not(P) :- call(P) -> fail ; true.

Computation of queries: negation with “red cut”

Databases, T. Plachetka, S2024-2025 19Prolog

If-then-else is a predicate ->/3. ‘->’(condition, action1, action2)

which corresponds to

if condition then action1 else action2

This can be expressed using cut:

‘->’(condition, action1, action2) :- condition, !, action1.

‘->’(condition, action1, action2) :- !, action2.

Computation of queries: if-then-else with “red cut”

Databases, T. Plachetka, S2024-2025 20Prolog

Lists

[] is an empty list

[a] is a list with an atom a

[a, X] is a list with an atom a and a variable X

[[a], [X]] is a list with 2 lists (it differs from the previous list)

Although it is perhaps not evident, a list is a functor, ./2,

.(HEAD, TAIL). Syntax [a, X] is an abbreviation for .(a, .(X, nil)).

Notation [HEAD | TAIL] is equivalent with .(HEAD, TAIL)

Databases, T. Plachetka, S2024-2025 21Prolog

Lists

Databases, T. Plachetka, S2024-2025 22Prolog

Lists

Examples of predicates over lists:

member(X, [X | _]).

member(X, [_ | T]) :- member(X, T). % recursion

append([], L, L).

append([H | T1], L, [H | T2]) :- append(T1, L, T2). % recursion

reverse([], []).

reverse([H | T], R) :- reverse(T, RT), append(RT, [H], R).

This works, but is memory consuming (the depth of the stack is

proportional to the length of the list)

Databases, T. Plachetka, S2024-2025 23Prolog

Lists

Optimised reverse which uses an accumulator (a frequent trick):

reverse(L1, L2) :- reverse(L1, [], L2).

reverse([], L, L).

reverse([H | T], Acc, L) :- reverse(T, [H | Acc], L).

Databases, T. Plachetka, S2024-2025 24Prolog

Programming style

Prolog manuals usually provide an information on which

arguments of a predicate are (usually) input (+), i.e. bound; and

which are output (-), i.e. free; and which are input/output (?), i.e.

bound or free, e.g.

between(+Low, +High, ?Value), append(?List1, ?List2, ?List3)

The goals are usually written one in a line:

reverse([H | T], R) :-

reverse(T, RT),

append(RT, [H], R).

Databases, T. Plachetka, S2024-2025 25Prolog

findall, bagof, setof

Databases, T. Plachetka, S2024-2025 26Prolog

findall, bagof, setof

Databases, T. Plachetka, S2024-2025 27Prolog

findall, bagof, setof

Databases, T. Plachetka, S2024-2025 28Prolog

Other optimisation techniques: dynamic predicates

This (inefficient) program uses a double recursion:

This too, but more efficiently (dynamic update of the predicate):

:- dynamic(fibonacci / 2).

Databases, T. Plachetka, S2024-2025 29Prolog

A rule is tail-recursive, when the recursion appears only in the last

subgoal of the rule. A tail recursion can be easily transformed to

an iteration

Inefficient:

More efficient:

Also more efficient, but less comprehensible:

/* fact is an EDB predicate, not factorial */

Other optimisation techniques: tail recursion

