Databases
http://www.dcs.fmph.uniba.sk/~plachetk

ITEACHING/DB2

Tomas Plachetka, Jan Sturc
Faculty of mathematics, physics and informatics,

Comenius University, Bratislava
Summer 2024-2025

Databases, T. Plachetka, S2024-2025

Literature

 Leon Sterling, Ehud Shapiro: The Art of Prolog, MIT Press, 1986
* Pierre M. Nugues: An Introduction to Language Processing with
Perl and Prolog, Springer Verlag, 2006, Appendix A, “An
Introduction to Prolog”,
http://www.cs.lth.se/home/Pierre?Nugues/ilppp/chapters/appA.pdf

 WWW: “+prolog +tutorial”
 Related project: http://www.zillions-of-games.com

Databases, T. Plachetka, S2024-2025

Brief history

 Herbrand (1930), Turing (1940), Robinson (1965): automatic
proving of theorems

« Colmerauer (1970): first implementation of Prolog

* Deransart, ISO standard (1995)

... and many others (Privara, Ruzicka, ...)

* Logic (declarative) programming, based on the first-order

logic

Databases, T. Plachetka, S2024-2025

Prolog language components: facts (EDB predicates)
predicate / arity.

character(achilles, illiad). character/2

character(menelaus, illiad).

character(helen, illiad).

character(menelaus, odyssey).

character(helen, odyssey).

male(achilles). male/1
male(menelaus).
female(helen). female/1

universe().

Databases, T. Plachetka, S2024-2025

Prolog language components: terms

role(menelaus, iliad, king(sparta, menelean)).
Function symbols (functors) combine simple terms into more
complex structures. Functors with the same name but different

arity are different (overloading)

Terms

— T

Atomic terms Variables Compound terms
(Constants) (Structures)

/\ (Constants are

ALGS Kiber functors of arity O,

/\ they should be placed here.)

Integers Floating point
numbers

Databases, T. Plachetka, S2024-2025

Prolog language components: rules

HEAD :- GOAL,, GOAL,, ..., GOAL,,.

Right side of the rule (body) is a conjunction of subgoals

It is possible to express disjunction in one rule, using ;’, but it is
recommended to write more rules with the same head instead of
that:

HEAD :- GOAL,; GOAL,.

Rules with an empty head are called directives, which are
executed only once, e.g.
.- dynamic(dodava / 2).

Queries are syntactically identical with rules’ bodies (,anonymous
rules”)

Databases, T. Plachetka, S2024-2025

Unification, =

The key algorithm is unification of two terms (Herbrand)
Initialization step
Initialize o to {}
Initialize failure to false
Push the equation 77 = 75 on the stack
Loop
repeat {
pop = = y from the stack
if x 1s a constant and » == y. Continue.
else if z is a variable and T does-netappearin y. NO OCccuUrs-check
Replace x with y in the stack and in . Add the substitution {2 = y} to
0.
else 1if x 1s a vaniable and » == y. Continue.
else 1if y 1s a variable and x 1s not a variable.
Push y = x on the stack.
else if x and y are compounds with x = f(xq,....,x,)andy = f(y1, ..., Yn).
Push on the stack x; = y; for 7 ranging from 1 to n.
else Set failure to true, and o to {}. Break.

+until (stack # ()
Databases, T. Plachetka, S2024-2025

Unification, =

Prolog implementations omit occurs-check in unification, although

It can be implemented efficiently (it was long believed that it is
responsible for Prolog being slow)

Contemporary Prologs offer a correct unification, but they do not
use it internally:

? unify_with_occurs_check(X, f(X)).

No

? unify_with_occurs_check(X, f(a)).

X=f(a)

Databases, T. Plachetka, S2024-2025

Computation of queries: SLD resolution

Derivation (proof) of truths: modus ponens
Socrates is a man.
Man is mortal.

Socrates Is mortal.
Formal notation Prolog notation

Facts Qv man (’ Socrates’) .

Rules a= 3 mortal (X) :- man (X) .

Conclusion 3 mortal (' Socrates’) .
Prolog uses modus ponens the other way around. It attempts to
prove 3, and begins with an assumption that it holds. Then it
constructs a proof for § by attempting to prove o. The proof is
constructed from the consequence to axioms. When the proof of a
fails, then Prolog concludes that § does not hold, i.e. =3 holds

(negation as failure)
Databases, T. Plachetka, S2024-2025

Computation of queries: SLD resolution
Initialization
Initialize Resolvent to Q. the mitial goal of the resolution algorithm.
Initialize o to {}
Initialize failure to false
Loop with Resolvent = Gy, Gy, ..., G;, ..., G,
while (Resolvent # () {
1. Select the goal G; € Resolvent;
2. If G; == true, delete 1t and continue;
3. SelecttheruleH :- By, ..., B, mnthe database such thatG; and H
unify with the MGU 6. If there is no such a rule then set failure to
true; break;
. Replace G; withBy, ..., B, mResolvent

% Resolvent = Gy,...,G;_1, B1,...,Bn, Giz1,..., G
. Apply 0 to Resolvent and to Q;
. Compose o with ¢ to obtain the new current o;

b
This algorithm does not specify the order for choice of goals and
rules, the choice is non-deterministic. Prolog always makes the

choice deterministically, from left to right (a stable model)
Databases, T. Plachetka, S2024-2025

Computation of queries: SLD resolution, 4-port model

? pP(X).
ENTER Call > Exit NEXT;

Fail < Redo

P(X) - q(X), r(X).
p (X)

Databases, T. Plachetka, S2024-2025

Computation of queries: SLD resolution, 4-port model

Prolog’s “tracing” (debugging) mode reports the transitions in the
4-port model

mortal(X) :- man(X).
man(socrates).

2 ?- trace.

Yes

[trace] 2 ?- mortal(socrates).
Call: (7) mortal(socrates) ? creep
Call: (8) man(socrates) ? creep
Exit: (8) man(socrates) ? creep
Exit: (7) mortal(socrates) ? creep

Yes

Databases, T. Plachetka, S2024-2025

Computation of queries: SLD resolution, cut, !

Cut (!) is a special predicate, which always evaluates as TRUE,
but it also removes the backtracking (redo) from all subgoals to
the left of itself, within one rule. It is used for optimalisation
(pruning of branches which do not lead to the result). Beware, cut
IS often a source of programming errors!

p(X) - a(X), !, r(X).

p (X)

Databases, T. Plachetka, S2024-2025

Computation of queries: SLD resolution, cut, !

Let us suppose that a predicate P consists of three clauses:

P e By vewp Bep b Beans ssns Bas
B i Bpp wewp B
B i @y vsug o

Executing the cut in the first clause has the following consequences:

1. All other clauses of the predicate below the clause containing the cut are pruned.
That 1s, here the two remaining clauses of P will not be tried.
2. All the goals to the left of the cut are also pruned. Thatis, Ay, ..., A; will
no longer be tried.
. However, 1t will be possible to backtrack on goals to the right of the cut.

o T T .+ . 17—\.\-1, 7 ! 7 A1+1 7 . . Avn .

I
e

[
\ap.

Databases, T. Plachetka, S2024-2025

Computation of queries: minimum without cut

min(X, Y, X) .- X <Y.
min(X, Y, Y) - X>=Y.

[trace] 3 ?- min(1, 2, X).
Call: (7) min(1, 2, _G443) ? creep
Call: (8) 1 <2 ? creep
Exit: (8) 1 <2 ? creep
Exit: (7) min(1, 2, 1) ? creep
X=1;
Redo: (7) min(1, 2, G443) ? creep
Call: (8) 1 >=2 ? creep
Fail: (8) 1 >=2 ? creep
No

Databases, T. Plachetka, S2024-2025

Computation of queries: minimum with “green cut’

min(X, Y, X) - X <Y, I.
min(X, Y, Y) :- X >= Y, I.

[trace] 2 ?- min(1, 2, X).
Call: (7) min(1, 2, _G443) ? creep
Call: (8) 1 <2 ? creep
Exit: (8) 1 <2 ? creep
Exit: (7) min(1, 2, 1) ? creep
X=1;
No

Databases, T. Plachetka, S2024-2025

Computation of queries: minimum with “red cut”

min(X, Y, X) .- X <Y, ..
min(X, Y, Y).

[trace] 1 ?- min(1, 2 ,X).
Call: (7) min(1, 2, _G431) ? creep
Call: (8) 1 <2 ? creep
Exit: (8) 1 <2 ? creep
Exit: (7) min(1, 2, 1) ? creep
X=1;
No

The computation is the same, but it depends not only on the choice of goals
from left to right, but also on the choice of rules from left to right. Green cuts are
considered “harmless”. Red cuts should be avoided

Databases, T. Plachetka, S2024-2025

Computation of queries: negation with “red cut’

Negation in Prolog Is ,positive” (negation as failure):
If P holds, then not(P) does not hold.
If P does not hold, then not(P) holds

This can be expressed using a cut, which must be ,red” (fail/O is a
predicate, which is false, i.e. always fails):

not(P) :- P, !, fall. or not(P) :- call(P), !, fall.

not(P). (call(P) forces Prolog to evaluate P)

Equivalently, with if-then-else: “if P succeeds then fail, otherwise
succeed”
not(P) :- call(P) -> fail ; true.

Databases, T. Plachetka, S2024-2025

Computation of queries: if-then-else with “red cut”

If-then-else is a predicate ->/3. *->’(condition, action1, action2)
which corresponds to
If condition then actionl else action2

This can be expressed using cut:
'->’(condition, action1, action2) :- condition, !, actionl.
'->’(condition, action1, action2) :- !, actionZ2.

Databases, T. Plachetka, S2024-2025

] 1s an empty list
a] is a list with an atom a

a, X] Is a list with an atom a and a variable X
[a], [X]] is a list with 2 lists (it differs from the previous list)

Although it is perhaps not evident, a list is a functor, ./2,
(HEAD, TAIL). Syntax [a, X] is an abbreviation for .(a, .(X, nil)).
Notation [HEAD | TAIL] is equivalent with .(HEAD, TAIL)

Databases, T. Plachetka, S2024-2025

[H | T].
[b]

[H | T].
[]

[H | T].
[[b]]

[X, Y | T].
[c, dl

?- [[a, b, ¢]l, d, el = [H | T].
H = [al bl C] ’ T = [dl e]

The empty list cannot be split:

?- [1 = [H | T].
No

Databases, T. Plachetka, S2024-2025

Examples of predicates over lists:
member(X, [X | _]).
member(X, [| T]) :- member(X, T). % recursion

append([], L, L).
append([H | T1], L, [H | T2]) :- append(T1, L, T2). % recursion

reverse((], []).

reverse([H | T], R) :- reverse(T, RT), append(RT, [H], R).

This works, but is memory consuming (the depth of the stack is
proportional to the length of the list)

Databases, T. Plachetka, S2024-2025

Optimised reverse which uses an accumulator (a frequent trick):
reverse(L1, L2) :- reverse(L1, [], L2).

reverse([], L, L).

reverse([H | T], Acc, L) :- reverse(T, [H | Acc], L).

Databases, T. Plachetka, S2024-2025

Programming style

Prolog manuals usually provide an information on which
arguments of a predicate are (usually) input (+), i.e. bound; and
which are output (-), i.e. free; and which are input/output (?), I.e.

bound or free, e.qg.
between(+Low, +High, ?Value), append(?Listl, ?List2, ?List3)

The goals are usually written one in a line:
reverse([H | T], R) :-

reverse(T, RT),

append(RT, [H], R).

Databases, T. Plachetka, S2024-2025

findall, bagof, setof

findall (+Variable, +Goal, ?Solution) unifies Solution with
the list of all the possible values of Variable when querying Goal.

?- findall (X, character (X, iliad), B).
B = [ulysses, hector, achilles]

?- findall (X, character(X, Y), B).
= [ulysses, hector, achilles, ulysses, penelope,
telemachus]

Databases, T. Plachetka, S2024-2025

findall, bagof, setof

The predicate bagof (+Variable, +Goal, ?Solution) is similar to
findall/3. except that it backtracks on the free variables of Goal:

?- bagof (X, character(X, iliad), Bag).
Bag = [ulysses, hector, achilles]

?- bagof (X, character(X, Y), Bag).
Bag =[ulysses, hector, achilles], Y = iliad ;
Bag = [ulysses, penelope, telemachus], Y = odyssey ;

No.

Variables in Goal are not considered free if they are existentially quantified.
The existential quantifier uses the infix operator “”~”. Let X be a variable in Goal.
X "Goal means that there exists X such that Goal 1s true. bagof /3 does not back-

track on it. For example:

?- bagof (X, Y"character(X, Y), Bag).
Bag = [ulysses, hector, achilles, ulysses,

penelope, telemachus]

?- bagof (X, Y" (character(X, Y), female (X)), Bag).
Bag = [penelope]

Databases, T. Plachetka, S2024-2025

findall, bagof, setof

The predicate setof (+Variable, +Goal, ?Solution) does the same
thing as bagof /3. except that the Solution list is sorted and duplicates are re-
moved from it:

?- setof (X, Y"character (X, Y), Bag).
Bag = [achilles, hector, penelope, telemachus,
ulysses]

Databases, T. Plachetka, S2024-2025

Other optimisation technigques: dynamic predicates

This (inefficient) program uses a double recursion:
fibonacci (1, 1).
fibonacci(2, 1).
fibonacci (M, N) :-
M > 2,
Ml is M - 1, fibonacci (M1, N1),
M2 is M - 2, fibonacci (M2, N2),
N is N1 + N2.

This too, but more efficiently (dynamic update of the predicate):

.- dynamic(fibonacci / 2).
fibonacci (1, 1).
fibonacci(2, 1).
fibonacci (M, N) :-
M > 2,
M1 is M - 1, fibonacci (M1, N1),
M2 is M - 2, fibonacci (M2, N2),
N is N1 + N2,
asserta (fibonacci (M, N)) . C————————

Databases, T. Plachetka, S2024-2025

Other optimisation techniques: tail recursion

A rule is tail-recursive, when the recursion appears only in the last
subgoal of the rule. A tail recursion can be easily transformed to
an iteration

Inefficient:

F(X)] 1= g(X, ¥), E(Y).

f(X) :- fact (X) ./*factis an EDB predicate, not factorial */
More efficient:

f(X) :- fact (X).

f(X) :- g(X, Y¥), £(Y).

Also more efficient, but less comprehensible:

EX) o= X, ¥), L, TLY).

f(X) :- fact (X).

Databases, T. Plachetka, S2024-2025

