
Databases, T. Plachetka, S2024-2025 1SQL database tuning

Databases

Tomáš Plachetka, Ján Šturc

Faculty of mathematics, physics and informatics,
Comenius University, Bratislava

Summer 2024–2025

http://www.dcs.fmph.uniba.sk/~plachetk

/TEACHING/DB2

http://www.dcs.fmph.uniba.sk/~sturc/databazy/rldb

Databases, T. Plachetka, S2024-2025 2SQL database tuning

Database tuning

Engineering aspects of query optimisation
• Estimation of the output size of a query
• Tuning of schema: indexes, denormalisation, partitioning

Databases, T. Plachetka, S2024-2025 3SQL database tuning

Estimation of the output size

The evaluation of a query plan (e.g. choosing the order of joins) is
measured in the total number of output tuples. However, how to
compute the number of output tuples before computing
them?

For example, the number of tuples produced by a join R S lies in
general between 0 (an empty relation) and |R||S| (a cartesian
product). It depends on the data in R and S (and the join
condition)

The query optimiser collects some statistics on the relations in a
special table called the catalogue. This allows for a better
estimation than, say, |R||S| / 2 for the output size of R S

Databases, T. Plachetka, S2024-2025 4SQL database tuning

Estimation of the output size

Statistics for a relation R:
B(R): the number of blocks
T(R): the number of tuples
V(R, A): the number of distinct values of the attribute A
MAX(R, A): the maximum value of A
MIN(R, A): the minimum value of A

We will assume SQL queries of form
select AttrList
from R1, ..., RN

where Cond

The reduction factor for a query Q (i.e. the output relation) is
defined as rf(Q) = B(Q) / (B(R1) * ... * B(RN))

Databases, T. Plachetka, S2024-2025 5SQL database tuning

Estimation of the output size

Idea: The reduction factor for a query Q will be estimated by
induction on the structure of Q (without actually computing Q):
rf(Q) = rf(AttrList) * rf(Cond) /* assumption of independence */

rf(AttrList) = #attr(AttrList) / Si #attr(Ri)
/* assumption that all attributes contribute equally to the output
size */

rf(Cond1 and Cond2) = rf(Cond1) * rf(Cond2)
/* assumption of independence */

rf(Cond1 or Cond2) = min(1, rf(Cond1) + rf(Cond2))
/* assumption of independence */

Databases, T. Plachetka, S2024-2025 6SQL database tuning

Estimation of the output size

rf(Ri.A=const) = 1 / V(Ri.A)
/* assumption of uniform distribution */

rf(Ri.A>const) = (MAX(Ri.A) – const) / (MAX(Ri.A) – MIN(Ri.A))
/* assumption of uniform distribution */

rf(Ri.A=Rj.B) = 1 / (max(V(Ri.A), V(Rj.B)))
/* assumption of uniform distribution */

etc.

E.g. the number of the output tuples for a selection sR.A=const (R) can
then be estimated as T(R) * rf(R.A=const)

Databases, T. Plachetka, S2024-2025 7SQL database tuning

Schema tuning: a sample database

A sample university database (Kifer et al.):
students(StudentId, SName, SAddr, SStatus)
professors(ProfId, PName, DeptId)
courses(CourseId, DeptId, CName, CDescr)
transcripts(StudentId, CourseId, Semester, Grade)
teaching(ProfId, CourseId, Semester)

Databases, T. Plachetka, S2024-2025 8SQL database tuning

Schema tuning: indexes
A clustered index (usually created on the primary key) reflects the
physical ordering of tuples in a relation. As there is only one
physical ordering of tuples, there is at most one clustered index
There may be arbitrarily many non-clustered indexes (hash
tables or search trees, e.g. B+-trees) attached to a relation

Paul00112233
Anna00112234
Matt00112235
Tim00112236

Carol00112237
Rob00112238

00112233
00112235
00112236
00112238

Anna
Carol
Paul
Tim

clustered index relation unclustered index

Databases, T. Plachetka, S2024-2025 9SQL database tuning

Schema tuning: indexes
professors(ProfId, PName, DeptId)

Assume that ProfId is the primary key. Hence, the system probably
automatically creates a clustered index on ProfId (unless the schema states
otherwise)

select p.DeptId
from professors p
where p.PName = :name

If names of professor tend to differ, create an unclustered index on PName

However, what if there are many professors with the same name (e.g.
'Johanson' in Island)? If this is a frequent query, create a clustered index on
PName, not on the primary key (and let the index on the primary key be
unclustered, which guarantees the uniqueness of ProfId anyway)

Databases, T. Plachetka, S2024-2025 10SQL database tuning

Schema tuning: indexes
transcripts(StudentId, CourseId, Semester, Grade)

select t.StudentId, t.CourseId
from transcripts t
where t.Grade = :grade

Do not create an unclustered index on Grade, because grades are from a small
domain (A-Fx). For a concrete :grade, the output will be large. An index scan
may therefore be slower than a simple sequential scan

Do not create a clustered index on Grade, save it for other queries. The best is
not to create any index at all

Do not create indexes for queries which access (e.g. output) more than
20% of tuples

Databases, T. Plachetka, S2024-2025 11SQL database tuning

Schema tuning: indexes
transcripts(StudentId, CourseId, Semester, Grade)

Presumably, the queries to this table frequently use conditions on StudentId
and CourseId. Less frequent queries use a condition on Semester. It seems
therefore logical to create a clustered index on [StudentId, CourseId]. However,
it is not a good idea, because there is seldomly more than 1 record for a given

[StudentId, CourseId] (only when a student repeats a course)

It is appropriate to create an unclustered hash index on
[StudentId, CourseId] (a hash index has a smaller overhead than a
B+-tree and we are discussing non-range queries). In addition, create a
clustered B+-tree index on Semester (for which range queries are
frequent)

Use clustering for grouping tuples which are likely to appear in the
output of queries

Databases, T. Plachetka, S2024-2025 12SQL database tuning

Schema tuning: indexes

teaching(ProfId, CourseId, Semester)

Suppose that we have already created a clustered B+-tree index on
Semester in order to tune a query. We are tuning another query which
needs a clustered index on [ProfId, CourseId]. What now?

In this case (a small number of attributes), we are lucky, beause we can
create an unclustered B+-tree index on
[ProfId, CourseId, Semester]. The computation of output tuples will
then not access the table teaching at all, because the values will be
fetched directly from the index! (This is called an index cover.)

Databases, T. Plachetka, S2024-2025 13SQL database tuning

Schema tuning: indexes
professors(ProfId, PName, DeptId)
courses(CourseId, DeptId, CName, CDescr)
teaching(ProfId, CourseId, Semester)

select
from professors p, courses c
where p.DeptId = ‘cs’ and c.DeptId = ‘math’ and c.CourseId in
(

select t.CourseId
from teaching t
where t.Semester = ‘s2015’ and t.ProfId = p.ProfId

)

Nested queries are (usually) optimised separately. Hence, a clustered index on
CourseId in teaching does not help at all, because CourseId does not appear in
the where clause of the subquery. It is better to rewrite the query without
nesting

Databases, T. Plachetka, S2024-2025 14SQL database tuning

Schema tuning: indexes
professors(ProfId, PName, DeptId)
courses(CourseId, DeptId, CName, CDescr)
teaching(ProfId, CourseId, Semester)

select
from professors p, courses c, teaching t
where p.DeptId = ‘cs’ and c.DeptId = ‘math’ and c.CourseId = t.CourseId and
t.Semester = ‘s2015’ and p.ProfId = t.ProfId

A good evaluation plan is then (perhaps extended with some preprocessing)
sDept='cs' (professors) sSemester='s2015' (teaching sDeptId='math' courses)
which benefits from a clustered index on CourseId in teaching. (The table
professors is covered by indexes.)

Databases, T. Plachetka, S2024-2025 15SQL database tuning

Schema tuning: indexes
transcripts(StudentId, CourseId, Semester, Grade)

select t.Semester, count(*) as Cnt
from trancripts t
where t.Grade <= :grade
group by t.Semester

An intuition tells us to create a clustered B+-tree index on Grade, because the
condition expresses a range of values. However, this condition is not very
selective...
It is better to create a clustered index on Semester (B+-tree or hash) which is
needed for creating the groups. Each group is then sequentially scanned,
counting the number of tuples

Databases, T. Plachetka, S2024-2025 16SQL database tuning

Schema tuning: indexes
transcripts(StudentId, CourseId, Semester, Grade)
students(StudentId, SName, SAddr, SStatus)

select t.Semester, count(*) as Cnt
from students s, transcripts t
where s.StudentId = t.StudentId and t.CourseId = 'cs'
group by t.Semester

With no indexes, the plan may be a nested-loop-join or a sort-merge-join. Such
plans are inefficient, because the output is probably small and intermediate
results are probably large.
It helps to create an index on CourseId (which is the primary key anyway) in the
table transcripts

Databases, T. Plachetka, S2024-2025 17SQL database tuning

Schema tuning: indexes
transcripts(StudentId, CourseId, Semester, Grade)
teaching(ProfId, CourseId, Semester)

select t.ProfId, r.StudentId
from teaching t, transcripts r
where t.Semester = r.Semester and t.CourseId = r.CourseId

The output is probably much larger than any of the tables involved. An
appropriate plan is a sort-merge-join for the computation of the join. We can
help the optimiser with the choice of this plan by the creation of a clustered
index [Semester, CourseId] for the table transcript (which saves a large part of
the sorting)

Databases, T. Plachetka, S2024-2025 18SQL database tuning

Schema tuning: indexes
students(StudentId, SName, SAddr, SStatus)
professors(ProfId, PName, DeptId)
courses(CourseId, DeptId, CName, CDescr)
transcripts(StudentId, CourseId, Semester, Grade)
teaching(ProfId, CourseId, Semester)

ProfId and CourseId are foreign keys in teaching (a non-existing professor
does not teach, a non-existing course is not taught). E.g. each deletion of e.g. a
professor from professors fires an integrity check in the table teaching (deleting
all the tuples with that ProfId)
It is therefore advisable to have an index on foreign keys

Databases, T. Plachetka, S2024-2025 19SQL database tuning

Schema tuning: form of queries
The choice of built-in operators is important

courses(CourseId, DeptId, CName, CDescr, Hours)

select c.CName
from courses c
where c.Hours <> 2

Avoid <> when possible, it usually leads to a sequential scan. If '2' is a very
frequent value for hours, then this is perhaps better (a union of all other values):
select c.CName
from courses c
where c.Hours = '1' or c.Hours = '3' or c.Hours = '4' or c.Hours = '5'

Databases, T. Plachetka, S2024-2025 20SQL database tuning

Schema tuning: form of queries
professors(ProfId, PName, DeptId, HatSize)

select p.DeptId, max(p.HatSize)
from professors p
group by p.DeptId
having p.DeptID in ('cs', 'math')

It is better to move the selection to the where clause, it will be applied earlier:
select p.DeptId, max(p.HatSize)
from professors p
where p.DeptID = 'cs' or p.DeptID = 'math'
group by p.DeptId

Although these queries are equivalent, the optimiser may apply the selection
after aggregation in the plan for the first query, which unnecessarily increases
the size of the intermediate results

Databases, T. Plachetka, S2024-2025 21SQL database tuning

Schema tuning: denormalisation

students(StudentId, SName, SAddr, SStatus)
professors(ProfId, PName, DeptId)
courses(CourseId, DeptId, CName, CDescr)
transcripts(StudentId, CourseId, Semester, Grade)
teaching(ProfId, CourseId, Semester)

Denormalisation increases the performance of frequent
queries by the violation of a normal form of some table or
tables. It often has the form of adding new (redundant)
attribute to a table

Databases, T. Plachetka, S2024-2025 22SQL database tuning

Schema tuning: denormalisation

students(StudentId, SName, SAddr, SStatus, AvgGrade)
transcripts(StudentId, CourseId, Semester, Grade)

For example, if a query concerning the overall averages over
students' grades is frequent, the table student can be extended
with an attribute AvgGrade

A common problem with such a denormalisation are updates to
the database. In this case, when the table transcript changes,
the value of AvgGrade in students must be updated as well.
This is what triggers are used for

A general advice is: do not use denormalisation (unless you
know very well what you are doing)

Databases, T. Plachetka, S2024-2025 23SQL database tuning

Schema tuning: denormalisation (horizontal partitioning)
transcripts(StudentId, CourseId, Semester, Grade)

select t.StudentId, t.CourseId
from transcripts t
where t.Grade = :grade

If this is a very frequent query, the table transcript could be explicitly grouped:
transcriptsA(StudentId, CourseId, Semester)
transcriptsB(StudentId, CourseId, Semester)
...
transcriptsF(StudentId, CourseId, Semester)
Then the query becomes e.g.
select t.StudentId, t.CourseId
from transcriptsA t

Again, a general advice is: do not do this

Databases, T. Plachetka, S2024-2025 24SQL database tuning

Schema tuning: denormalisation (vertical partitioning)

students(StudentId, SName, SAddr, SStatus, Photo, Phone, ...)

If most attributes are usually unused in queries, the table can be
split into two tables, e.g.
students1(StudentId, SName)
students2(StudentId, SStatus, Photo, Phone, ...)

Some systems do this internally (it saves the transfer costs for
retrieving tuples from the disk and writing tuples to the disk)

Databases, T. Plachetka, S2024-2025 25SQL database tuning

Summary
This is (an incomplete) collection of tuning techniques of an engineering
character. A general advice:
•Do not fiddle with the schema denormalisation prematurely
•Choose the clustered indexes with care (the change of a clustered index
requires resorting the relation), reflect the structure of intermediate results of
frequent queries
•Think twice before you create an additional unclustered index. Indexes can
significantly speed up queries, but slow down updates (as all indexes attached
to relations must also be updated)
•When importing a large amount of data into the database, consider to remove
all indexes; and recreate the indexes back again after the database has been
populated
•Do not use all the features of the SQL language. Write queries in a "canonical"
form which does not unnecessarily limit the optimiser
•When a machine-generated plan for an SQL query differs from your
expectation, manually rewrite the query directly in the relational algebra. If your
SQL system does not allow you to do this, learn the details of its optimiser!

	1 - Slide1
	2 - Slide2
	3 - Slide3
	4 - Slide4
	5 - Slide5
	6 - Slide6
	7 - Slide7
	8 - Slide8
	9 - Slide9
	10 - Slide10
	11 - Slide11
	12 - Slide12
	13 - Slide13
	14 - Slide14
	15 - Slide15
	16 - Slide16
	17 - Slide17
	18 - Slide18
	19 - Slide19
	20 - Slide20
	21 - Slide21
	22 - Slide22
	23 - Slide23
	24 - Slide24
	25 - Slide25

