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Abstract

A snark is a nontrivial bridgeless cubic graph whose edges can not be colored using three
colors. These graphs are important in proving or disproving several famous conjectures
of graph theory. G. Brinkmann et al. generated all snarks of order up to 36 using a
computer. To better understand the structure and uncolorability of snarks, we analyze
all irreducible cyclically 5-edge connected snarks, describe their structure and explain
why they are uncolorable. In doing so, we will view a 3-edge-coloring of a cubic graph
as at a nowhere zero 4-flow.

In our work, we introduce several operations allowing us to construct new infinite
families of snarks.

Keywords: snark, irreducible, cyclical connectivity, Tait coloring, flow
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Abstrakt

Snark je netriviálny bezmostový kubický graf, ktorého hrany nemožno zafarbiť tromi
farbami. Tieto grafy majú veľký význam v dokazovaní alebo vyvracaní niekoľkých
známych hypotéz teórie grafov. G. Brinkmann a kol. vygenerovali pomocou počítača
všetky snarky až do rádu 36. Aby sme lepšie pochopili štruktúru a nezafarbiteľnosť
snarkov, analyzujeme všetky ireducibilné cyklicky 5-súvislé snarky, opíšeme ich štruk-
túru a vysvetlíme, prečo sú nezafarbiteľné. Budeme sa pritom pozerať na 3-hranové-
zafarbenie kubického grafu ako na nikde nulový 4-tok.

V našej práci predstavíme niekoľko operácií, ktoré nám umožnia konštruovať nekonečné
triedy snarkov.

Kľúčové slová: snark, ireducibilný, cyklická súvislosť, Taitovo zafarbenie, tok
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Introduction

The Four Color theorem is one of the most important theorems in graph theory. One
of the first attempts to prove it was made by P. G. Tait in 1880 showing that it is
equivalent to the statement that every bridgeless cubic planar graph is 3-edge-colorable.
At that time, it was believed that every bridgeless cubic graph is 3-edge-colorable.
However, this conjecture was disproved by J. Petersen introducing the Petersen graph
which is not 3-edge colorable. Since then, the bridgeless cubic graphs that are not 3-
edge colorable became the subject of research. M. Gardner named such graphs snarks.

While there was no proof of the Four Color Theorem, snarks were studied in order
to prove it or find a counterexample. At present, there are others famous conjectures
whose possible counterexamples are snarks, for example the Cycle Double Cover Con-
jecture, the Five-flow Conjecture or the Fulkerson six 1-factor Double Cover conjecture.

Snarks are very rare graphs. After Petersen published the Petersen graph in 1898,
the next two Snark was discovered in 1946 by D. Blanuša [1]. Since 1975 there were
only four known snarks, until R. Isaacs discovered two infinite families of snarks [8].
In 2013, G. Brinkmann et al. generated all snarks up to order 36 using a computer [2].
Most of these snarks were not thoroughly analyzed and although we know they are not
3-edge colorable, we do not really understand why.

In our work, we analyze the discovered small snarks and explain why they are
uncolorable. Knowing the structure of small snarks is important for further research.
Principles observed in small snarks can be generalized to construct infinite families of
snarks with specific properties and move us closer to a characterization of all snarks.

Although the essence of the definition of a snark consists of being a bridgeless cubic
graph that is not 3-edge-colorable, there can be observed snarks that are more or less
trivial modifications of other snarks. Therefore we will focus on snarks which can be
considered as nontrivial in some reasonable way, namely on the irreducible cyclically
5-connected snarks.
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Chapter 1

Multipoles and Snarks

1.1 Multipoles

In our work, we will use the generalized notion of a graph which admits dangling
edges, i. e. edges with free ends which we can get after deletion of some edge-cut. Such
graphs are called multipoles. The term of the multipole was first used by Fiol [6] and
subsequently by other authors [14] [12].

A multipole is a pair M = (V (M), E(M)), where V (M) is a finite set of vertices
and E(M) a finite set od edges. Every edge e ∈ E(M) has two ends and every end of
e may or may not be incident with a vertex. The edges of a multipole M are of four
types.

1. A link is an edge whose ends are incident with two distinct vertices.

2. A loop is an edge whose ends are incident with one same vertex.

3. A dangling edge is an edge which has only one end incident with vertex.

4. An isolated edge is an edge whose both ends are incident with no vertex.

A semiedge is an end of an edge that is incident with no vertex. The set of all
semiedges of a multipole M is denoted by S(M). Note that a dangling edge contains
one semiedge and isolated edge two semiedges. If a multipole has k dangling edges, it
is called a k-pole (for instance, a 0-pole is a graph).

Usually, it is convenient to divide the set of the semiedges S(M) into pairwise
distinct sets S1, S2, . . . , Sn which are called connectors. Each connector is endowed
with a linear ordering of semiedges. A semiedge which is contained in none of the
connectors is called a residual semiedge. A set of all residual semiedges of a multipole
M is denoted by Res(M). A multipole M with n connectors S1, S2, . . . , Sn such that
|Si| = ci for i ∈ {1, 2, . . . , n} and the set of residual semiedges R of the size r is denoted
by M(S1, S2, . . . , Sn;R) and it is also called a (c1, c2, . . . , cn; r)-pole. If a connector S

2



CHAPTER 1. MULTIPOLES AND SNARKS 3

contains only one semiedge s, we will write instead of the set {s} only the semiedge s
alone.

The order of a multipole M , denoted by |M |, is the number of its vertices. The
degree of a vertex v of a multipole is the number of edge ends incident with v and is
denoted by deg(v). In our work, we will consider cubic multipoles, i. e. multipoles
where each vertex has degree 3.

An ordered multipole is a multipole whose set S(M) of semiedges is endowed with
a linear order. If a k-tuple (e1, e2, . . . , ek) represents the linear order of the semiedges
of an ordered k-pole M , then we will usually write M = M(e1, e2, . . . , ek).

We will consider a multipoleM(S1, S2, . . . , Sk;Sk+1) with the ordered set of residual
semiedges Sk+1 as an ordered multipole with an ordering obtained as the union of
orderings of S1, S2, . . . , Sk+1 in this order. Note that the order of Sk+1 can be given
implicitly, for example when |Sk+1| ≤ 1.

Next, we describe a method of joining two multipoles together. Let e and f be two
edges (not necessary distinct) of a given multipole M and let e, f have semiedges e′,
f ′ respectively such that e′ 6= f ′. Then we can identify e with f and construct a new
multipole M ′ in a following way. If e 6= f , we replace e and f with a new edge g whose
ends are the other ends of e and f . So we set E(M ′) = (E(M) − {e, f}) ∪ {g}. If
e = f , then e is an isolated edge, and we simply put E(M ′) = E(M) − {e}. In this
case we in fact create an “isolated loop” which does not have any end and therefore is
deleted. In other words, the identification of the semiedges of an isolated edge cancels
that edge. We say that the multipole M ′ arises from M by the junction of e′ and f ′.

Let M = M(e1, e2, . . . , ek) and N = N(f1, f2, . . . , fk) be two ordered k-poles. Then
the junction, or more precisely the k-junction M ∗ N of M and N , is the graph
that arises from the disjoint union M ∪ N by performing the junctions ei with fi

for i ∈ {1, 2, . . . , k}. Similarly, for connectors S1, S2 of size k of a multipole M , we
define the junction of the connectors S1, S2 as an operation consisting ok k individual
junctions of ith semiedge from S1 and ith semiedge from S2 for i ∈ {1, 2, . . . , k}.

1.2 Tait Colorings of Multipoles

Generally, in our work, we will color multipoles, so also the dangling edges can have
color. It is important to choose a convenient set of colors. As we will show later, the
set of non-zero elements of the Klein group Z2 ×Z2 has very good properties. We will
denote this set as K.

Definition 1. Let M be the multipole and let ϕ : E(M)→ K be a mapping assigning
to each edge of M a color from K. Then ϕ naturally induces assignment of colors to
the edge ends of M . The mapping ϕ is called a 3-edge-coloring or simply a coloring of
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the multipole M , if for each vertex v ∈ V (M) the three edge ends incident with v have
assigned pairwise distinct colors.

If there exists a coloring for a multipole M , we say that M is colorable, otherwise
uncolorable.

Using the colors from the set K, we can use addition in the group Z2 × Z2 to
analyze properties of the mapping ϕ : E(M) → K. If we denote δ(v) the set of edge
ends incident with the vertex v, then obviously ϕ is a coloring if and only if∑

e∈δ(v)

ϕ(e) = 0

for each vertex v. This equation is the Kirchhoff’s law for flows in graphs. Thus
a coloring of a multipole induces a nowhere-zero (Z2 × Z2)-flow [5] and vice-versa.
Considering that each element in K is its inverse, we do not have to distinguish the
orientation of the flow. Such coloring using the color set K is also called Tait coloring.

When we view a coloring ϕ of a multipole M as a flow, then we can easily observe
form the properties of a flow that ∑

e∈S(M)

ϕ(e) = 0.

Let k1, k2 and k3 be the numbers of dangling edges colored by colors (0, 1), (1, 0)

and (1, 1) respectively. If the first entry of the sum of colors from Z2×Z2 has to be 0,
then k1 and k2 have to have the same parity. The same holds for k2 and k3. This result
is known as the Parity Lemma which was first published by Blanuša [1] and then by
Descartes [4], originally stated for the numbers of the used colors in an edge-cut of a
3-edge-colorable graph.

Theorem 1 (Parity Lemma). Let M be a k-pole and k1, k2 and k3 the numbers of
dangling edges colored by color (0, 1), (1, 0) and (1, 1), respectively. Then

k1 ≡ k2 ≡ k3 ≡ k (mod 2).

1.3 Snarks

Before we define snarks, we explain several terms we will use in the characterization
of snarks. A very important property of cubic graphs is the connectivity, precisely the
edge-connectivity. However, as each cubic graph is at most 3-edge-connected, there
is a need to better distinguish the connectivity of cubic graphs. We say that a cubic
graph G is cyclically k-edge-connected if there is no set S containing less than k edges
such that each component of G− S contains a cycle. A cyclical edge-connectivity of a
graph G is the smallest number k such that G is cyclically k-edge-connected. As the
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cyclical edge-connectivity and vertex-connectivity of a given graph are equal [13], we
will omit the word edge and say only cyclically k-connected and cyclical connectivity.

A girth of a graph G is the length of the shortest cycle in G.

In our work, we will use a definition of a snark which follows several famous con-
jectures which are proposed for bridgeless graphs .

Definition 2. A snark is a bridgeless cubic graph which is not 3-edge-colorable.

Many others authors add extra criteria to the definition of snark such as girth at
least 5 and high cyclically connectivity to exclude “trivial” snarks. On the other side,
there are allowed bridges in snarks in some papers [3] [14]. We will discuss the questions
of triviality of snarks later.

The first known snark was found in 1898 by Petersen. It is known as the Petersen
graph at present. By 1974, there were only four known snarks when Isaacs discovered
the first infinite family of snarks which are named the flower snarks or Isaacs snarks
[8]. Isaacs also discovered an operation allowing to construct a new snark from two
given snarks [8].

Definition 3. Let G1 and G2 be snarks. The dot-product of G1 and G2 is a graph
G1 ◦G2 which is constructed in the following way:

1. Subdivide any two nonadjacent edges ab and cd from G1.

2. Remove any two adjacent vertices u, v from G2. Let 1, 2 and 3, 4, be the
neighbours of v and u, respectively.

3. Join the vertices a, b, c, d to 1, 2, 3, 4 in this order.

Isaacs showed that the dot-product of two snarks is again a snark [8]. We should
note that G1 ◦G2 is formally a set of graphs because the vertices u, v and edges ab, cd
can be chosen in multiple ways. For example, the two types of Blanuša’s snark [1] are
dot-products of two Petersen graph.

With the rise of computers, many snarks was discovered using help of computers.
In 2013, Brinkmann et al. generated list of all snarks with order at most 36 [2].

1.4 Questions of Triviality

As snarks often serve as counterexamples, in many definitions of snarks occurs in some
form a word “nontrivial”. This follows that many snarks are only small modifications
of other snarks.

If a snark S contains a triangle, we can replace it by a single vertex as shown in
Figure 1.1 resulting in the graph S ′. It can be easily shown that the graph S is colorable



CHAPTER 1. MULTIPOLES AND SNARKS 6

if and only if S ′ is colorable. We can look at this from the other side as an operation
allowing us to construct infinitely many snarks from a given one, but they will be only
the trivial modifications of the former one.

Consider a snark S with a quadrilateral. We can replace it by two parallel edges
as in the Figure 1.1 resulting in the graph S ′. Again, it is easy to see that if S ′ is
colorable, then S is also colorable. Note that this does not work in the reverse way.

Figure 1.1: Removing triangles and quadrilaterals in a snark.

Now we take a look at snarks with small cyclical connectivity. From the Parity
Lemma, it is easy to see that a cubic graph with a bridge is uncolorable.

Consider a snark S with an edge-cut of size 2 which decompose it into two 2-poles
M , N . If both M and N are colorable, then from the Parity Lemma, both dangling
edges in M and also in N have the same color, so we can extend the colorings of M
and N to a coloring of the snark S. Therefore at least one of the components M , N is
uncolorable. So we can construct a smaller snark from the snark S by joining the two
semiedges in the uncolorable component.

When a snark S has a 3-edge-cut, then again, one of the components M , N has
to be uncolorable. Otherwise, the dangling edges of M and N would have three dif-
ferent colors from the Parity Lemma. Thus by connecting the dangling edges of the
uncolorable component of S, we can construct a smaller snark.

These were the most common properties of nontrivial snarks which also appear
directly in many definitions of snarks. To distinguish these properties we will call
snarks trivial and nontrivial.

Definition 4. A snark with girth at least 5 and cyclically edge-conectivity at least 4
will be called nontrivial snark. The other snarks will be called trivial snarks.

With the conditions guaranteeing nontriviality, we can go further. In 1981, Golberg
proved following theorem ([7]).

Theorem 2. Let G be a snark with a cut-set of four edges whose removal leaves com-
ponents G1 and G2. Then either

1. one of G1 and G2 is not 3-edge-colorable; or

2. both G1 and G2 can be “extended” to snarks by adding two vertices to one of them
and edges to both in such a way that G is their dot-product.
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This theorem says that every cyclically 4-connected snark arose from one or two
smaller snarks. These snarks are not interesting for our work because the cause of their
uncolorability lies in other snarks.

Similar result showed Cameron, Chetwynd and Watkins for edge-cuts of size 5 [15].
Nedela and Škoviera generalized theorems of this type for edge-cuts of size k [14].

Theorem 3. Let G be a snark and let k ≥ 1 be an integer. Then there exists an integer
function κ(k) such that if G = M ∗ N is a k-junction of two k-poles, then one of the
following statements holds.

(a) One of M and N is not colorable.

(b) Both M and N can be extended to snarks M̄ and N̄ by applying the junction with
k-poles M ′ and N ′, each having at most κ(k) vertices. Moreover, |M̄ | ≤ |G| and
|N̄ | ≤ |G|.

Theorem 3, as well as Theorem 2 and other similar theorems of this type, describes
two causes which we can observe in edge-cuts of snarks. The part (b) says that the
snark G arose from two smaller snarks. Unfortunately, the theorem in general gives us
only existence of k-poles M ′ and N ′. It does not describe any way how the multipoles
M and N can be extended to snarks or how they created the greater snark G. For
k = 5, we know at least the the upper bound of added vertices κ(5) = 5 [15]. However,
for k ≥ 6 remains κ(k) unknown.

Now we look at the part (a) of Theorem 3. Let us consider a snark G = M ∗ N
satisfying the condition (a), so let us say thatM is uncolorable, thenM can be extended
to a snark M̄ ⊇ M of order not greater than |G|. In this case, we have reduced snark
G to the snark M̄ which is called k-reduction of G. If additionally |M̄ | < |G|, then we
call such k-reduction proper.

If the snark G has any proper k-reduction, the essence of its uncolorability can be
found in the smaller snark M̄ . Thus for the purpose of our work we will aim at snarks
which have no proper k-reduction.

Definition 5. A snark is called k-irreducible if it has no proper m-reduction for each
m < k. If a snark is is k-irreducible for each k, then it is called irreducible.

Other way of looking on the triviality of snarks is to ask how many and which
vertices of a snark we can remove to get a colorable graph. From the Parity Lemma,
removing one vertex from a snarks leaves uncolorable graph, so we have to remove
at least two vertices. A pair of vertices {u, v} of a snark S is called nonremovable,
if the graph S − {u, v} is colorable. If S − {u, v} is uncolorable, we call the pair of
vertices {u, v} removable. A snark S is called critical if every pair of distinct adjacent
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vertices in S is nonremovable. Furthermore, if every pair of distinct vertices in S is
nonremovable, we call the snark S bicritical.

Nedela and Škoviera characterized that a snark is irreducible if and only if it is
bicritical. [14].

To sum up, if a snark S admits some k-reduction, we can find the essence of the
uncolorability of S to a smaller snarks. Similarly, if the cyclically edge-connectivity
of S is smaller than five, the snark S arose from one or two smaller snark. When we
exclude mentioned cases, there are cyclically irreducible 5-connected snarks left, which
will be the main focus of our work.

1.5 Coloring Sets

To explain the uncolorability of snarks we will study in this work, we will decompose
a snark into smaller multipoles and look at the connections between them. Because we
will work with irreducible snarks, each multipole alone has to be colorable. One such
multipole has several possibilities how its dangling edges can be colored. However, if
we look at all multipoles, we would not find any coloring which would assign to all
corresponding dangling edges same colors.

Definition 6. Let M(e1, e2, . . . , ek) be an ordered k-pole. The coloring set of the
multipole M is the set

Col(M) = {(ϕ(e1), ϕ(e2), . . . , ϕ(ek)) | ϕ is a Tait coloring of M}.

The k-tuple (ϕ(e1), ϕ(e2), . . . , ϕ(ek)) is denoted by ϕ(S(M)) for a given coloring ϕ of
the ordered k-pole M with the set of semiedges S(M).

Definition 7. Let S = (e1, e2, . . . , ek) be a connector of a multipole M . The flow
through S it the value ϕ∗(S) =

∑k
i=1 ϕ(ei). The k-tuple (ϕ(e1), ϕ(e2), . . . , ϕ(ek)) is

denoted by ϕ(S).

A connector S is called proper if ϕ∗(S) 6= 0 for each coloring ϕ of the multipole M .
If ϕ∗(S) = 0 for each coloring ϕ of S, such connector is called improper. A multipole
is called proper if all of its connector are proper and similarly an improper multipole
has all of its connectors improper.

Two k-poles M and N are called color-disjoint if Col(M) ∩ Col(N) = ∅. Now we
can formally say that to construct a snark, it is sufficient to find two color-disjoint
multipoles.



Chapter 2

Commonly Used Multipoles

In many snarks, we can observe several similarities. There are some types of multipoles
which occurs in many snarks. They are constructed from snarks by removing some ver-
tices os subdividing some edges. Those multipoles are commonly used in constructing
infinite families of snarks with a specific properties [11], [12]. As we study cyclically
5-connected snarks, we will use only multipoles with at least five dangling edges. With
the mentioned multipole M we look also on the multipole M ′ consisting of edges or
vertices removed from the snark which M has been constructed from and we describe
the coloring set of the multipole M ′. This will prove useful in finding other multipoles
color-disjoint with M as M ′ is an example of a color-disjoint multipole.

2.1 Negator

Let S be a snark and uwv a path of length two in S. A negator is a (2, 2; 1)-pole
M(I, O;R) constructed from the snark S in a following way. Remove the u–v–path
from S and denote the dangling edges formerly incident with u and not w as e1, e2, and
the dangling edges formerly incident with v and not w as f1, f2. Denote the remaining
dangling edge as r. Set I = (e1, e2), O = (f1, f2) and R = {r}. We denote the 5-pole
constructed in this way as Neg(S, u, v). Note that this notation might be ambiguous,
because there could be more than one common neighbor of the vertices u, v. This
implies that the girth of the snark S is at most 4, so the snark S is trivial. As we study
primary nontrivial snarks, we will use this notation (used also in [12]) and possible
ambiguity will play no significant role in our work.

u

w

v N

Figure 2.1: The snark S and a symbolic representation of the negator N = Neg(S, u, v).

9
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For each coloring of a negator N = Neg(S, u, v), the flow through exactly one of its
connector I, O is zero. Otherwise, we could extend such coloring of N to a coloring
of the snark S. [12] The flow through the other connector is from the Parity Lemma
the same as through the residual semiedge. In other words, the coloring set of N is a
subset of

C = {(x, x, a, b, a+ b) | x, a, b ∈ K, a 6= b} ∪ {(a, b, x, x, a+ b) | x, a, b ∈ K, a 6= b}.

A negator whose coloring set is equal to C is called perfect, otherwise it is called
imperfect. For an imperfect negator N , it is possible that one of its connectors is
improper, which means the other connector is proper. If such negator N additionally
admits all such colorings, it is called semiperfect. The following theorem published by
Máčajová and Škoviera [12] imply that each negator is either perfect, semiperfect or
uncolorable and gives us the characterization of perfect and semiperfect negators.

Theorem 4. Let N = Neg(G, u, v) be a colorable negator and w a common neighbor
of u and v, then:

(a) N is perfect if and only if each of the pairs {u,w} and {v, w} of adjacent vertices
is nonremovable,

(b) N is semiperfect if and only if at least one of the pairs {u,w} and {v, w} is
removable.

As we study small snarks, we will mostly use negators obtained from the Petersen
graph or Petersen negators, which we denote as NP . Because of the high symmetry
of the Petersen graph, there is up to isomorphism only one way to remove a path of
length two from the Petersen graph.

A (2, 2; 1)-pole color-disjoint with a negator is obviously a path of length two.
It consists of two end vertices u, v and their common neighbor w. We denote it
as P2(I, O; r), where the connector I contains the two semiedges incident with u, O
contains the two semiedges incident with v and the residual semiedge r is incident with
the vertex w. The coloring set of the P2 is clearly the set

Col(P2) = {(a, b, c, d, e) ∈ K | a+ b 6= 0, d+ e 6= 0, a+ b+ c+ d+ e = 0}.

2.2 Proper (2,3)-pole

Let G be a snark, v a vertex in G and e an edge in G. Consider a (2, 3)-pole T (D,E)

obtained from the snark G in a following way. Remove from G the vertex v and
subdivide the edge e. Let D be a set of semiedges arisen from splitting e and E a set
of semiedges formerly incident with v.
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ve T

Figure 2.2: The snark G and a symbolic representation of a proper (2, 3)-pole T .

We claim, that the (2, 3)-pole T is proper, i. e. for each coloring ϕ of T , flow
through both of the connectors D and E is nonzero. Suppose the contrary. From the
Parity Lemma, we get that ϕ∗(D) = ϕ∗(E) = 0. Thus we can perform a junction of
the two semiedges in D and connect the semiedges in E to a new vertex yielding the
snark G. The coloring ϕ ofM can be extended to a coloring of the snark G in a natural
way which gives us a contradiction.

Each proper (2, 3)-pole can be extended to a snark by adding one edge and one
vertex in the aforementioned way. In our work, we will consider only proper (2, 3)-
poles that arose from a snark G where the removed vertex v and edge e were not
incident, in other words in the constructed (2, 3)-pole, there will be no vertex incident
with two dangling edges which would lead to smaller cyclical connectivity.

The coloring set of each proper (2, 3)-pole T is a subset of

C = {(a, b, c, d, e) ∈ K5 | a+ b = c+ d+ e, a+ b 6= 0, c+ d+ e 6= 0}.

If T admits all colorings such that flows through both of its connector is non-zero, i.
e. its coloring set is equal to C, it is called a perfect proper (2, 3)-pole, otherwise a
imperfect proper (2, 3)-pole. An example of an imperfect proper (2, 3)-pole is given in
the section 3.4.

Mostly, we will use proper (2, 3)-poles from the Petersen graph. Again, due to the
high symmetry of the Petersen graph, there is up to isomorphism only one way to
remove one vertex v and subdivide an edge not incident with v in the Petersen graph.
We denote such proper (2, 3)-pole constructed from the Petersen graph as TP . Finding
all colorings of TP using a computer, we observed that TP is a perfect proper (2, 3)-pole.

Take a look on the multipole which we removed from the snark G when construct-
ing a proper (2, 3)-pole. It is a (2, 3)-pole Mev(D,E) with connectors D = (d1, d2),
E = (e1, e2, e3), where d1, d2 are two ends of an isolated edge and the semiedges e1,
e2, e3 are all incident with one common vertex. Its coloring set is

Col(Mev) = {(x, x, a, b, c) ∈ K | a+ b+ c = 0}.

2.3 Odd (2,2,2)-pole

Let G be a snark and v one its vertex with neighbors u1, u2 and u3. Remove from
G the vertices v, u1, u2, u3. For i ∈ {1, 2, 3}, denote the semiedges incident with ui
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and not with v as ei and fi. Group these semiedges into connectors Si = {ei, fi}. The
resulting (2, 2, 2)-pole H(S1, S2, S3) will be called an odd (2, 2, 2)-pole.

The name of this multipole is derived from its coloring properties and similar name
was used by Goldberg. [7] For each coloring ϕ of H the number of connectors of H
having zero flow is odd. As from the Parity Lemma, it is impossible that flow through
exactly two connectors is zero, it is sufficient to show that flow through at least one of
the connectors S1, S2, S3 is zero.

Suppose the contrary. If ϕ∗(Si) = ai 6= 0 for every i ∈ {1, 2, 3}, then we can connect
the semiedges ei and fi with a new vertex ui. The color of third semiedge incident with
ui can be set to ai. From the Parity lemma, a1+a2+a3 = 0, so all three new semiedges
incident with u1, u2 and u3, respectively, have different color, so we can connect them
to a new vertex v resulting in the snark G with the coloring ϕ which is a contradiction.

The simplest example of an odd (2, 2, 2)-pole is a hexagon, a cycle of length six. It
arises from the Petersen graph by removing an arbitrary vertex with its neighbors.

Denote the (2, 2, 2)-pole removed from the snark G as V4(S1, S2, S3). It consist of
four vertices v, u1, u2 and u3, where v is the common neighbor of u1, u2, u3. The
connector Si contains the semiedges incident with ui for i ∈ {1, 2, 3}. The coloring set
of V4 is the set

Col(V4) = {(a, b, c, d, e, f) ∈ K | a 6= b, c 6= d, e 6= f, a+ b+ c+ d+ e+ f = 0}.

2.4 5-cycle Clusters

Cycles of length five occurs in many snarks and they often are the essence of their uncol-
orability, as a five-cycle has up to rotation and permutation of colors only one coloring.
Therefore, class of multipoles consisting only of five-cycles is of a great importance for
our analysis.

A maximal connected subgraph C of a graphG such that each edge of C is contained
in some cycle of length five is called a five-cycle cluster. As we study small cyclically
5-connected snarks, we will focus on five-cycle clusters that can be constructed from
the Petersen graph by removing some vertices or subdividing edges and those five-cycle
clusters having at least five dangling edges.

A pentagon is the smallest five-cycle cluster, the cycle of length five itself. It has 5
dangling edges. It can be constructed from the Petersen graph by removing a five-cycle.

A double pentagon consist of two five-cycles with a common edge, so it has 8 vertices,
9 edges and 6 dangling edges. It arises from the Petersen graph after removing two
adjacent vertices and subdividing one edge in such a way that there arises no vertex
incident with two semiedges.
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A dyad consists of two five-cycles with two common adjacent edges. It has 7 vertices,
8 edges and 5 dangling edges. Dyad is the negator constructed from the Petersen graph.

A triad is the proper (2, 3)-pole obtained from the Petersen graph. It consists of 3
five-cycles, 9 vertices, 11 edges and 5 dangling edges.



Chapter 3

Extensions and Reductions of Snarks

There are several known operations allowing us to construct a new snark from some
given one or more snarks. One of these operations is replacing a vertex in a graph S
with a triangle giving rise to a graph T which is a snark if and only if S is a snark.
Some of these operation are only one-way. Replace a quadrilateral in a snark S with
two parallel edges resulting in a graph T . If S is a snark, then so is T , but T can be
a snark while S is colorable. There are also less trivial operation like some types of
superposition introduced by Kochol [10] where we replace some multipole contained in
a given snark with larger one retaining the uncolorability.

The operations of this type can be generalized. We will look at them as at replacing
a k-pole M1 in a graph G1 with a k-pole M2 giving rise to a graph G2. The relation
between the colorability of G1 and G2 can be derived from the relation between the
coloring sets of M1 and M2 as shown by Fiol [6].

The k-poles M1 and M2 are called color-equivalent if Col(M1) = Col(M2). The
k-pole M1 is said to be color-contained in M2 if Col(M1) ⊆ Col(M2).

Consider two graphs G1 = N ∗M1 and G2 = N ∗M2 for k-poles N , M1 andM2. Let
M1 be color-contained in M2. From a coloring of G1 we can easily obtain a coloring
of G2. So if G2 is a snark, then G1 is also a snark. If |M1| < |M2| (which imply
|G1| < |G2|), then we say that the multipole M2 is color-reducible to M1 and that
the graph G1 arose by a color-reduction of M2 to M1. If |M1| > |M2|, we say that
the multipole M2 is color-expansible to M1 and that the graph G1 arose from G2 by a
color-expansion of M2 to M1.

The color-expansion is a general method allowing us to construct new snarks from
given ones. On the other hand, the color-reduction allow us to move the case of uncol-
orability to a smaller snark. This general statement alone is useless in constructions
of snarks. In order to use it, we need specified pairs of color-contained multipoles.
As mentioned beforehand, such examples are a vertex and a triangle which are color-
equivalent and two parallel edges are color-contained in a square. Now, we introduce

14
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several examples of multipole pairs (M1,M2) which we have observed in irreducible
cyclically 5-connected snarks.

3.1 The Isaacs 6-poles

i1
i2

i3

o1
o2

o3

Figure 3.1: (3, 3)-pole Y used in the construction of the Isaacs flower snarks.

Denote Y (I, O) with I = (i1, i2, i3) and O = (o1, o2, o3) the (3, 3)-pole shown in
Figure 3.1 used in the construction of the Isaacs Flower snarks. Let Yk(I1, Ok) denote
the (3, 3)-pole arising from the union of k disjoint copies Yi(Ii, Oi) of the (3, 3)-pole Y
and performing junctions of the connectors Oi and Ii+1 for i ∈ {1, 2, . . . , k − 1}. Then
Col(Y2m) = Col(Y2). This have been observed by Nedela and Škoviera [14].

3.2 The NN 5-pole

N1 N2

r3

r1 r2

I1 O2

c1
c2

Figure 3.2: A NN (2, 2; 1)-pole

N1 N2

N3

Figure 3.3: A generalized Loupekine
snark

Let N1(I1, O1; r1) and N2(I2, O2; r2) be two negators. Perform the junction of the
connectors O1 and I2 and add one vertex v incident with the semiedges r1, r2 and
one new semiedge denoted by r3 (see Figure 3.2). Denote the arisen (2, 2; 1)-pole
M(I1, O2; r3) as NN(N1, N2). We claim that Col(NN(N1, N2)) ⊆ Col(P2). Moreover, if
N1 and N2 are perfect negators, then Col(NN(N1, N2)) = Col(P2).

Let ϕ be a coloring of M . Firstly, we observe that flow through the connectors O1

and I2 (see Definition 7) has to be zero. Otherwise we would got from the properties
of negators that ϕ(r1) = ϕ∗(O1) = ϕ∗(I2) = ϕ(r2) for adjacent edges r1, r2. Then the
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flows through the others connectors I1 and O2 have to be nonzero. This is sufficient to
say that ϕ(S(M)) ∈ Col(P2) (see Definition 6).

Suppose that N1 and N2 are perfect negators. Let ϕ be a coloring of dangling
edges of M such that ϕ(S(M)) ∈ Col(P2), i. e. ϕ∗(I1) = a 6= 0, ϕ∗(O2) = b 6= 0

and ϕ(r3) = a + b 6= 0. We extend ϕ to a coloring of the multipole M . We set
ϕ(r1) = a, ϕ(r2) = b getting a zero sum in their common vertex. Furthermore, we
set ϕ(c1) = ϕ(c2) = a for the edges c1, c2 connecting the connectors O1 and I2. Both
negators N1, N2 have admissible colors on their semiedges. As they are perfect, they
admit such coloring ϕ and so does the multipole M which means ϕ(S(M)) ∈ Col(M).

We give another view on snarks which are constructed in this way. Let G be a snark
which arises form a snark S by a color-expansion of P2 to NN(N1, N2). The 5-pole S ′

connected to NN(N1, N2) is a snark S with P2 removed. It means that S ′ is a negator
N3 = Neg(S, u, v) where u, v are the end vertices of P2. Thus the new snark G has the
structure of a Loupekine snark with the Petersen negators replaced with N1, N2, N3

(see Figure 3.3).

3.3 The TT 5-pole

We take two proper (2, 3)-poles T1(D1, E1), T2(D2, E2) with E1 = (e11, e12, e13), E2 =

(e21, e22, e23) and a new vertex v witch we connect to the semiedges e13, e23 and denote
the remaining semiedge incident with v as r. Perform the junctions of e11 and e21, e12
and e22 (see Figure 3.4). We denote the (2, 2, 1)-pole M(D1, D2, r) constructed in this
way as TT(T1, T2). We claim that Col(TT(T1, T2)) ⊆ Col(P2). Moreover, if the proper
(2, 3)-poles T1 and T2 are perfect, then Col(TT(T1, T2)) = Col(P2).

T1 T2

Figure 3.4: A TT (2, 2; 1)-pole

T1 N T2

Figure 3.5: A scheme of an uncol-
orable 7-pole observed in several
snarks.

Let ϕ be a coloring of M . As T1 and T2 are proper, we have ϕ∗(D1) = a 6= 0 and
ϕ∗(D2) = b 6= 0. Thus again ϕ(S(M)) ∈ Col(P2).

Suppose that T1 and T2 are perfect. Let ϕ be a coloring of the dangling edges
of M such that ϕ(S(M)) ∈ Col(P2), i. e. that a := ϕ∗(D1) 6= 0 6= ϕ∗(D2) =: b and
ϕ(r) = a+b 6= 0. Set ϕ(e13) = a, ϕ(e23) = b and ϕ(e11) = ϕ(e12) = ϕ(e21) = ϕ(e22) = a.
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We have got an admissible coloring of dangling edges of the proper (2, 3)-poles T1 and
T2. As they are perfect, they admit such coloring and ϕ can be extended to a coloring
of M .

Take a look on a snark S ′ which we get after replacing P2 in a snark S with the
5-pole M . After removing a path of length two in the snark S, we get a negator N .
The new snark S ′ then consists of two proper (2, 3)-poles T1, T2 and one negator N . It
contains then the uncolorable 9-pole shown in Figure 3.5.

3.4 The NT 5-pole

N T

Figure 3.6: A NT (2, 3)-pole Figure 3.7: A (2, 3)-pole Mev

Let N(I, O; r) be a negator and T (D,E) a proper (2, 3)-pole, where E = (e1, e2, f).
Perform the junction of the connectors O and D and add a new vertex v incident with
f , r and a new semiedge e3 (see Figure 3.6). Denote the resulting (2, 3)-pole M(I, J),
where J = (e1, e2, e3), as NT(N, T ). Take a (2, 3)-pole Mev described in the section 2.2
(see also Figure 3.7). We show that Col(NT(N, T )) ⊆ Col(Mev). Moreover, if N is a
perfect negator and T is a perfect proper (2, 3)-pole, then Col(NT(N, T )) = Col(Mev).

Let ϕ be a coloring of the multipole M . Because T is a proper (2, 3)-pole, ϕ∗(D) =

ϕ∗(O) 6= 0 and thus ϕ∗(I) = 0. Then the Parity Lemma implies that ϕ∗(J) = 0 and
therefore ϕ(S(M)) ∈ Col(Mev).

Suppose that N is a perfect negator and T is a perfect proper (2, 3)-pole. Let ϕ be
a coloring of the danging edges of M such that ϕ(J) = (ϕ(e1), ϕ(e2), ϕ(e3)) = (a, b, c)

for a + b + c = 0 and ϕ∗(I) = 0. We set ϕ(r) = b, ϕ(f) = a and ϕ∗(O) = b. In this
way, we have got admissible colorings of the dangling edges of the negator N and the
proper (2, 3)-pole T . As they are both perfect, they admit such coloring ϕ and so does
the multipole M .

After removing Mev from a snark S we get a proper (2, 3)-pole T ′. Thus the color-
expansion of Mev to M in a snark S yields a snark consisting of two proper (2, 3)-poles
T , T ′ and one negator N containing the same uncolorable 9-pole as in the previous
section (fig. 3.5).

If we rearranges the semiedges (i1, i2) = I, (e1, e2, e3) = J of the 5-pole NT(N, T )

in a different way, we obtain an example of a semiperfect negator MN(I, (e1, e2); e3)
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with the improper connector I. Also, the (2, 3)-pole MP ((i1, i2, e1), (e2, e3)) is proper
as ϕ(i1)+ϕ(i2)+ϕ(e1) = ϕ(e1) 6= 0. However, as the semiedges i1 and i2 have the same
color for each coloring ϕ of MP , MP is an example of an imperfect proper (2, 3)-pole.

3.5 The TTT 6-pole

We take three proper (2, 3)-poles Ti(Di, Ei) and connected them as shown in Figure
3.8. Denote the resulting (2, 2, 2)-pole M(D1, D2, D3) as TTT(T1, T2, T3). Take the
(2, 2, 2)-pole V4(S1, S2, S3) consisting of one vertex v and three its neighbors u1, u2, u3
(see the section 2.3). Let us show that Col(TTT(T1, T2, T3)) ⊆ Col(V4). Moreover, if
all the proper (2, 3)-poles T1, T2, T3 are perfect, then Col(TTT(T1, T2, T3)) = Col(V4).

Let ϕ be a coloring of M . As Di is a connector of a proper (2, 3)-pole, ϕ∗(Di) 6= 0,
for i ∈ {1, 2, 3}. This is sufficient to say that ϕ(S(M)) ∈ Col(V4).

Now, suppose that all the proper (2, 3)-poles are perfect. Let ci = ϕ∗(Di) for
i ∈ {1, 2, 3} and c1 + c2 + c3 = 0. Let e1, e2, e3 be edges from E1, E2, E3 respectively
which are all incident with a common vertex v not contained in any of the proper
(2, 3)-poles. If we assign the same color to the remaining edges from the connectors
Ei of the proper (2, 3)-poles and ϕ(ei) = ci for i ∈ {1, 2, 3}, we get admissible coloring
of connectors in each proper (2, 3)-pole, so the whole multipole M is colorable in this
way.

Note that after removing the (2, 2, 2)-pole V4 from a snark S, we get an odd (2, 2, 2)-
pole. Thus snark obtained by a color-expansion of V4 to M consists of an odd (2, 2, 2)-
pole connected to the 6-pole TTT(T1, T2, T3).

3.6 The 3NT 7-pole

Consider three negators Ni(Ii, Oi; ri) and one proper (2, 3)-pole T (E,D) and denote
3NT(N1, N2, N3, T ) the (2, 2, 2; 1)-pole M(O1, O2, O3; r) constructed from the given

T1 T2

T3

Figure 3.8: A TTT (2, 2, 2)-pole

N2 N1

N3

T

I1 O1I2 O2

I3

O3

Figure 3.9: A 3NT (2, 2, 2; 1)-pole
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multipoles as shown in Figure 3.9. Let M7((e1, e2), I, O; r) be a (2, 2, 2; 1)-pole ob-
tained by a disjoint union of a path of length two P2(I, O; r) and an isolated edge with
semiedges e1, e2. We show that Col(M) ⊆ Col(M7) and if all negators N1, N2, N3 and
the proper (2, 3)-pole T are perfect, then Col(M) = Col(M7).

Let ϕ is a coloring of M and let e is the common edge of the connector I3 and E.
As the connector I1 is connected to the proper (2, 3)-pole T , we have ϕ∗(I1) = a 6= 0

and thus ϕ∗(O1) = 0. From the Parity Lemma, we get ϕ(r1) = a.
Suppose that ϕ∗(I3) 6= 0. This means that ϕ(e) = b 6= a and ϕ(r3) = a + b. From

the Parity Lemma for the proper (2, 3)-pole T , we get that ϕ∗(I2) = ϕ(e) + ϕ∗(D) =

a+b 6= 0. As ϕ∗(I2) = a+b 6= 0, from the negator N1 we get that ϕ(r1) = a+b = ϕ(r2),
which is a contradiction because the edges r1 and r2 have common vertex.

Therefore, ϕ∗(I3) = 0. This implies that ϕ∗(O3) 6= 0. Then, from the Parity
Lemma for the proper (2, 3)-pole T , we get ϕ∗(I2) = a + a = 0 and thus ϕ∗(O2) 6= 0.
Finally, we know that ϕ(r) 6= 0 because r is a semiedge. This is sufficient to say that
ϕ(S(M)) ⊆ Col(M7).

Suppose that all the negators N1, N2, N3 and the proper (2, 3)-pole T are perfect. If
we take a coloring ϕ of the dangling edges ofM such that ϕ(S(M)) ∈ Col(M7), we can
extend it to a coloring of dangling edges of each of the 5-poles N1, N2, N3, T in such a
way the flows trough their connectors are the same as in the flows in the proof of the
statement Col(M) ⊆ Col(M7) and all multipoles N1, N2, N3, T admit such coloring as
they are perfect.

3.7 Pentagon Superposition

A superposition is an process of constructing snarks of grater order from a given snark
introduced by Kochol. It can be used to construct snarks with large girth and cyclical
connectivity. [10]

A superedge is an arbitrary multipole with two connectors and a supervertex is an
arbitrary vertex with three connectors. Have a cubic graph G and replace each vertex
v in G with a supervertex Vv and each edge e in G with a superedge Ee in such a way
that if v and e are incident, then some connector of Vv is connected to some connector
of Ee with equal size. The graph arisen by this process is called a superposition of G.

Let G be a snark. To ensure that a superposition of G is a snark, we have to impose
some requirements on used superedges and supervertices. If every edge is proper, the
superposition of the snark G is again a snark. [10] However, it is not a necessary
condition. We introduce one type of superposition we observed in studied snarks.

Take a look on a proper (2, 3)-pole T (D,E) with D = (d1, d2). Arranging its
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T1 T2

EB1 B2

Figure 3.10: A superpentagon used to replace a pentagon in a superposition

semiedges in a different way, we can get a (3, 1, 1)-pole V (E, d1, d2) which is also proper
or in words of superposition, it is a proper supervertex.

As observed by Kochol, a proper superedge can be constructed from a snark S

by removing two non-adjacent vertices u, v leaving a (3, 3)-pole E(S1, S2), where the
connectors S1, S2 contains the three semiedges formerly incident with u, v respectively.
From the Parity Lemma, we get that ϕ∗(S1) = ϕ∗(S2) = a for some coloring ϕ and
we also have a 6= 0, otherwise we could extend ϕ to a coloring of the snark S. [10]
Consider a special case of this construction. If the distance of the removed vertices
is 2, the arisen superedge can be seen as a negator Neg(S, u, v) with one extra vertex
incident with the residual semiedge.

We also use a supervertex B(S1, S2, r) used by Kochol with S1 = (e1, f1, g1) and
S2 = (e2, f2, g2). It consists of one vertex v incident with semiedges e1, e2, r and two
isolated edges with ends f1, f2 and g1, G2, respectively. Note that B is not a proper
supervertex.

Take a vertex v, two proper supervertices obtained from proper (2, 3)-poles T1,
T2, respectively, two Kochol’s supervertices B1, B2 and a proper Kochol’s superedge
E. Connect them cyclically in the order v, T1, B1, E, B2, T2 (as shown in Figure
3.10) resulting in a 5-pole M . We show that Col(M) ⊆ Col(P5), where P5 denotes a
pentagon. In other words, the superposition of a snark S where we replace a pentagon
with the multipoleM and leave the remaining edges and vertices unchanged is a snark.

It is sufficient to show, that for each coloring ϕ of M , each superedge in M has
nonzero flow through each of its connectors. Superedges incident with v are casual edges
and the superedge E is proper, so they have nonzero flow through both connectors. The
(3, 1, 1)-pole T1 is a proper supervertex, so the flow through the superedge incident with
the supervertices T1 and B1 (consisting of three parallel isolated edges) is nonzero. For
the same reason the flow through the semiedge incident with T2 and B2 is also non-zero.



Chapter 4

Decomposition of Snarks up to Order
36

In this chapter, we summarize results of our research. Most of the researched snarks
can be constructed from the Petersen graph by employing some aforesaid operations.

4.1 Methods of Identification

The key of our analysis is to identify multipoles mentioned in the chapter 2. As we
study small snarks, most of those multipoles are taken form the Petersen graph. In
other words, they are five-cycle clusters, which are not so hard to identify in a given
graph. To do so, we used computer program implemented by Simeunovič [16]. The
output of this program contains for each graph G a list of 5-cycle clusters contained
in G and for each such cluster C, there is the type of C (dyad, triad, etc.) and list of
vertices contained in C.

However, knowing only the vertices contained in a cluster is not sufficient. We need
to identify connectors of each cluster, precisely, identify the vertices which are incident
with semiedges in the connectors of each cluster. We will call these vertices the outer
vertices and the remaining vertices of a cluster which are incident with no semiedges
the inner vertices. We say that the outer vertex v is adjacent to a connector S, if v is
incident with some semiedge from S.

Take the dyad NP (I, O; r). The outer vertex c adjacent to the residual semiedge
r is the only outer vertex adjacent to two inner vertices. The other outer vertices are
all vertices in NP having from c the distance two. We take one arbitrary vertex at
distance two from c and denote it a1. There is only one outer vertex different from c at
distance two from a1, let it be a2. Denote the remaining two outer vertices, distanced
from a1 one and three respectively, b1 and b2. In the end, the vertices a1, a2 and also
b1, b2 are adjacent to the a common connector.

21
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a1

a2

b1

b2

c d1

d2

t1

t2

t3

Figure 4.1: The dyad (left) and triad (right) with denoted outer vertices

A A

B

BC

C

Figure 4.2: The double pentagon with marked connectors adjacent to outer vertices
and its construction from the Petersen graph

In the triad TP (D,E) there is only one outer vertex v which is incident only with
inner vertices and it is adjacent to the connector E. The vertices adjacent to the
connector D are the outer vertices at distance two from v. The remaining two outer
vertices adjacent to E can be found as the remaining outer vertices.

In the double pentagon CD5(A,B,C) (see Figure 4.2), we firstly identify one
vertex from the connector A, let us say v. It is one of the vertices which is incident
with no inner vertex. Then staring form the vertex v and the outer vertices along the
hamiltonian cycle of the CD5 (which is the multipole CD5 without the edge incident
with the two inner vertices) are adjacent to connectors A, B, C, A, B, C, respectively.

To analyze the pentagon, we only need the order of its vertices which can be
obtained directly from the graph code.

After identifying five-cycle clusters a given snark S, we can check whether the snark
S contains some of the 5-poles described in the chapter. We denote the multipoles
which we will identify in a following way: PNN = NN(NP , NP ), PNT = NT(NP , TP ),
PTT = TT(TP , TP ) and PTTT = TTT(TP , TP , TP ). All mentioned multipoles consist of
Petersen negators NP and Petersen proper (2, 3)-poles TP .

As we have shown in the previous chapter, the multipoles PNN , PNT , PTT and PTTT
are color-equivalent to P2, Mev, P2 and V4, respectively. Suppose we find some of those
multipoles in the snark S, denote itM1 and letM2 ∈ {P2, R, V4} be a multi-pole which
is color-equivalent to M1. Replacing the multipole M1 with M2 has to lead us to a
smaller snark S ′. Therefore because of the color-equivalence, we know that the snark
S arose from some smaller snark S ′ by a color-expansion of M2 to M1.

Knowing this, it is sufficient to explain the uncolorability of S. However, it is not
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hard to determine the snark S ′ which was the snark S constructed from. As we know
the orders of M1, M2 and S, we can compute the order of S ′. While we study snarks of
order at most 36, the order of snark S will not exceed 24. We can construct the graph
S ′, choose the some snark G of the order |S ′| and check if it is isomorphic with S ′.
The choosing of S ′ is not difficult, as there are only few snarks of order up to 24. We
observed, that the snark S ′ do not have to have the same cyclically edge-connectivity
as the snark S and it can be even reducible.

After identifying snarks which arose from smaller snarks by some color-expansion
described in the previous chapter, there are some snarks left. They can be divided
in several classes. Each class can be characterized by a specific connection of some
multipoles. For many classes, small snark contained in them consist of the Petersen
five-cycle clusters. Thus for these classes, it is simple to check using a computer if a
given snark S belongs to the considered class. We check whether S contains right types
of five-cycle clusters and if they are connected to each other in the desired way. For
classes consisting of a small number of snarks, we made the analysis by hand.

Although there is only one Petersen negator NP and only one Petersen proper (2, 3)-
pole with the respect to isomorphism, the order of their semiedges may vary. This can
lead to several nonisomporphic variations of the multipoles PNN , PNT , PTT and PTTT .
Since the order of semiedges plays no significant role in explaining the uncolorability
of snarks, we allow this minor formal impreciseness.

4.2 Results of Analysis

Order 10 20 22 24 26 28 30 32 34 36 38
Number of snarks 1 1 2 0 8 1 11 13 1503 484 ≥ 39

Table 4.1: Numbers of irreducible cyclically 5-connected snarks of specific order.

Isaacs Flower Snarks

We describe a non-standard construction of Isaacs flower snarks in the lights of our
color-expansion from the Petersen graph. The Flower snark J3 arose from the Petersen
graph by a color-expansion of a vertex to a triangle. Recall that J3 is a trivial snark.
For each k ≥ 2, the Flower snark J2k+1 can be constructed from the snark J2k−1 by
a color-expansion of Y2 to Y4.
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Order up to 30

The smallest irreducible cyclically 5-connected snark is the Petersen graph of order
10. It is followed by the flower snark J5 on 20 vertices. The only irreducible cyclically
5-connected snarks of order 22 are the two Loupekine snarks (see Figure 3.3). Both of
them contain the 5-pole PNN , so they can be constructed from the Petersen graph by
a color-expansion of P2 to PNN .

Among the snarks of order 26, there are 8 irreducible cyclically 5-connected snarks.
All of them contain the 5-pole PNT and also PTT and hence they are color-reducible,
in this case to the Petersen graph. All of them contain the uncolorable 7-pole from
Figure 3.5 consisting of one dyad connected to two triads.

There is only one irreducible cyclically 5-connected snark of order 28, it is the
Flower snark J7. Actually, its cyclical connectivity is 6 making it the smallest cyclically
6-connected snark.

Among irreducible cyclically 5-connected snarks, one of them has girth 6, it is the
double-star snark described by Isaacs [8]. All other snark of order 30 arose from the
Blanuša snark by a color-expansion of P2 to PNN (6 snarks from type 1 and 4 snark from
type 2 of Blanuša snark). Note that this operation increased the cyclically connectivity
of the smaller snark.

There are no irreducible snarks of order 12, 14, 16, 24. All irreducible snarks of
order 18 are cyclically 4-connected, namely, they are the two Blanuša’s snarks.

Order 32

From 13 studied snarks of order 32, 11 snarks contain the 5-pole PNN . All of them can
be constructed by a color-expansion from the Flower snark J5.

Class 32-1

The remaining two snarks consist of three Petersen negators Ni(Ii, Oi; ri) for i ∈
{1, 2, 3} and one 7-pole M11 which are connected as shown in Figure 4.3 while we
performed junctions of connector O2 and I1, O1 and I3. In general, the negators N1,
N2, N3 can be taken from arbitrary snark. We explain that the graph G shown in
Figure 4.3 is a snark.

Suppose that ϕ is a coloring of G. Let a = ϕ(r1). One of the connectors of N1

has to have zero flow, without loss on generality, let it be the connector I1. Then
ϕ∗(O1) = a = ϕ∗(I3). From the negator N3, we get that ϕ∗(O3) = 0 and ϕ(r3) = a.
Now, take a look on the 7-pole M11. The semiedges e1, e2 connected to the connector
O3 have the same color and so have the semiedges e3 and e4 connected to r3 and r1,
respectively. From the Parity Lemma, the sum of the flows through the remaining
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N1

N2 N3

M11

Figure 4.3: The structure of class
32-1 snarks

Figure 4.4: The 7-pole M11 con-
structed from J3

three semiedges e5, e6, e7 is zero. Therefore, we can perform junctions of e1 and e2, e3
and e4 and add one new vertex incident with e5, e6, e7 giving rise to a graph H which
can be colored by a extension of ϕ. However, the graph H is isomorphic to the flower
snark J3, so we have a contradiction.

Actually, the 7-pole M11 contained in the snark G is the flower snark J3 with one
removed vertex and two subdivided links (see Figure 4.4). Moreover, the construction
of the snark G uses the symmetry of the 7-pole M11 as this 7-pole can be completed
to J3 in two symmetric ways. Thus the 7-pole M11 can not be replaced with a 7-pole
constructed from arbitrary snark by subdividing two edges and removing one vertex.

Order 34

Among the studied snarks of order 34, 26 of them contain the 5-pole PNN and they can
be constructed from the Loupekine snark (both types) by a color-expansion of P2. The
5-pole PNT is contained in 1084 snarks which arose from the Blanuša snark (both types)
by a color-expansion of one vertex and one edge. 84 snarks contain the 5-pole PTT and
can be constructed from the Blanuša snark (both types) using the color-expansion of
P2. 72 snarks arose from the Petersen graph by employing superposition described in
the section 3.7.

Analyzing the structure of remaining snarks, we observed 6 classes of snarks covering
them. Snarks of order 34 contained mostly triads and dyads. It is convenient, as we
can identify them with no obstacles. However, the fact that those 5-poles are taken
from the Petersen graph is not necessary considering their color properties, therefore we
describe discovered six classes using multipoles created from arbitrary snarks yielding
into infinite families of snarks.
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T1 N1 N2 T2

Figure 4.5: A uncolorable 9-pole M1

contained in class 34-1 snarks.

T1

N1 N2 T2

Figure 4.6: A uncolorable 9-pole M1

contained in class 34-2 snarks.

Class 34-1

We take two negators N1, N2 and two proper (2, 3)-poles T1, T2 and construct from
them a 9-poleM1 as shown in Figure 4.5. We claim thatM1 is an uncolorable multipole.

Let ϕ be a coloring of M1. Denote the dangling edge which is incident with none
of negators and proper (2, 3)-poles as e. One connector of N1 is connected to a proper
connector of T1, so the flow through it is non-zero. That means that the other connector
O1 has zero flow. Similarly, the connector I2 of N2 not connected to the proper (2, 3)-
pole T2 has zero flow. If we use the Parity Lemma on the 5-pole between the negators
N1 and N2, we get ϕ(e) = ϕ∗(O1) + ϕ∗(I2) = 0 which is a contradiction.

Among the remaining snarks of order 34, there are 21 snarks which contain the
described multipole M1. In all of them, M1 consists of dyads and triads and has 33
vertices.

Class 34-2

Again, we take two negators N1, N2 and two proper (2, 3)-poles T1, T2 and connect
them in a 9-pole M2 as in Figure 4.6. We show that M2 is a color-closed multipole.

Consider a coloring ϕ of M2. Let O1 = (e1, e2) and I2 = (e1, e3) be the connectors
of N1 and N3 respectively which has a common edge e1. Denote v the vertex incident
with both the edges e2 and e3 and f the semiedge incident with v. As one connector of
N2 is connected to a proper (2, 3)-pole, for the other connector I2, we have ϕ∗(I2) = 0.
For the connector O1, we have ϕ∗(O1) = ϕ(e1) + ϕ(e2) = ϕ∗(I2) + ϕ(f) = ϕ(f) and
thus the residual edge of N1 has the color ϕ(f). However for the connector D1 of size
two of T1, we have ϕ∗(D1) = ϕ(f) + ϕ(f) = 0 contradicting that the (2, 3)-pole T1 is
proper.

Multipole M2 contained in studied snarks of order 34 consist of dyads and triads
and has 33 vertices. We have identified 90 snarks containing this 9-pole M2. Note that
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54 of snarks of this class contain also the 5-pole PNT and 18 snarks contain the 5-pole
PTT .

Class 34-3

Let S be a snark. We remove two adjacent vertices u, v from S resulting in a 4-pole S ′

with dangling edges f1, f2 formerly incident with u and f3, f4 formerly incident with v.
Furthermore, we subdivide a link e in S ′ into two dangling edges e1 and e2. Denote the
constructed (2, 2, 2)-pole as R(A,B,C) with A = (e1, e2), B = (f1, f2) and C = (f3, f4).
Take a negator N(I, O) and two proper (2, 3)-poles T1(D1, E1), T2(D2, E2) Perform the
junctions of the connectors D1 and B, A and I, O and E2 (see Figure 4.7) resulting in
a 9-pole M3. We claim that M3 is uncolorable.

T1
R N T2

Figure 4.7: A uncolorable 9-pole M3 contained in class 34-3 snarks.

Suppose that ϕ is a coloring of the 9-pole M3. The negator N is connected to the
proper (2, 3)-pole T2, so ϕ∗(O) 6= 0 and ϕ∗(I) = ϕ∗(A) = 0. From the proper (2, 3)-pole
T1 connected to the 6-pole R, we have ϕ∗(D1) = ϕ∗(B) = a 6= 0. From the Parity
Lemma for R, we get ϕ∗(C) = a.

Now, we can complete R to a snark S by performing a junction of the semiedges
e1, e2 and adding the vertices u, v. As ϕ∗(A) = 0 and ϕ∗(B) = ϕ∗(C) = a 6= 0, the
coloring ϕ can be extended to a coloring of the snark S — a contradiction.

There are 72 irreducible 5-connected snarks of order 34 belonging to this class while
18 of these snarks contains also the 5-pole PNT . In all of them, the negator and proper
(2, 3)-poles are taken from the Petersen graph and also the 6-pole R is constructed
from the Petersen graph, precisely, it is the double pentagon.

Class 34-4

Have four negators Ni(Ii, Oi, ri) for i ∈ {1, 2, 3, 4}, connect them as shown in Figure
4.8 and denote the resulting graph by G4. We claim that G4 is a snark.

Suppose that ϕ is a coloring of G4. Without loss on generality, ϕ∗(O1) = 0 and
let ϕ(uw1) = a ∈ K. Then the flow through the connector I2 is ϕ∗(I2) = ϕ∗(O1) +

ϕ(uw1) = a 6= 0, so the other connector O2 has zero flow. In a similar way, we get
that ϕ∗(O1) = ϕ∗(O2) = ϕ∗(O3) = ϕ∗(O4) = 0. From the negator N2, we get that
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Figure 4.8: Structure of class 36-4
snarks

I1

O1 I3

O3

I2 O2

I4O4

N1

N2

N3

N4

w3w4

w1 w2u

v

Figure 4.9: Structure of class 36-5
snarks

ϕ(r2) = a = ϕ(r4), so also ϕ∗(I4) = a. As ϕ∗(O3) = 0, we get ϕ(w3u) = a. But the
edges w3u and uw1 have a common vertex and same color — a contradiction.

We identified 5 snarks having this structure with all four negator taken from the
Petersen graph.

Class 34-5

Four negators N1, N2, N3 and N4 can be arranged in a different way, as shown in Figure
4.9, creating a snark. The proof of its uncolorability is very similar as in the previous
class. There are 7 snarks of order 34 having this structure.

Class 34-6

We take three negators N1, N2, N3 and two odd (2, 2, 2)-poles H1, H2 and connect
them as shown in Figure 4.10 resulting in a graph G6. We show that G6 is a snark.

Let ϕ be a coloring of G6 and let a be the color of the residual edge of N1. One of the
connectors of N1 has non-zero flow, without loss on generality, let it be the connector

N1

N2 N3

H1 H2

Figure 4.10: Structure of class 36-6
snarks

Figure 4.11: Hexagons in a class 34-6
snark
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connected to H1. If we denote the connector of H1 which is connected to Ni as Si for
i ∈ {1, 2, 3}, then we have ϕ∗(S1) = a 6= 0. The flow through one of the connectors S2

and S3 has to be zero. If ϕ∗(S2) = 0, then ϕ∗(S3) = a from the Parity Lemma. The
edges from the S3 are connected to the connector of N3 and as their flow is a 6= 0, the
residual edge of N3 has the color a, which is a contradiction. If ϕ∗(S3) = 0, we would
get a contradiction from the other negator N2.

Among the studied snarks of order 34, there are two snarks of this type. In both
of them, the negators and odd (2, 2, 2)-poles are taken from the Petersen graph, i. e.
the odd (2, 2, 2)-poles are hexagons. As the Petersen negator consists of a hexagon
with one additional vertex, these two graphs can be redrawn using hexagons instead of
negators. One of them is shown in Figure 4.11. Actually, every negator consists of an
odd (2, 2, 2)-pole with one additional vertex attached to two semiedges from the same
connector, so odd (2, 2, 2)-poles can be found in many other snarks.

To sum up our result, the numbers of studied snarks of order 34 is shown in Table 4.2.

Type of a snark Number of snarks
Containing PNN 26

Containing PNT 1084

Containing PTT 84

Containing PTTT 22

Superposition 72

Class 34-1 21

Class 34-2 18 + 18 (PTT ) + 54 (PNT ) = 90

Class 34-3 162 + 18 (PNT ) = 180

Class 34-4 5

Class 34-5 7

Class 34-6 2

TOTAL 1503

Table 4.2: Structure of the irreducible cyclically 5-connected snarks of order 34.

Order 36

From the 484 studied snarks of order 36, 396 snarks contain the 5-pole PNT and all of
them arose from the flower snark J5 by a color-expansion. In 69 snarks, we identified
the 5-pole PTT and all of them arose from the J5 by a color-expansion.

The 5-pole PNN is contained in 10 snarks. They are constructed by color-expansions
from two smaller snarks of a order 24 whose structure can be seen in Figure 4.12. Their
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NP NP

NP

u

v

Figure 4.12: A scheme of two cyclically 5-connected reducible snarks of order 24.

structure is similar to Luopekine snarks, they only contain two additional vertices u, v.
These two vertices are removable, so these snarks are reducible, although after a color-
expansion of P2 to PNN they become irreducible. In all 10 cases, the color-expanded
P2 contained one of the vertices u, v.

One of the remaining snarks is the flower snark J9. Now, we take a look on remaining
8 snarks. Among them, we identified two classes.

Class 36-1

Have three negators Ni(Ii, Oi, ri) for i ∈ {1, 2, 3} and three vertices v1, v2 and v3.
Connect them as shown in Figure 4.13. Let e1, e2 and e3 be dangling edges incident
with v1, v2 and v3, respectively. Set I = (r1, r2, r3) and O = (e2, e3, e1) and denote
the constructed (3, 3)-pole as M24(I, O). Take the (3, 3)-pole Y3(IY , OY ) consisting of
three copies of the Isaacs (3, 3)-pole Y (see Section 3.1). We claim that the (3, 3)-poles
M24 and Y3 are color-disjoint, in other words that M24 ∗ Y3 is a snark.

Suppose the contrary and let ϕ be a coloring ofM24∗Y3. Let ϕ∗(I) = (a, b, c) ∈ K3.
For the connectors of the negators, either ϕ∗(I1) = ϕ(I2) = ϕ∗(I3) = 0 or ϕ∗(O1) =

ϕ∗(O2) = ϕ∗(O3) = 0 is held (the proof is similar to the proof in the class 34-4).
Consider the first case. Then ϕ∗(O1) = ϕ(r1) = a and from the Parity Lemma ϕ(e3) =

ϕ∗(O1) +ϕ∗(I2) = a. In the same way, we get that ϕ(O) = (b, c, a). In the second case,
we get in a very similar way that ϕ(O) = (c, a, b).

I1

O1

I2

O2

I3

O3
N1

N2

N3
v1

v2
v3

r1
r2
r3

e2
e3
e1

Figure 4.13: A (3, 3)-pole M24 contained in class 36-1 snarks
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As ϕ is a coloring of Y3 such that ϕ(IY ) = (a, b, c), among the colors a, b, c at least
two are different. Suppose that two of the colors a, b, c are the same. If two semiedges
of the connector I ′ of the Isaacs (3, 3)-pole Y (I ′, O′) have the same color, then the sets
of colors used on dangling edges of I ′ and O′ are different. As Y3 consists of a odd
number of the (3, 3)-poles Y , the dangling edges from IY and OY have different sets of
colors. However, on the dangling edges from I and O, there is the same set of colors
used. This gives us a contradiction.

Suppose that the colors a, b, c are pairwise distinct. In this case, as Y3 consist of a
odd number of (3, 3)-poles Y , the triple ϕ(OY ) is an odd permutation of ϕ(IY ). How-
ever, looking on the connectors ofM24 we see that ϕ(O) is always an even permutation
of ϕ(I) which leads us again to a contradiction.

We identified 6 snarks of order 36 belonging to the class 36-1.

Class 36-2

Let Ni(Ii, Oi, ri) for i ∈ {1, 2, 3, 4, 5} be five negators. Take a vertex v and connect
those negator as shown in Figure 4.14 while we performed the junctions of connectors
Oi and Ii+1 for i ∈ {1, 2, 3, 4}. Denote the arisen graph G. We show that G is a snark.

I1

O1

I2

O2

I3 O3

I4

O4

I5

O5

N1

N2

N3

N4

N5

v

Figure 4.14: Structure of class 36-2 snarks

The graph G is symmetrical, so without loss on generality, say that ϕ∗(I3) = 0.
Then ϕ(r3) = ϕ∗(O3) = a for some nonzero a. From the negator N4, we get ϕ∗(O4) = 0,
ϕ(r4) = a and from the negator N2 we get ϕ∗(I2) 6= 0. That means that in the negator
N1, the connector I1 has zero flow, so if we denote e the edge from I1 incident with
v, then 0 = ϕ∗(I1) = ϕ(e) + ϕ(r4) which yields ϕ(e) = a. As the edges e and r3 are
adjacent and have a same color, we got a contradiction.

Among the snarks of order 36, we identified 2 snarks of this type.
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Order 38

At present, there are 56 known irreducible cyclically 5-connected snarks of order 38.
Although, it is very likely that there are more irreducible cyclically 5-connected snarks
of order 38, we took a look on those discovered. Among them, we identified the 5-pole
PNN in 39 snarks, the 5-pole PNT in 22 snarks and the 5-pole PTT in 7 snarks while
there are ten snarks containing both PNN and PNT and six snarks containing both PNN
and PTT .

In three snarks, we identified the (2, 2, 2; 1)-pole M32 = 3NT(NP , NP , NP , TP ). All
three snarks arose from the Petersen graph by a color-expansion of a path of length
two and one edge to M32.

Class 38-1

We also introduce one infinite class containing the one remaining snark from the known
56 snarks of order 38. Have four negators Ni(Ii, Oi; ri) for i ∈ {1, 2, 3, 4} and one proper
(2, 3)-pole P (D,T ), connect them as shown in Figure 4.15 and denote the constructed
graph as G. We show that G is a snark.

N1

N2

N3N4

T

I1

O1

I2

O2

I3

O3I4

O4

Figure 4.15: Structure of class 38-1 snarks

The connector T is proper, so the edges r1 and r2 contained in T have different
colors, let us say ϕ(r1) = a and ϕ(r2) = b for a 6= b. This means that ϕ∗(O1) =

ϕ∗(I2) = 0. Therefore ϕ∗(I1) = a and ϕ∗(O2) = ϕ∗(I3) = b. From the properties of
the negator N3, we get that ϕ(r3) = b and ϕ∗(O3) = 0. Knowing the color of three
semiedges of the proper (2, 3)-pole T , we can from the Parity Lemma determine the
flow through the remaining two semiedges, identical to the flow through the connector
O4, as ϕ∗(O4) = a+b+b = a. Then from the negator N4, we have ϕ∗(I4) = 0. However,
from the Parity Lemma, we get a zero flow through the edge e ∈ I1 different from r4

which is a contradiction.
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In the end, we summarize our results in Table 4.3.

Order 10 20 22 24 26 28 30 32 34 36 38
NN expansion 0 0 2 0 0 0 10 11 26 10 ≥ 39

TT expansion 0 0 0 0 8 0 0 0 84 69 ≥ 3

NT expansion 0 0 0 0 8 0 0 0 1084 396 ≥ 17

TTT expansion 0 0 0 0 0 0 0 0 22 0 ≥ 0

Superposition 0 0 0 0 0 0 0 0 72 0 ≥ 0

Other 1 1 0 0 0 1 1 2 215 9 ≥ 4

TOTAL 1 1 2 0 8 1 11 13 1503 484 ≥ 56

Table 4.3

4.3 Further Attempts

In our analysis, we discovered several multipoles, which can be used in a construction
of cyclically 6-edge connected snarks.

Take a look on an odd (2, 2, 2)-pole. The (2, 2, 2)-pole V consisting of three vertices
with one common neighbor (see the section 2.3) is color-disjoint to each odd (2, 2, 2)-
pole. However, as the semiedges in each connector of V are incident with the same
vertex, this often leads to cyclical connectivity only 5. This can be seen e. g. in
the Petersen graph, where is V connected to a hexagon, in the snarks of class 34-6
or Loupekine snarks, where the Petersen negator can be imagined as hexagon. The
smallest known cyclically 6-connected snark where is the 6-pole V connected to an odd
(2, 2, 2)-pole is of order 118 and was described by Kochol [9]. There is a question if
there exist an odd (2, 2, 2)-pole h of order smaller than 114 and color-disjoint with the
(2, 2, 2)-pole V .

Attempts in constructing a cyclically 6-connected snarks can be made from the
other point of view. We can find a (2, 2, 2)-pole M color-disjoint to the hexagon, the
smallest odd (2, 2, 2)-pole. For the sought (2, 2, 2)-pole M , it is sufficient to be proper
as the flow through at least one of the connectors of every odd (2, 2, 2)-pole is zero.
However, the 6-pole M has to ensure cyclically 6-connectivity when connected to the
hexagon. The (2, 2, 2)-pole V itself has desired coloring properties but produces a 5-
edge cut as the dangling edges from each connector are adjacent. Other 6-pole with the
desired coloring properties is the (2, 2, 2)-pole PTTT of order 28, which is, unfortunately,
only cyclically 5-edge connected.

We employ the Kochol’s superposition [10] on the cycle of length 12, marked with
bold line in Figure 4.16, where we replace each vertex with the supervertex B and
each edge by a proper superedge constructed from J5 (see Section 3.7). Doing so, we
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Figure 4.16: A sanrk of order 34

used in the construction of cyclically 6-
connected snark of order 250 containig
a proper (2, 2, 2)-pole

Figure 4.17: A (3, 3)-pole M24 used in
the construction of the (3, 3)-pole M186

without five-cycles colordisjoint to Y3

remove from PTTT all 5-cycles resulting into a proper (2, 2, 2)-pole V244 of order 244

which is color-contained in PTTT . Performing a junction of V244 and the hexagon, we
get a snark of order 250 (see Figure 4.16, the replaced cycle is marked with a bold line)
with cyclical connectivity 6 which was determined using a computer program. Again,
there arises a request to find a smaller proper (2, 2, 2)-pole whose dangling edges from
each connector are not incident with a common vertex.

In the class 36-2 we observed a (3, 3)-pole M24 color-disjoint with the (3, 3)-pole
Y3. Again, the 6-pole M24 contains five-cycles and it is only cyclically 5-connected.
Employing the Kochol’s superposition on the cycle of length 9 we can remove all five-
cycles from M24 and get a (2, 2, 2)-pole M186 (see Figure 4.17, the replaced 9-cycle is
marked with a bold line) color-contained inM24 and therefore color-disjoint to Y3. The
snark M186 ∗ Y3 of order 198 is cyclically 6-connected which we determined using a
computer.



Conclusion

In our work, we described several ways of constructing snarks. We introduced pairs of
multipoles which can be replaced in snarks. It allow us to construct new snarks from
a given one or reduce a given snark to a smaller one. Also, we constructed several
infinite classes of snarks.

Using discovered operations and classes, we analyzed all 2024 irreducible cyclically
5-connected snarks up to order 36 and some of the order 38, described their structure
and explained why they are uncolorable.

We have seen that many of 5-connected snarks are constructed mostly from negators
and proper (2, 3)-poles. In several snarks, we have found also the multipoles with more
than five dangling edges (e. g. class 32-1, 34-3), however in these snarks, the negators
and proper (2, 3)-poles were the essence of uncolorability, as they forced inadmissible
coloring of the dangling edges of the mentioned multipole.

In some classes, we used methods different from flows through connectors in proving
uncolorability. In the class 32-1, we used the symmetry of the 7-pole M11 and in the
class 36-1, we looked at parity of permutations of the colors in the connectors of the
(3, 3)-pole M24.

Also, there appeared problems for further research. Although, we described some
infinite families of snarks, we do not know much about their properties. As we dis-
covered them in the study of irreducible snark, there arises a natural need to find
some sufficient condition which would ensure the irreducibility of described classes. It
might be sufficient that all negators and proper (2, 3)-poles are taken from irreducible
snarks. As we have seen among snarks of order 36, this condition is not necessary. Its
sufficiency remains open for further research.

Another way of research is to take found multipoles with 6 and more dangling edges
and attempt to construct some cyclically 6-connencted snarks. At present, the known
smallest cyclically 6-connected snark different from the flower snarks has 118 vertices.
However, studying flows through connectors of multipoles will likely be not sufficient
as we could observed in several classes of snarks.
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Appendix

We attach a CD with detailed results of our analysis and used computer program.
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