
Aggregation in SQL

SQL and aggregation

• sometimes instead of listing a list of rows, we prefer to find out their
number / sum and etc.
• This is what the so-called aggregation functions are used for:

• Sum, Min, Max, Avg, Stdev, Count, ...

• https://www.postgresql.org/docs/current/static/functions-aggregate.html

• Sometimes we want to group rows by some attribute
• e.g. we want to group employees according to their department, etc.

• or we want the number of employees in particular departments

https://www.postgresql.org/docs/current/static/functions-aggregate.html

GROUP BY

• SELECT <list of attributes>
FROM <list of tables>
WHERE <condition>
GROUP BY <list of attributes>
HAVING <condition>

• GROUP BY - groups rows with the same value in the listed attributes

• for each group, there will be 1 line in the output

• the list of attributes after SELECT can only contain attributes listed after GROUP BY and aggregate
functions

• This is not entirely true for all database systems (e.g. MySQL does not have such a restriction)

• a condition in HAVING can contain aggregate functions, while WHERE cannot

GROUP BY example

• SELECT deptno, COUNT(*) as c
FROM emp
WHERE sal > 3000
GROUP BY deptno
HAVING COUNT(*)>=2

• note that we need to write COUNT(*) twice

GROUP BY example

name deptno sal

John 10 1000

Thomas 10 3100

George 10 3200

Lucas 20 3100

Bob 20 2050

Joe 30 1000

Francis 30 3050

Hugo 40 1000

Mike 40 5000

Robert 40 2900

Anna 50 8000

name deptno sal

George 10 3200

Thomas 10 3100

Lucas 20 3100

Francis 30 3050

Mike 40 5000

Anna 50 8000

WHER
E

SELECT deptno, COUNT(*)
FROM emp
WHERE sal > 3000
GROUP BY deptno
HAVING COUNT(*)>=2

GROUP BY example

name deptno sal

George 10 3200

Thomas 10 3100

Lucas 20 3100

Francis 30 3050

Mike 40 5000

Anna 50 8000

GROUP
BY

SELECT deptno, COUNT(*)
FROM emp
WHERE sal > 3000
GROUP BY deptno
HAVING COUNT(*)>=2

deptno COUNT(*) Name deptno sal

10 2

George 10 3200

Thomas 10 3100

20 1

Lucas 20 3100

30 1

Francis 30 3050

40 1

Mike 40 5000

50 1

Anna 50 8000

GROUP BY example

HAVIN
G

SELECT deptno, COUNT(*)
FROM emp
WHERE sal > 3000
GROUP BY deptno
HAVING COUNT(*)>=2

deptno count(*) Name deptn sal

10 2

George 10 3200

Thomas 10 3100

20 1

Lucas 20 3100

30 1

Francis 30 3050

40 1

Mike 40 5000

50 1

Anna 50 8000

deptno count(*)

10 2

Other aspects

• the list of attributes after SELECT can only contain the attributes
listed after GROUP BY and aggregate functions

• This is a bit annoying for programmers:
• student(StudentID, Meno, Priezvisko, TriedaID)

trieda(TriedaID, Nazov)

• SELECT s.classid, c.name, COUNT(*)

• FROM student as s, class as c

• WHERE s.classid = c.classid GROUP BY s.classid, c.name

• ClassID clearly specifies the name of the class, but the programmer has to
write it unnecessarily 2x

Other aspects

• MySQL:

In the SELECT section, we can use any attribute. If it is from a set of attributes that are
not in GROUP BY, a random element from the group is selected

• PostgreSQL:

When GROUP BY is present, or any aggregate functions are present, it is not valid for
the SELECT list expressions to refer to ungrouped columns except within aggregate
functions or when the ungrouped column is functionally dependent on the grouped
columns, since there would otherwise be more than one possible value to return for an
ungrouped column. A functional dependency exists if the grouped columns (or a subset
thereof) are the primary key of the table containing the ungrouped column.

Other aspects

• If SELECT contains an aggregate function, but without GROUP BY
• then all the rows seem to be included in one group – the output is a row, e.g.:

• SELECT COUNT(*) FROM emp;
• SELECT MAX(sal) FROM emp;

• similarly, if we state HAVING without GROUP BY

• (avoid this one, it's confusing and, unlike the previous one, useless)-

Other aspects

• beware of NULL in aggregate functions
• some aggregate functions omit rows with NULL
•e.g. the SUM for 1 + NULL is 1, while the expression 1 + NULL is NULL
•moreover, if all rows are NULL, then the result is NULL

Other aspects

• if we need to find values for which e.g. the maximum (arg max) is
reached, it cannot be written in SQL with one query, we need a
nested query:

SELECT name

FROM emp

WHERE salary = (SELECT MAX(salary) FROM emp);

• The database system automatically converts the result of a nested
selection (a session with 1 column and 1 row) to a number

• Try what happens if the EMP table contains no records

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

