
NoSQL

SQL vs NoSQL

• RDBMS (Relational database management systems)
• Relational model

• SQL

• Provide strong data integrity

• ACID
• Atomicity – Atomic transactions

• Consistency – Data integrity and consistency before and after transaction

• Isolation – isolated transactions, concurrent transactions do not interferre with each other

• Durability – When a transaction is committed, its effects are permanent (event after
hardware / system failure)

• Suitable for applications requiring complex queries, multi-row transactions, and
strong data integrity, such as financial systems and enterprise applications.

SQL vs NoSQL

• NoSQL – „Not only SQL“

• Supporting all the ACID requirements prevents easy scaling of the
database across multiple servers (nodes).

• Sometimes we would like to have higher transaction throughput and
better scalability options at the cost of not fully adhering to ACID
requirements.

• RDBMS – mostly vertical scaling
• if we want to process more transactions, we need to use stronger servers

(more RAM, more CPU, faster drives)

• NoSQL – mostly designed for horizontal scaling
• If we need to process more transactions, we just add more servers

SQL vs NoSQL

BASE (vs ACID)

• Basically Available: high availability even if network or hadware failues
(multiple nodes share the same data)

• Soft state: The system can be in a "soft" or intermediate state, which
means that data consistency is not guaranteed at all times.

• Eventual Consistency: After a certain period of time, all nodes in a
distributed system will hold the same data, assuming no new updates are
made during that period.
• If you read data immediately after writing it, you might not get the most recent

update.
• The system will eventually converge to a consistent state where all replicas have the

same data.

SQL vs NoSQL

SQL / RDBMS NoSQL

integrity is mission-critical OK as long as most data is correct

data format consistent, well-defined unknown or inconsistent

data is of long-term value is expected to be replaced

growth predictable, linear growth unpredictable growth (exponential?)

querying non-programmers writing

queries

only programmers writing queries

fault

tolerance

regular backups automatic data replication among

multiple nodes

distribution access through master server data sharding (partitioning), multiple

nodes with the same data

SQL vs NoSQL

• RDBMS:
• SQL language

• Relational model

• ACID

• difficult to scale horizontally but:
• Distributed RDBMS exists (Google spanner, CockroachDB)

• NoSQL:
• Not using the relational model (nor the SQL language)
• No / flexible schema - fields can be freely added to any record
• BASE
• Designed to run on many nodes (horizontally scalable)

Basic types of NoSQL

• Key-value stores

• Document databases

• Column-family stores

• Graph databases

Key-value stores

• Simple hash table

• Used when all accesses to the DB are via
primary key

• Used for
• web sessions,

• user profiles and preferences

• Memcached, MapDB, LevelDb, Redis

{
 "session_12345": {
 „logged_user_id": "001",
 "login_time": "2024-12-08T15:45:00Z",
 "last_activity": "2024-12-08T16:15:00Z",
 "cart_items": [
 {
 "product_id": "A1001",
 "quantity": 2
 },
 {
 "product_id": "A2002",
 "quantity": 1
 }
],
},
 "session_67890": {
 "user_id": "002",
 "login_time": "2024-12-08T16:00:00Z",
 "last_activity": "2024-12-08T16:30:00Z",
 "cart_items": [
 {
 "product_id": "B3003",
 "quantity": 3
 }
],
 }
}

Document databases

• Hierarchical tree data structures

• Nested associative arrays (maps)

• JSON / BSON / XML

• MongoDB

Users: [
{
 "user_id": "001",
 "name": "Alice Smith",
 "email": "alice.smith@example.com",
 "signup_date": "2024-01-15T08:30:00Z",
 "preferences": {
 "newsletter": true,
 "notifications": ["email", "sms"]
 },
 "friends": ["002", "003"]
 },
 {
 "user_id": "002",
 "name": "Bob Johnson",
 "email": "bob.johnson@example.com",
 "signup_date": "2024-02-20T09:00:00Z",
 "preferences": {
 "notifications": ["email"]
 },
 "friends": ["001"],
 "address": {
 "street": „Greenfield 10",
 „city": „Flowersburg",
 },
 }
]

MongoDB - example

SQL: SELECT * FROM users

MongoDB: db.users.find()

SQL: SELECT * FROM users WHERE user_id = "3"

MongoDB: db.users.find({„user_id":"3"})

SQL: SELECT firstname,lastname FROM users WHERE user_id=5

MongoDB: db.users.find({„user_id":"5"},{firstname:1,lastname:1})

Column-family
stores

• Rows that have many
columns associated with
a row key

• Column families are
groups of related data
(columns) that are often
accessed together

• Apache Cassandra

source: Sadalage & Fowler: NoSQL Distilled, 2012

Google BigTable (2008)
BigTable = sparse, distributed, persistent, multi-dimensional sorted map indexed by (row_key,
column_key, timestamp)

https://disa.fi.muni.cz/david-novak/teaching/pa195-nosql-databases/lectures/

Graph databases

• Graph nodes are objects
• Each node can have

properties (name, address...)

• Edges have directional
significance
• Edges have types (like,

employee,...)

Resources

• https://disa.fi.muni.cz/david-novak/teaching/pa195-nosql-
databases/lectures/

• https://onecompiler.com/mongodb

https://onecompiler.com/mongodb

	Slide 1: NoSQL
	Slide 2: SQL vs NoSQL
	Slide 3: SQL vs NoSQL
	Slide 4: SQL vs NoSQL
	Slide 5: SQL vs NoSQL
	Slide 6: SQL vs NoSQL
	Slide 7: Basic types of NoSQL
	Slide 8: Key-value stores
	Slide 9: Document databases
	Slide 10: MongoDB - example
	Slide 11: Column-family stores
	Slide 12: Google BigTable (2008)
	Slide 13: Graph databases
	Slide 14: Resources

